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Abstract: Infertility is a disease of the reproductive system characterized by inability to achieve 

pregnancy after 12 or more months of regular unprotected sexual intercourse. A variety of fac-

tors, including ovulation defects, spermatogenic failure, parental age, obesity, and infections 

have been linked with infertility, in addition to specific karyotypes and genotypes. The study of 

genes associated with infertility in rodent models has expanded the field of translational genet-

ics in identifying the underlying cause of human infertility problems. Many intriguing aspects 

of the molecular basis of infertility in humans remain poorly understood; however, application 

of genetic knowledge in this field looks promising. The growing literature on the genetics of 

human infertility disorders deserves attention and a critical concise summary is required. This 

paper provides information obtained from a systematic analysis of the literature related to cur-

rent research into the genetics of infertility affecting both sexes.

Keywords: infertility, genetics, polycystic ovary syndrome, premature ovarian failure, 

 spermatogenic failure, cystic fibrosis

Introduction
According to the World Health Organization, infertility is a disease of the reproduc-

tive system and is defined as the inability of sexually active couples taking no contracep-

tives to achieve pregnancy within 1 year. A systematic analysis of 277 health surveys 

of the prevalence of infertility (national, regional, and global) since 1990 suggests that 

48.5 million couples were unable to have a child within 5 years in the year 2010.1 The 

issues of infertility are underappreciated in developing countries. Childlessness has 

negative psychological consequences and leads to social stigma. Nearly 70 million 

couples are infertile worldwide, and assisted reproductive technologies are expensive 

and particularly unaffordable for couples in developing countries.2

Reproduction is required for procreation of mammalian species and involves a 

complex coordination of several gene products.3 Human sexual development starts in 

the embryo and involves three processes, ie, sex determination, which is chromosomally 

established at fertilization, differentiation of the gonads into testes or ovaries, and dif-

ferentiation of internal and external genitalia.4 Genital differentiation follows the male 

pattern in the presence of testicular hormones or the female pattern in their absence.4 

In testicular development, the primordial cells are capable of undergoing proliferation 

before meiosis, and hence produce large numbers of sperm throughout the male life 

cycle. In ovarian development, the number of primordial follicles is finite. Thus, there 

is a subsequent loss of follicles during female development and puberty, and eventual 

follicle exhaustion leads to menopause.  Moreover, reproduction physiology involves 
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several paracrine, autocrine, and endocrine processes. All of 

these processes are tightly regulated by a plethora of genes 

(discussed in the successive sections), and discrepancies in 

any of these pathways can lead to infertility. The cause of 

infertility can be hormonal, immunological, infectious, or 

psychological.

Infertility is a complex disease, and hence an approach 

to identify a single causative gene is incomprehensive.5 

Known genetic causes of infertility include chromosomal 

aberrations, single gene variants, and phenotypes with 

multifactorial inheritance.6 Genetic association studies are 

performed to identify and characterize natural variants or 

polymorphisms within genes that might be associated with 

the fertility phenotype.7 Karyotyping and fluorescence in 

situ hybridization analysis have been used to identify chro-

mosomal aberrations. Unlike karyotyping, fluorescence in 

situ hybridization can be used on interphase cells and to 

analyze the sperm genetic component in cases of recur-

rent miscarriage.8,9 Sequencing methods are commonly 

used as tools to identify gene mutations. Further, animal 

models of reproductive disorders have been used to iden-

tify candidate genes for infertility.10 The molecular causes 

of infertility are not confined to genetic variations alone; 

it has been shown that spermatogonial histone retention, 

histone modifications, DNA methylation, and transcript 

levels play a role in male infertility.11 This review focuses 

on the genetic causes of male and female infertility, and 

outlines the research conducted in recent years in a few 

well studied infertility diseases.

