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The earth mover’s distance (EMD) is a measure of the distance between two distributions, and it has been widely used in
multimedia information retrieval systems, in particular, in content-based image retrieval systems. When the EMD is applied to
image problems based on color or texture, the EMD reflects the human perceptual similarities. However, its computations are
too expensive to use in large-scale databases. In order to achieve efficient computation of the EMD during query processing, we
have developed “fastEMD,” a library for high-speed feature-based similarity retrievals in large databases. This paper introduces
techniques that are used in the implementation of the fastEMD and performs extensive experiments to demonstrate its efficiency.

1. Introduction

The earth mover’s distance (EMD) was introduced in com-
puter vision as an improved distance measure between two
distributions, and it has been widely used in multimedia
databases. In particular, in the area of content-based image
retrieval (CBIR), where color images are retrieved from mul-
timedia databases, it is important to apply improved distance
measures. Several CBIR models have been proposed based on
the histogram approach, such as the query by image content
(QBIC) method proposed by Faloutsos et al. [1], which maps
each image to a vector based on encoded attributes such as
color distribution, texture, and shape. However, the histo-
gram approaches using Euclidean distance and quadratic
forms apply bin-to-bin distance functions; hence, these ap-
proaches are sensitive to minor shifts in feature value distri-
bution.

The similarity distance in the EMD is calculated as the
amount of changes necessary to transform one image feature
into another. Rubner and Tomasi [2] have proposed a CBIR
model using the EMD, and its high quality of image-simi-
larity searches has been demonstrated. Shishibori et al. [3]

have proposed a music-retrieval model using the EMD, and a
query-by-humming system presents a more robust approach
than the conventional methods.

The EMD is defined as a linear programming problem
that can be solved using the simplex method. However, com-
putation using the EMD and the simplex method is too com-
plex for its application in interactive multimedia database
systems. In order to achieve efficient retrieval processing
in large-scale multimedia databases based on the EMD, we
propose a fast retrieval algorithm for the EMD.

In order to reduce the computation times of the original
distance, the proposed method uses the lower bounding dis-
tance described in Cohen and Guibas [4] and Assent et al.
[5]. The lower bounding distance of the EMD is a simple ap-
proximation in terms of computation. In the case of the
k-nearest-neighbor search task, this method calculates the
original EMD for the first k images, where the largest distance
is set to the threshold. This method calculates the lower
bounding distance for k + 1 images. This method does not
calculate the original EMD if the lower bounding distance
exceeds the threshold, because the true EMD cannot be
lower than the first k images. In all other cases, this method
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calculates the original EMD, and if the true EMD is lower
than the first k images, a new image is registered and the
threshold is reset.

The remaining sections in this paper are organized as
follows: Section 2 introduces the outline of the earth mover’s
distance. Section 3 explains the lower bounds of the EMD
and proposes the algorithm of the calculation skip using the
lower bounds. Section 4 evaluates the effectiveness of the
presented method by using experimental results. Section 5
describes conclusion and future works.

2. Earth Mover’s Distance

2.1. Conventional Dissimilarity Measures. The Lp distance is
a generalized measure of the similarity between two histo-
grams x = {xi} and y = {yi}. The Lp distance is defined as

Lp
(
x, y

) =
⎛

⎝
n∑

i=0

∣
∣xi − yi

∣
∣p
⎞

⎠

1/p

, (1)

where p > 0.
The Minkowski distance assumes different names de-

pending on the value of p. If p = 1, the distance is called
a Manhattan distance. The Euclidean distance can be com-
puted from (1) by selecting p = 2. The Euclidean distance is
one of the simplest and most popular distance measures.

The Lp distance is a representative of bin-by-bin dissimi-
larity measures, and it has been used as the the dissimilarity
measures of multimedia information retrieval systems. A
major disadvantage of this method is that it accounts only
for the correspondence between bins with the same index,
and it does not use information across bins. This is illustrated
in Figure 1, which shows two pairs of one-dimensional gray-
scale histograms as described in Rubner and Tomasi [2].