Genetics of female infertility
Female infertility is defined as the inability to conceive 

naturally or to carry a pregnancy to full term.12 Female 

infertility is caused by genetic, hormonal, or environmental 

factors. In addition, pelvic inflammatory disease, uterine 

fibroids, age-related factors, tubal blockage, and hostile 

cervical mucus can cause infertility in females.12,13 Recent 

findings in the genetics of female infertility are discussed 

below.

Polycystic ovary syndrome
Polycystic ovary syndrome (PCOS) is a complex and het-

erogeneous endocrine condition that affects 5%–10% of 

women. PCOS is marked by hyperandrogenism, hyperin-

sulinemia, insulin resistance, and chronic anovulation.14,15 

Pathological features include arrest of follicle growth at 

the small antral stage, minimal proliferation of granulosa 

cells, and  hyperthecosis (hyperplasia of the theca interna 

of the ovary).16 The genetic basis of PCOS is not known, 

owing to the difficulties in determining the inheritability 

of PCOS. Several genetic variants have been reported to 

influence PCOS; however, the current literature dealing with 

the genetics of PCOS is inconsistent and inconclusive.17 

Further, PCOS is influenced by obesity, and obesity itself 

has complex genetic associations. PCOS susceptibility 

genes are believed to be involved in sex hormone regula-

tion, insulin sensitivity, and steroid biosynthesis.7 The genes 

that have been tested for association with PCOS include 

StAR (steroidogenic acute regulatory protein), CYP11A 

(CYP11A-cytochrome P450 side-chain cleavage enzyme), 

CYP17  (CYP17-cytochrome P450 17α- hydroxylase/17,20-

desmolase), CYP19 (CYP19-cytochrome P450 aromatase), 

HSD17B1–3 (17-β hydroxysteroid dehydrogenase type 1–3), 

HSD3B1–2 (3-β hydroxysteroid dehydrogenase type I and 

type II), ACTR1 (activin receptor I), ACTR2A–B (activin 

receptor 2A and 2B), FS (follistatin), INHA (inhibin alpha), 

INHBA (inhibin β-A), INHC (inhibin C), SHBG (sex hormone 

binding globulin), LHCGR (luteinizing hormone/chorionic 

gonadotropin receptor), FSHR (follicle-stimulating hor-

mone receptor), MADH4 (mothers against decapentaplegic 

homolog 4), AR (androgen receptor), MC4R (melanocortin 

4 receptor), OB (leptin), OBR (leptin receptor), POMC (pro-

opiomelanocortin), UCP2+3 (uncoupling proteins 2 + 3), 

IGF1 (insulin-like growth factor I), IGF1R (insulin-like 

growth factor receptor I), IGFBPI1+3 (insulin-like growth 

factor binding proteins 1 + 3), IR (insulin receptor), INSL 

(Leydig insulin-like protein), IRS1-2 (insulin receptor 

substrate I), and PPARG (peroxisome proliferator-activator 

receptor gene gamma).18 The polymorphisms associated 

with PCOS have been reviewed in detail.7 In this section, 

we aim to cover the latest reports of studies involving 

LHCGR, FSHR, VDR (vitamin D receptor), and insulin 

resistance in PCOS.

A genome-wide association study mapped PCOS-

associated susceptibility loci to 2p16.3, 2p21, and 9q33.3 

in a Chinese population.19 Among the three loci, LHCGR 

and FSHR on chromosome 2p16.3 were identified to have 

an association with PCOS in a European cohort.20 LHCGR 

is a receptor for two ligands, ie, luteinizing hormone and 

chorionic gonadotropin. In females, luteinizing hormone 

triggers the release of oocytes and is also required for 

maintaining the structure and function of the corpus luteum, 

while chorionic gonadotrophin stimulates luteal function, 

which maintains pregnancy. No somatic mutations were 

observed in LHCGR in a study involving 192 women with 

PCOS. However, promoter hypomethylation and reduced 
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LHCGR transcript levels were observed.21 In another study, 

the G935A polymorphism within LHCGR was reported to 

be associated with PCOS.22

FSHR affects folliculogenesis and ovarian function. No 

somatic mutations were identified in the coding regions of 

FSHR in 124 Chinese Singaporean women.23 The known 

FSHR polymorphisms, A307T and N680S, have no asso-

ciation with PCOS.24 Several other studies have shown 

that the N680S polymorphism has no association with 

PCOS.25–27 Vitamin D is a steroid hormone that acts through 

the vitamin D receptor to maintain calcium homeostasis. 

Intriguingly, egg activation, oocyte maturation, follicular 

development, and mammalian embryo development are 

Ca2+-dependent.28 The VDR is a nuclear steroid hormone 

receptor involved in the regulation of gene transcription. 

Interestingly, VDR gene variants are associated with PCOS. 

For example, the CC genotype of rs731236 in exon 9 of VDR 

is associated with PCOS.29

PCOS is also characterized by insulin resistance. The 

elevated insulin levels facilitate secretion of androgens from 

the ovaries and adrenal glands, leading to  hyperandrogenism. 

Elevated levels of androgens lead to menstrual disturbances 

and infertility.30 The role of the insulin pathway in the patho-

genesis of PCOS is essential, and thus genetic variants of the 

insulin pathway associated with PCOS have been extensively 

reviewed.31

Widespread changes in transcription and transcriptional 

regulation in PCOS patients have also been found. First, 

DNA methylation regulates gene transcription. Forty genes 

have been shown to be differentially methylated in PCOS 

patients compared with the corresponding genes in normal 

individuals.32 Changes in methylation of EPHX1, LMNA, and 

GSK3A are associated with PCOS.32–34 MicroRNA (miRNA) 

profiles have also been shown to change in PCOS patients. 

Compared with their wild-type counterparts, rats with 

dihydrotestosterone-induced PCOS showed downregulation 

or upregulation of a total of 17 and 72 miRNAs, respec-

tively, in the ovaries.15 This study showed that  miR-132, 

which targets luteinizing hormone, was downregulated, 

and miRNAs such as miR-221/222 and miR-183, which 

regulate estrogen receptor-α signaling, were differentially 

expressed.  Additionally, alterations in several miRNA 

expression patterns have been reported in the follicular fluid 

of  PCOS-affected women.35

The genetic heterogeneity of PCOS suggests that the cel-

lular mechanisms and signaling involved in the pathogenesis 

of the disease is complex. To conclude, although several 

genes have been associated with PCOS, there is no evidence 

to suggest that a unique gene or a dominant pathway is the 

sole causative factor.

XX gonadal dysgenesis
Sex determination in the mammalian embryo is marked by 

development of germ cells, migration of germ cells to the 

urogenital ridge, and development of either testes or ovaries 

from the bipotential gonad.36 These processes are controlled 

by complex molecular signaling; abnormalities in these sig-

naling pathways can lead to gonadal (ovarian and testicular) 

dysgenesis. A well-known illustration of this type of dysgen-

esis is XX female gonadal dysgenesis (XX-GD). XX-GD is 

genetically heterogeneous, but phenotypically identified by 

the presence of gonadal streaks, lack of spontaneous pubertal 

development, primary amenorrhea, uterine hypoplasia, and 

hypergonadotropic hypogonadism.36 Ovarian insufficiency in 

this condition can range from lack of pubertal development to 

the onset of menopause before the age of 40 years. Mutations 

in FSHR, BMP15, NR5A1, EIF2B2, EIF2B5, HSD17B4, 

and HARS2 have been reported in XX-GD.36–39 NR5A1 

(nuclear receptor subfamily 5, group A, member 1) is a 

nuclear receptor and transcriptional regulator of several genes 

involved in sexual development and reproduction, such as 

StAR, CYP17A1, CYP11A1, INHA, and CYP19A1 (Table 1). 