Although the two histograms on the left are the same
except for a shift by one bin, the L1 distance between them
is larger than the L1 distance between the two histograms
on the right. As shown in Figure 1(a), the Lp distance does
not match the perceptual dissimilarity. This can be fixed
using the correspondences between the bins in the two histo-
grams and the ground distance between them, as shown in
Figure 1(b). As shown in Figure 1(b), the perceptual dis-
similarity is based on the correspondence between the bins
in the two histograms.

The quadratic-form distance is a representative of the
cross-bin dissimilarity measures. Niblack et al. [6] suggested
the use of this distance for color-based retrieval. The quad-
ratic-form distance does not enforce a one-to-one corre-
spondence between the mass elements in the two histo-
grams. The same mass in a given bin of the first histogram
is made to correspond to the masses contained in different
bins of the other histogram. However, the image-retrieval
results using the quadratic-form distance include some false
positives, because the quadratic-form distance tends to over-
estimate the mutual similarity of color distributions, as men-
tioned in Stricker and Orengo [7].

2.2. Earth Mover’s Distance. The EMD is based on the fol-
lowing linear programming problem. Let P = {(p1,wp1 ), . . . ,

(pm,wpm )} be the first signature with m clusters, where pi is
the cluster representative and wpi is the weight of the cluster.
Let Q = {(q1,wq1 ), . . . , (qn,wqn)} be the second signature
with n clusters. Let D = [di j] be the ground-distance matrix,
where di j = d(pi, qj ) is the ground distance between cluster
pi and qj .

We assume that the signature P denotes “supply places,”
the signature Q denotes “demand places,” and the ground
distance di j denotes the transportation cost between each
supply and demand place. Our aim is to find a flow F = [ fi j]
such that fi j lies between pi and qj , and it minimizes the
following overall cost:

WORK(P,Q, F) =
m∑

i=1

n∑

j=1

di j fi j . (2)

Equation (2) is obtained with the following constraints:

fi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3)

n∑

j=1

fi j ≤ wpi , 1 ≤ i ≤ m, (4)

m∑

i=1

fi j ≤ wqj , 1 ≤ j ≤ n, (5)

m∑

i=1

n∑

j=1

fi j = min

⎛

⎝
m∑

i=1

wpi ,
n∑

j=1

wqj

⎞

⎠. (6)

Constraint (3) allows the movement of supplies from P
to Q and not vice versa. Constraint (4) limits the amount
of supplies that can be sent by the clusters in P to their
weight. Constraint (5) limits the clusters in Q to so that the
supplies do not exceed the weights Constraint (6) forces the
maximum possible amount of supplies possible to be moved.
This amount is called the total flow. Once the transportation
problem is solved, and we have found the optimal flow F, the
EMD is defined as the resulting work normalized by the total
flow

EMD(P,Q) = WORK(P,Q, F)
∑m

i=1

∑n
j=1 fi j

. (7)

An example of a two-dimensional EMD is shown. The
signature A as supplies is shown in Table 1, and the signature
B as demands is shown in Table 2. We assume that the ground
distance is the Euclidean distance. The transportation costs
between signatures A and B are calculated as shown in
Table 3. By solving the transportation problem under the
above condition, we can obtain the optimized transportation
flow and weight, as shown in Figure 2.

In Figure 2, the white circles indicate supply places, and
the black circles indicate demand places. The numbers inside
the circle denote the weight of the supplies or demands. The
arrows show the transportation flow, and the numbers beside
the arrow denote the transportation weight. The total flow
cost of Figure 2 is obtained as follows:

2 · (0.3 · 1.4142 + 0.2 · 2.6926 + 0.1 · 4.1231) ≈ 2.7502.
(8)
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1 1 1 1 110 0 0 0 0 0 0 0 0 0

Distance = 4 Distance = 2

(a) Lp distance.

1 1

Cost = 2 Cost = 5

5

(b) Perceptual dissimilarity.