NR5A1-/- ovaries lack the corpora lutea. Mutations such as 

Table 1 List of genes examined in female infertility as discussed 
in the review

Infertility  
disorder

 Genes Reference

1 Polycystic ovary  
syndrome

StAR, CYP11, CYP17, CYP19  
HSD17B1-3, HSD3B1-2,  
ACTR1, ACTR2A-B, FS, INHA,  
INHBA-B, INHC, SHBG, LHCGR,  
FSHR, MADH4, AR, MC4R, OB,  
OBR, POMC, UCP2-3, IGF1,  
IGF1R, IGFBPI1-3, INS VNTR, IR,  
INSL, IRS1-2, PPARG

18

LHCGR, FSHR 20–27

VDR 29

EPHX1, LMNA, GSK3A 32–34
2 XX, gonadal  

dysgenesis
FSHR, BMP15, NR5A1, EIF2B2,  
EIF2B5, HSD17B4, HARS2

36–39

PSMC3IP 36
Perrault  
syndrome

HSD17B4 41
LARS2, HARS2 42,43

3 Premature  
ovarian failure

FSH, FOXO3A, FOXL2, BMP15 10

TSHB, ADAMTS16 45

PCSK1, DBH 46

FMR1 47

Note: Readers are requested to refer to the cited references for further details 
regarding the gene association.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

238

venkatesh et al

c.666delC, c.877G.A, and c.390delG within NR5A1 have 

been reported in 46,XX-GD patients.39 Another study has 

reported a pGlu201del mutation in PSMC3IP  (proteasome 

26S subunit, ATPase, 3-interacting protein) in a female with 

XX-GD. Mutations in PSMC3IP impair estrogen-driven 

transcription and hence lead to gonadal dysgenesis.36

Intriguingly, XX-GD has been reported in both iso-

lated and syndromic conditions. Ovarioleukodystrophy 

and Perrault syndrome are examples of syndromic cases 

of XX-GD.  Perrault syndrome is characterized by 46,XX 

ovarian dysgenesis and sensorineural deafness in females. 

In a few instances, mental retardation, ataxia, and cerebel-

lar hypoplasia have been reported in Perrault syndrome.40 

Mutations such as c.650A.G (p.Y217C) and c.1704T.A 

(p.Y568X) in HSD17B4, which encodes 17 β-hydroxysteroid 

dehydrogenase type 4, also known as D-bifunctional protein, 

have been reported in a female with Perrault syndrome. 

 HSD17B4/D-bifunctional protein is a multifunctional per-

oxisomal enzyme involved in fatty acid β-oxidation and 

steroid metabolism.41 In addition, two mitochondrial genes, 

LARS2 and HARS2, are linked to Perrault syndrome. LARS2, 

which encodes a mitochondrial leucyl-tRNA synthetase, 

shows homozygous c.1565C.A (p.Thr522Asn) in a con-

sanguineous Palestinian family, and compound heterozy-

gous c.1077delT and c.1886C.T (p.Thr629Met) mutations 

in a nonconsanguineous Slovenian family with Perrault 

syndrome.42 Compound mutations at two highly conserved 

amino acids, L200V and V368L, in mitochondrial histidyl-

tRNA synthetase (HARS2) also cause this syndrome. These 

mutations implicate a role for the mitochondria in proper 

function of the ovaries.43

Premature ovarian failure
Premature ovarian failure (POF) is defined as the onset 

of menopause in women under the age of 40 years. The 

symptoms include amenorrhea due to hypoestrogenism, 

elevated gonadotrophin levels, and other menopause-related 

symptoms, such as hot flushes, night sweats, and vaginal dry-

ness.10 POF is likely due to depletion of the follicles, which 

could be because of a decreased number of oocytes being 

formed during development or an increased rate of oocyte 

atresia during the reproductive lifespan.10 Paradoxically, some 

women affected by POF show the presence of follicles in 

their ovarian biopsies or ultrasound scans. Hence, our cur-

rent understanding of the etiology of this disease is not clear, 

and it is likely that the disease is caused by several factors. 

POF can be influenced by environmental and genetic factors. 

Irreversible damage to the ovaries during radiation therapy, 

chemotherapy, or  autoimmune disease conditions can cause 

POF. X-chromosome abnormalities and autosomal genetic 

defects can also cause POF.44

The genetic causes of POF have been reviewed in detail.10 

Several genes have been studied in POF patients, and mutations 

in FSH, INHA, FOXO3A (forkhead box O3), FOXL2 (forkhead 

box L2), and BMP15 (bone morphogenetic protein 15) have 

been shown to cause POF (Table 1).10 It has been demon-

strated that either of the two single nucleotide polymorphisms 

(rs7530810 and rs1321108) in the 5′-UTR (untranslated region) 

flanking region of TSHB (thyroid-stimulating hormone β) or the 

intronic single nucleotide polymorphism (rs13172105) within 

ADAMTS16 (ADAM metallopeptidase with thrombospondin 

type 1 motif, 16) increase the risk of POF in Korean women.45 

Additionally, epistasis between the PCSK1 (proprotein 

convertase  subtilisin/kexin type 1) and DBH (dopamine 

β-hydroxylase) genes is associated with POF.46 Deletions in 

Xq21.3–Xq27 have been observed in POF patients.44 The FMR1 

(fragile X mental retardation 1) gene is located on Xq27, and 

expansion of the CGG repeats in its 5′-UTR is associated with 

POF.47 Since several genes have been associated with POF, next-

generation sequencing with large sample sizes could be useful 

to identify highly associated genes that cause POF.10

Genetics of male infertility
Male infertility accounts for 50% of all infertility cases. Male 

infertility can be a multifactorial disorder. In 30% of cases, the 

cause of infertility is unknown.48 The genetic causes include 

chromosomal abnormalities, mitochondrial DNA mutations, 

and endocrine disorders of genetic origin.  Chromosomal 

aberrations and single gene mutations account for 10%–15% 

of male infertility.49 The nongenetic causes include hypogo-

nadism, testicular maldescent, structural abnormalities in 

the male genital tract, infection, impotence, chronic illness, 

medication, and immunological conditions.6,48

Leydig cell hypoplasia
In humans, the male genitals begin to develop around week 9 

of gestation. Human chorionic gonadotropin (hCG) stimulates 

the fetal Leydig cells to secrete testosterone, which leads to 

the development of male genitals.50 At later stages of fetal 

development, the function of hCG is taken over by luteinizing 

hormone. Leydig cell hypoplasia is a rare autosomal recessive 

condition wherein the fetal Leydig cells are unresponsive to 

hCG. The features of Leydig cell hypoplasia include hypopla-

sia of the Leydig cells, complete feminization of the external 

genitals, and partial masculinization with micropenis.50 

Leydig cell hypoplasia is caused by inactivating mutations 
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in the LHCGR gene.51 LHCGR has eleven exons: the first 