Figure 1: An illustration of perceptual dissimilarity.

Table 1: An example of the signature A.

Weight x y

A0 0.3 5 5

A1 0.3 0 5

A2 0.3 0 0

A3 0.3 5 0

Table 2: An example of the signature B.

Weight x y

B0 0.4 1 1

B1 0.4 4 1

B2 0.4 2.5 4

Table 3: Cost matrix of signature A and B.

B0 B1 B2

A0 5.6569 4.1231 2.6926

A1 4.1231 5.6569 2.6926

A2 1.4142 4.1231 4.7170

A3 4.1231 1.4142 4.7170

The computational complexity of the transportation prob-
lem is based on the simplex algorithm, which has an expo-
nential worst case.

2.3. Image Retrieval Using the EMD. Color distribution data
applied for CBIR models is extracted from color segmenta-
tion images. As shown in Figure 3, the distribution consists
of the weight, flow cost, and image feature. The weight is
the number of pixels in each region. The flow cost of each
distribution can be obtained by calculating the Euclidean
distance between the image features in each region. The
image feature of each region consists of the center position
(x, y) and the average color signature (RGB). Figure 4 shows
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Figure 2: Optimized flow.

Weight

The number of pixels in each region

Flow cost

The Euclidean distance between image features
Image feature

The center position and color signature in each region

1 2

4 5

3

271    

1892    
341    

427    

482    

(1)

(2)
(3)

(4)

(5)

(10, 5) (27, −16, 17)

(31, 29) (87, 10, 71)
(7, 32) (19, −3, 6)

(50, 12) (25, −7, 14)

(55, 49) (17, −5, 4)

Figure 3: Color signature for the EMD.

a sample of retrieval results using the EMD, where this
sample is retrieval results from 10,000 image dataset. On
the other hand, Figure 5 shows a sample of retrieval results
using the L2 from the same dataset. From these results, it can
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Query image

Retrieval images

(0.000001) (13.573805) (15.131016) (15.504841) (16.021463)

(18.455013)(17.103872)(17.100298)(16.937592)(16.485939)

Figure 4: Sample of retrieved results using the EMD.

Query image

Retrieval images

(0.000001) (4119.75) (4294.57) (4392.87) (4523.01)

(4539.95) (4548.78) (4549.37) (4585.51) (4625.2)

Figure 5: Sample of retrieved results using the Lp.

be found that CBIR systems using the EMD can reflect the
human perceptual similarities.

3. EMD Lower Bound

3.1. Basic Definitions and Notations. We denote a signature x
as follows:

x = {(x1,w1), (x2,w2), . . . , (xn,wn)}

≡ (X,w) ∈ Dd,n,
(9)

where

x = [x1 · · ·xn] ∈ Rd×n, w ≥ 0. (10)

Here, d is the dimension of the cluster xi ∈ Rd , and n is the
number of clusters. The total weight of the signature x is

wΣ =
n∑

j=1

wj. (11)
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In the case of the k-nearest neighbor search task, let r be the
distance between the query image and the the kth candidate
data during the search process.

3.2. Centroid-Based Lower Bounds. The centroid x of the
signature x = (X,w) ∈ Dd,n is defined as

x =
∑n

j=1 wjxj

wΣ
. (12)

Theorem 1. Suppose that x = (X,w) ∈ Dd,m and y =
(Y ,u) ∈ Dd,n are signatures of the equal total weight wΣ = uΣ.
Then,

EMDCB
(
x, y

) = ∥∥x− y
∥
∥ ≤ EMD

(
x, y

)
. (13)

Here, the ground distance ‖ · ‖ is any Lp norm used to measure
d(xi, yj), as described in Cohen and Guibas [4].

3.3. Calculation Skip Using the EMDCB. In the calculation
of EMDCB, the method described in Ajiok et al. [8] can be
applied to skip its calculation steps, because EMDCB is the L2

distance between the centroid of each signature. This method
regards the calculation of each centroid as each dimension in
the sigunature vector.