ten exons code for the extracellular ligand binding domain, 

while exon 11 codes for the 7-transmembrane and intracellular 

domains of the receptor.50 Several LHCGR mutations have 

been reported to cause Leydig cell hypoplasia.52 A frame shift 

mutation (c.A589fs) in exon 11 of LHCGR has been reported 

in a Turkish child born of a consanguineous marriage.51 

Additionally, a nonsense mutation (c.T1836G) in a 22-year-

old Bedouin female is reported.50 The binding of luteinizing 

hormone to the LHCGR leads to activation of the mitogen-

activated protein kinase (MAPK) cascade in primary cultures 

of postnatal Leydig cells.53 In agreement with crosstalk of 

luteinizing hormone and the MAPK pathway,53 it has been 

shown that the Leydig cell-specific deletion of MAPK 1/2 

in mice leads to Leydig cell hypoplasia.54 Activation of the 

MAPK pathway leads to steroid synthesis.55

XY gonadal dysgenesis
Gonadal (testicular or ovarian) dysgenesis (GD) can be 

classified as complete or partial. Partial GD and complete 

GD in patients with a Y chromosome are discussed in this 

section. Partial GD with testicular dysgenesis is classified 

by 46,XY or 45,X karyotypes. The gonads in partial GD 

may be marked by the presence of few tubular structures 

or fibrous tissues, or may occur as streaks.56 In complete 

GD, patients have a completely female phenotype with no 

gonadal development.57 However, patients with complete 

GD have a higher risk for developing gonadoblastoma. 

Mutations in MAP3K1 (mitogen-activated protein kinase 

kinase kinase 1, E3 ubiquitin protein ligase) accompa-

nied by normal SRY (sex determining region Y), SF1, and 

DHH (desert hedgehog) genes have been reported in 46,XY 

cases58 (Table 2). Mutations such as p.Glu121AlafsX25, 

p.Arg62Cys, and p.Ala154Thr in SF1 have been observed 

in Egyptian individuals with 46,XY disorders of sexual 

development.59 Recently, a research group has identified a 

p.N65D missense mutation in the SRY gene of a female with 

46,XY gonadal dysgenesis.60 Another research group utilized 

the 1M array-comparative genomic hybridization (CGH) on 

the genomic DNA from 14 patients with 46,XY-GD to detect 

chromosomal aberrations.61 They reported duplication of 

the SUPT3H (suppressor of Ty 3 homolog [Saccharomyces 

cerevisiae]), PIP5K1B (phosphatidylinositol-4-phosphate 

5-kinase, type I, beta), PRKACG (protein kinase, cAMP-

dependent, catalytic, gamma), and FAM189A2 (family with 

sequence similarity 189, member A2) genes, and deletion of 

the C2ORF80 (chromosome 2 open reading frame 80) testicu-

lar gene. Additionally, haploinsufficiency of DMRT1 (double-

sex and mab-3 related transcription factor 1) and mutations 

in MAMLD1 (mastermind-like domain containing 1) have 

been observed in 46,XY individuals.62,63 However, the 

detailed functional mechanisms for these genes are yet to 

be elucidated.

Spermatogenic failure
Spermatogenic failure is one the major causes of male 

infertility.64 Def iciency in spermatogenesis can lead 

to azoospermia, oligospermia, teratospermia, and 

 asthenozoospermia. The cause of these spermatogenic 

failures can be genetic, acquired, or both.64 In 1976, the cor-

relation between Y chromosome deletion and male infertility 

was identified.65 The sex-determining Y chromosome is the 

smallest human chromosome and consists of short (Yp) and 

long (Yq) arms. Within the Y chromosome, Yq microdele-

tions were detected in patients with spermatogenic failure. 

Three azoospermia factor (AZF) regions (AZFa, AZFb, and 

AZFc) have been defined on Yq11.66 Interestingly, dele-

tions of AZF regions are thought to be caused by nonallelic 

homologous  recombination. Deletions of ∼792 kb and ∼98 kb 

have been reported in the AZFa region.67–69 A ∼3.5 Mb dele-

tion of the AZFc region is recurrent, and termed the b2/b4 

deletion.70 AZFa deletion leads to a complete absence of 

 spermatozoa. Testicular biopsies from men with an AZFa 

deletion exhibit features of Sertoli cell-only syndrome.71 

Sertoli cell-only syndrome, also referred to as germ cell 

aplasia, is a condition of the testes in which only Sertoli cells 

line the seminiferous tubules. AZFb deletion leads to arrest of 

spermatogenesis. Hence, intracytoplasmic sperm injections 

are not a viable treatment option for patients with either of 

these two deletions.71 Loss of AZFc results in azoospermia 

Table 2 List of genes examined in male infertility as discussed in 
the review

Infertility  
disorder

Genes References

1 Leydig cell 
hypoplasia

LHCGR 50,51

2 XY, gonadal  
dysgenesis

MAP3K1, SRY, SF1, DHH 58–60
SUPT3H, PRKACG,  
FAM189A2, C2ORF80

61

DMRT1, MAMLD1 62,63
3 Spermatogenic  

failure
RBYM1A1, BPY2, DBX3Y,  
USP9Y, DAZ1, HSFY1, TSPY1

64

CDY2A, HSFY1 73

TAF4B, SMYD3, DMRT1 75,76

PIWIL2 77

Note: Readers are requested to refer to the cited references for further details 
regarding the gene association.
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or oligospermia.72 The AZF-associated candidate genes, 

such as RBYM1A1 (RNA binding motif protein, Y-linked, 

family 1, member A1), BPY2 (basic charge, Y-linked, 2), 

DBX3Y (DEAD [Asp-Glu-Ala-Asp] box helicase 3, Y-linked), 

USP9Y (ubiquitin specific peptidase 9, Y-linked), DAZ1 

(deleted in azoospermia 1), HSFY1 (heat shock transcrip-

tion factor, Y-linked 1), and TSPY1 (testis specific protein, 

Y-linked 1) have been well studied. The genes tested for sperm 

defects have been reviewed and tabulated (Table 2).64

It has also been reported that CDY2A (chromodomain 

protein, Y-linked, 2A) and HSFY1 are highly expressed in 

men with obstructive azoospermia as compared with men 

with maturation arrest.73 Hence, these two Y chromosome-

associated genes may have a role in sperm maturation. 

A study reported a unique t(Y; 1)(q12; q12) balanced 

reciprocal translocation with a loss of the heterochromatic 

region on chromosome 1 in an Indian male, which led to 

spermatogenesis arrest in meiosis I.74 Mutations in TAF4B 

(TAF4b RNA polymerase II, TATA box binding protein 

[TBP]-associated factor, 105kDa), SMYD3 (SET and MYND 

domain containing 3), and DMRT1 have also been reported 

in patients with azoospermia.75,76 Epigenetic changes are 

involved in various diseases, including male infertility. 

Using the Infinium HumanMethylation27 BeadChip, global 

genomic DNA methylation profiling was performed in three 

populations of human infertile male patients (conserved sper-

matogenesis, Sertoli cell-only syndrome, and spermatogenic 

failure due to germ cell maturation defects).77 The results 

of this study suggested that men with spermatogenic disor-

ders show abnormal promoter methylation of the PIWIL2 

(piwi-like RNA-mediated gene silencing 2) gene, causing 

defective production of piwi-interacting RNA and hypo-

methylation of the LINE-1 repetitive sequence.77

Genetics of infertility  
common to both sexes
Cystic fibrosis
Cystic fibrosis (CF) transmembrane conductance regulator 

(CFTR) is a cyclic adenosine monophosphate (cAMP)-

activated Cl- and HCO3- ion conducting channel expressed 

in epithelial cells.78 Mutations in CFTR cause CF. Patients 

with CF suffer from systemic disorders in multiple organs. 