An example is shown in which the signatureA (Table 1) is
the query, the distance between the signature C (Table 4) and
the query is calculated, and r is set to 1.5. Then, the following
centroids are obtained by (12):

A = (2.5, 2.5),

C = (4.5, 3.25).
(14)

First, the L2 distance of the first dimensional centroid is
calculated as below:

r2 = 2.25 < (2.5− 4.5)2. (15)

The distance of the first dimension is larger than r2; hence,
the calculation steps after the second dimension can be
eliminated.

3.4. Independent Minimization Lower Bounds. EMDCB de-
notes the lower bounds based on the Lp distance. On the
other hand, Assent et al. [5] have proposed independent
minimization lower bounds based on cross-bin dissimilarity
measures.

Theorem 2. Suppose that x = (X,w) ∈ Dd,m and y =
(Y ,u) ∈ Dd,n are signatures of the equal total weight wΣ = uΣ.
Then,

EMDIM
(
x, y

) = min

⎛

⎝
m∑

i=1

n∑

j=1

di j
M

fi j

⎞

⎠

≤ EMD
(
x, y

)
.

(16)

Table 4: An example of the signature C.

Weight x y

C0 0.5 5 5

C1 0.5 5 0

C2 0.2 2 7

Table 5: Flow in EMDIM.

wB0 wB1 wB2

0.4 0.4 0.4

wA0 0.3 0.0000 0.0000 0.3000

wA1 0.3 0.0000 0.0000 0.3000

wA2 0.3 0.3000 0.0000 0.0000

wA3 0.3 0.0000 0.3000 0.0000

Equation (16) is obtained with the following constraints:

fi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (17)

n∑

j=1

fi j = wi, 1 ≤ i ≤ m, (18)

fi j ≤ uj , (19)

m∑

i=1

n∑

j=1

fi j = wΣ = uΣ, (20)

where fi j is the flow from xi to yj , di j = d(xi, yj) is the ground
distance between cluster xi and yj , and M = ∑m

i=1

∑n
j=1 fi j =

wΣ = uΣ.

3.5. Calculation Skip Using EMDIM . The calculation cost of
the EMDIM can be reduced by weakening the constraints
of the transportation problem. In Figure 2, the total flow
equals the total (supplies or demands) weight, because
the constraints of (4) and (5) are satisfied. The difference
between the EMDIM and the normal EMD is the constraint
on the amount of flows that one cluster may receive. While
the normal EMD requires the sum of flows to a certain cluster
to be equal to the weight of the cluster (18), the EMDIM only
ensures that for any single cluster, the incoming flows do not
exceed the weight of the cluster (19); that is, the total flow to a
cluster can exceed its weight. The final flows of EMDIM(A,B)
are shown in Table 5 in which the total flow to B2 exceedswB2 .

From this characteristic, the flows can be calculated
for each supply cluster. To calculate EMDIM, the method
described in Ajiok et al. [8] can be applied to skip the
calculation step of each supply cluster. This method regards
the flow calculation of each supply cluster as each dimension
in the signature vector.

An example of the calculation skip of the EMDIM(A,B)
is shown, where r is set to 1.5. First, a minimum value of
total transportation costs from A0 is obtained, and its value
is compared with r, as shown below:

0.3 · 2.6926 = 0.80778

< r.
(21)
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For the first k image data,

the original EMD is calculated

Data p which has the
largest distance from the

query is specified

The largest distance is set
to the threshold (r)ResultsDatabase

Original

EMD

k − 2 k − 1

k − 1

k + 1 k + 2

N − 2

p

N − 1 N

· · · · ·

· · · · ·

·

·· · · · ·

· ·

· ·

· · ·

k

k1

1

2

2

3 4 5

Figure 6: Algorithm for the first k image data.