Infertility is also commonly observed in patients with CF.79 

In males, CFTR mutations cause congenital bilateral absence 

of vas deferens or sperm abnormalities such as azoospermia, 

teratospermia, and oligospermia.80 Mutations such as 

F508del, R117H, and W1282X in CFTR have been reported 

in infertile males.81,82 FSH-induced cAMP production and 

phosphorylation of cAMP response  element-binding  protein 

is essential for spermatogenesis. It has been shown that 

defects in CFTR result in insufficient activation of FSH-

induced signal transduction.80

Additionally, CFTR is involved in secretion of endometrial 

and oviduct HCO
3
-, which is necessary for sperm capacita-

tion.83 CFTR is also expressed in the cervix, oviduct, ovary, and 

uterus, where it regulates fluid control in the female reproduc-

tive tract. CF is associated with menstrual irregularities, includ-

ing amenorrhea, irregular cycles, and anovulation.84,85 CFTR 

may have fertility implications in non-CF patients. Ovarian 

hyperstimulation syndrome is an iatrogenic complication 

seen in individuals on fertility drugs and is characterized by 

massive cystic enlargement of the ovaries that can later result 

in ascites and pleural effusion.86 CFTR and aquaporin 1 have 

been implicated in ovarian hyperstimulation syndrome.86

Robertsonian translocations
Chromosomal abnormalities are also a cause of infertility. 

Translocations involving acrocentric chromosomes (13, 14, 

15, 21, and 22) are defined as Robertsonian translocations.87 

Translocations of chromosomes 13 and 14 constitute 75% of 

all Robertsonian translocations.87,88 Carriers of Robertsonian 

translocations are phenotypically normal; however, they 

exhibit reproductive dysfunction, such as oligospermia in 

males and miscarriages and infertility in females.89 To under-

stand the wide range of phenotypes observed in patients 

with Robertsonian translocations, a study of eight boys 

with 45,XY, t(13;14) (q10;q10) and three girls with 45,XX, 

t(13;14) (q10;q10) karyotypes was conducted and reported 

hypogonadotrophic hypogonadism, precocious puberty, 

growth hormone deficiency, and short stature.89

Preimplantation genetic diagnosis has revealed a 

higher risk of producing aneuploid gametes in carriers of 

 Robertsonian translocations.90 Aneuploidy in such cases 

occurs due to unusual pairing of derivative chromosomes 

with their structural normal homologues during meiosis. 

This phenomenon is called the interchromosomal effect. 

 Aneuploid gametes can lead to miscarriage, reduced fertility, 

and also birth of children with congenital abnormalities.91 

However, a few studies have shown that the interchromosomal 

effect is completely absent.92 Also, male carriers of balanced 

 Robertsonian translocations show impaired gametogenesis 

and higher levels of nullisomic and disomic sperms.93 A study 

comparing 10,000 chromosomes from oocyte and embryonic 

samples of translocation carriers with 200,000 chromosomes 

from well matched normal patients attempted to determine if 

the interchromosomal effect truly exists.90 Alfarawati et al90 
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suggest that it does exist, but occurs in a narrow window of 

developmental stages. Aneuploidy was not seen in oocytes, 

but occurred during cleavage stages in the embryo. Further, 

no increase in aneuploidy was seen at blastocyst stages. 

Hence, the aneuploid embryos are rapidly eliminated. The 

data from this study could help future researchers achieve 

more successful assisted reproduction therapies.90

Conclusion
The genetics of infertility is a vast subject, and the genetic 

causes of several reproductive disorders are chromosomal, 

involve single genes, or are polygenic. In addition, there 

are several genetic syndromes that exhibit infertility. 

Despite extensive research, there are no well-defined genes 

that can be used for genetic testing of infertility conditions. 

Hence, there is a need for novel diagnostic technologies to 

identify both new and known infertility genes. Currently, 

several genetic association studies have been performed to 

identify genes for infertility. Increasing the sample size of 

these association studies may maximize the chance of iden-

tifying strong associations. Whole exome and whole genome 

sequencing can be considered, especially in idiopathic cases 

of infertility, although interpretation of high throughput 

sequencing data may itself be a challenge. In addition, geno-

type and phenotype correlation studies and microarray-based 

genome-wide studies from large numbers of patients could 

shed more light on the genetic causes of infertility disorders. 

Bisulfite sequencing, methylated DNA immunoprecipitation 

sequencing, and methylated DNA capture by affinity purifica-

tion sequencing may aid future investigations. In the future, 

pursuing the most promising genetic variants, mutations, or 

polymorphisms may provide clinically relevant therapeutics 

for infertile individuals.
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