The lower bound (LB) is

If the LB < r, the original
EMD is calculated

If the original EMD < r,
the data is registered

The threshold r is reset

Original
EMD

Lower
bound

ResultsDatabase

calculated from k + 1 data

k − 1

k + 1

k + 1

k + 2

N − 2 pN − 1 N· ·
· · · · ·

·

·

·····

· · · · ·

k

1

2

Figure 7: Algorithm from the k + 1 image data.

The value of A0 is smaller than r; the total transportation
costs from A1 are added to A0 as follows:

0.80778 + 0.3 · 2.6926 = 1.61556

> r,
(22)

where the total value is larger than r; hence, the calculation
of A2 and A3 can be eliminated.

4. Fast Retrieval Algorithm for the EMD

4.1. Algorithm Using the Lower Bounds. In the case of the
k-nearest-neighbor search task, the retrieval algorithm for
the first k image data is shown in Figure 6, and the retrieval
algorithm from the k+1 image data is shown in Figure 7. This
method calculates the original EMD for the first k images in
the database, where the largest distance is set to the threshold
r. This method calculates the lower bounding distance for
succeeding data from k+1 image. This method does not
calculate the original EMD if the lower bounding distance
exceeds the threshold r, because the true EMD cannot be
lower than the first k images. In all other cases, this method
calculates the original EMD, and if the true EMD is lower
than the first k images, a new image is registered, and the
threshold r is reset.

4.2. Algorithm Using the Priority Queue. In a nearest-
neighbor search based on a linear search, k search results are
obtained when k features close to a given query are found.
When a newly found result has a distance to the search
feature that is smaller than the largest of the current k results,
the results are updated. The data with the largest distance
must be deleted from the candidate list, and the new result
must be added. The efficient execution of this procedure is
provided by using a data structure called a priority queue.

There are various implementations of the priority queue,
one of them being heap. The heap structure is shown in
Figure 8. The diagram shows an array as a binary tree, with
a key specifying the two lower keys. Every key is larger than
its two child keys. Such a data structure is called a complete
binary tree; the heap is defined as a complete binary tree,
which is represented as an array in which all the nodes satisfy
the heap condition. Here, the heap condition is that the key
in any node is larger than (or equal to) the keys in its child
nodes. If this heap condition is satisfied, then the largest key
is always in the root node. As shown in Figure 8, the root is
numbered as 1, its children as 2 and 3, their children as 4,
5, 6, and 7, and so on. In such a representation, the parent
of a node a[ j] is a[ j/2] (truncated at the decimal point if j
is odd), and its children are a[2 j] and a[2 j + 1]; thus, the
parents and children can be identified easily for every node.
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Figure 8: Heap structure.
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Figure 9: CPU time on 5-dimensional data.

When a new search result offers a distance smaller than
the largest value among the current results, the heap root
(which has the largest value in the candidate list) is replaced
with this newly found value. When this procedure causes a
violation of the heap condition, the root value is exchanged
with the largest of its children to restore the condition. If
the heap condition is violated at the next level, a similar
operation is applied; the procedure is terminated if a parent’s
value is smaller than that of both children, or when the
heap bottom is reached. This processing ensures that the data
structure can be repaired so that every node meets the heap
condition.

5. Evaluations

5.1. Experimental Results. In order to evaluate this method,
the number of color images in the database was increased
from 5,000 to 50,000 (in increments of 5,000), and the
retrieval time (CPU time) to search the top 10 images was
evaluated. To evaluate the number of dimensions of the
cluster representative xi, we prepared 5- and 11-dimensional

0
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0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40 45 50

C
P

U
-t

im
e

(s
)

The number of data (k)

im
cb im

noskip im
noskip cb im

Figure 10: CPU time on 5-dimensional data (enlarged graph).

data as the image feature. These experiments were simulated
using a PowerPC G4 running at 1.5 GHz with 1.25 GB of
memory.

The experimental results are shown in Figures 9–12. The
experimental results for the 5-dimensional data are shown in
Figures 9 and 10, and the results for the 11-dimensional data
are shown in Figures 11 and 12. In order to make the effect of
the combination of the proposed methods comprehensible,
Figures 10 and 12 are enlarged graphs of Figures 9 and
11 correspondingly. In these graphs, “none” indicates the
normal EMD calculation, “cb” indicates the corresponding
result obtained using the centroid-based lower bounding
distance, “im” indicates the corresponding result using the
independent minimization lower bounding distance, and
“cb im” indicates the corresponding result by combining the
“cb” and “im” methods. In addition, “noskip ∗” represents
the value obtained by each method without the calculation-
skipping algorithm.

From the experimental results, it can be seen that when
the number of color images is 50,000 and has 5 dimensions,
it takes approximately 2.5 seconds to retrieve the result for a
query image by using the normal EMD calculation. The com-
bination method of the lower bounds could obtain the same
result as the normal EMD in approximately 0.15 second. On
the other hand, the method using the calculation-skipping
algorithm took only 0.1 second.

5.2. Related Works. Some derivation algorithms of the EMD
have been proposed. Pele and Werman [9] proposed the fast

algorithm of�EMD, and Ling and Okada [10] proposed the

fast algorithm of EMD L1. The�EMD can be obtain by replac-
ing the ground distance of the EMD with the thresholded
distance. EMD L1 is a replacement of the ground distance

with the L1 distance. Both of�EMD and EMD L1 are different
from the original EMD. And they only indicate high-speed
calculation methods in the case that the thresholded distance
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Figure 12: CPU time on 11-dimensional data (enlarged graph).

and L1 distance were used as the ground distance. On the
other hand, by using our algorithm, the original EMD can
be calculated efficiently. The characteristic of our algorithm
is that unnecessary calculations can be skipped by using
the EMD lower bounds, and the viewpoint of speedup is
different from their methods.

5.3. Future Works. The proposed method selects first k image
data in the database as the initial retrieval results (Figure 6).
However, if there are some outliers in first k image data,
the effect of speedup will become less, since the threshold
r is much larger. Then, the smaller the distance between
the query and first k image data is, the more the retrieval
efficiency improves. In order to solve this problem, we are

Table 6: A preliminary experimental result.

distancetop distancevp

query1 5028.37 4723.46

query2 5115.23 2264.38

query3 4401.71 1969.05

query4 4071.22 2437.28

query5 4329.04 1588.82

average 4589.11 2596.60

planning to use the hierarchical clustering index to select
the initial data. VP-tree [11] and M-tree [12], which are
famous metric space indices, can be used as the hierarchical
clustering index. By using these indices, appropriate initial
data as first k image data can be obtained from the leaf node
which is reached for the first time on the retrieval process.
To be sure, these data are not true correct, but the possibility
including outliers becomes low considerably. And it seems
that the distance between the query and first k image data
becomes small. The above improvement will be done as the
future works.

In order to validate that the hierarchical indexing tree can
help to reduce the effects of outliers in the first k images,
the following preliminary experiment was done. First, the
max distance between the query and top 100 image data is
calculated. This distance is called distancetop and set to the
initial threshold r on the proposed method. Next, we obtain
the max distance between the query and about 100 image
data in the leaf node, which is reached for the first time
by using the VP-tree. This distance is called by distancevp,
and set to the initial threshold r′ on the improved method
by using the VP-tree. These distances were calculated for
5 queries and the image database, in which was registered
10,000 image data. The preliminary experimental result is
shown in Table 6, where the Euclid distance is used as the
distance measure, and the number of dimensions is 48. From
the preliminary experimental results, it is found that the
initial threshold can be set to smaller value by using the VP-
tree.

6. Conclusion

In this paper, a fast retrieval method for the earth mover’s
distance in multimedia databases is proposed. This method
uses the lower bounding distance of EMD and combines it
with a calculation-skipping algorithm. Moreover, the validity
of the proposed method is supported by empirical obser-
vations. For future works, various multimedia information
retrieval systems using the fast EMD should be implemented.
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