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Abstract
Microplastic pollution is occurring in most ecosystem, yet their presence in high altitude clouds and their influence on cloud 
formation and climate change are poorly known. Here we analyzed microplastics in cloud water sampled at the summits 
of Japan mountains at 1300–3776 m altitude by attenuated total reflection imaging and micro-Fourier transform infrared 
spectroscopy. We observed nine microplastics including polyethylene, polypropylene, polyethylene terephthalate, polymethyl 
methacrylate, polyamide 6, polycarbonate, ethylene–propylene copolymer or polyethylene–polypropylene alloy, polyure-
thane, and epoxy resin. Microplastic were fragmented, with mean concentrations ranging from 6.7 to 13.9 pieces per liter, 
and with Feret diameters ranging from 7.1 to 94.6 μm. Microplastics bearing hydrophilic groups such as carbonyl and/or 
hydroxyl groups were abundant, suggesting that they might have acted as condensation nuclei of cloud ice and water. Overall, 
our finding suggest that high-altitude microplastics cloud influence cloud formation and, in turn, might modify the climate.
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Introduction

Plastics have become quite popular because of their low cost, 
light weight, and excellent malleability, which has increased 
worldwide pollution (Rochman et al. 2019; Zhang et al. 
2020). Microplastics smaller than 5 mm are referred to as 
microplastics, which include microbeads used in cosmetics 
(Anderson et al. 2016), the ship-breaking industry (Reddy 
et al. 2006), and fertilizers (Katsumi et al. 2021, 2022, 

2023), as well as in the degradation of larger plastics, such 
as plastic bags and plastic containers (Gesamp 2016; Song 
et al. 2017). Previous studies have detected MPs in various 
environments (e.g., oceans, rivers, and soil), in the diges-
tive tracts of vertebrates and invertebrates (Rochman 2015; 
Green et al. 2016; Romeo et al. 2015; de Souza Machado 
et al. 2018; Chia et al. 2021), and in the lungs of wild birds 
(Tokunaga et al. 2023). MPs were also detected in the blood, 
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lungs, and placentas of pregnant women (Amato-Lourenço 
et al. 2021; Ragusa et al. 2021; Leslie et al. 2022).

More than 10 million tons of plastic enter the ocean annu-
ally from land (Jambeck et al. 2015). When marine organ-
isms inadvertently ingest these plastics, they can potentially 
obstruct the digestive tract and accumulate hazardous mate-
rials in tissues (Andrady 2011; Wright et al. 2013; Auta et al. 
2017). Microplastics are also found in terrestrial ecosys-
tems, with 79% of global plastic waste deposited in landfills 
(Geyer et al. 2017) because of their persistent nature, which 
can last for hundreds of years (Zhang and Liu 2018). The 
accumulation of MPs in the soil environment can reduce 
seed germination rates and shoot heights (Boots et al. 2019), 
as well as trigger changes in soil water-holding capacity and 
soil structure (de Souza Machado et al. 2018; Zhang et al. 
2019).

Compared with microplastics studies in marine and ter-
restrial environments (Auta et al. 2017; Alimba and Faggio 
2019; Prata et al. 2019), research on airborne microplastics 
has been limited. Early studies on airborne microplastics pri-
marily focused on atmospheric deposition (Dris et al. 2015; 
Cai et al. 2017; Allen et al. 2019), but recent research has 
increasingly concentrated on atmospheric aerosols. How-
ever, comparing data across studies is difficult because of 
variations in the collection, pretreatment, and identification 
methods used by different researchers. In addition, most of 
the identified airborne microplastics are larger than the par-
ticulate matter with diameter smaller than 2.5 μm (PM2.5) 
range of concern for health effects. Their potential sources 
are diverse; land-based sources include road dust (Dehghani 
et al. 2017; Abbasi et al. 2019), landfills (Nayahi et al. 2022), 
tire and brake wear (Carr 2017; Cai et al. 2021), artificial 
turf (Luo et al. 2021; Zhao et al. 2023), and clothing (Rogge 
et al. 1993). The ocean can also transfer airborne micro-
plastics to the atmosphere through aerosolization processes 
(Allen et al. 2020). Sea salt aerosols, which are generated 
by wave action and bubble burst ejection, may also play a 
significant role in this process (Allen et al. 2020, 2022; Fer-
rero et al. 2022). Catarino et al. (2023) performed breaking 
wave experiments by adding fluorescent polystyrene beads 
(0.5–10 μm) to artificial seawater and reported that the 0.5-
μm beads concentrated 20-fold in sea spray particles and the 
10-μm beads concentrated twofold.

The free troposphere is an important pathway for the 
long-range transport of air pollutants owing to strong wind 
speeds; it has been observed that airborne microplastics are 
also transported in the free troposphere and contribute to 
global pollution (Evangeliou et al. 2020; Allen et al. 2021). 
In addition, airborne microplastics may act as cloud conden-
sation nuclei and ice nucleus particles during transport in the 
free troposphere and atmospheric boundary layer, thereby 
potentially promoting cloud formation (Aeschlimann et al. 
2022). Plastics are hydrophobic but become hydrophilic after 

prolonged exposure to ultraviolet light (Bain and Preston 
2021). Furthermore, the adsorption of mineral particles and 
polycyclic aromatic hydrocarbons on their surfaces enhances 
their ice nucleation capacity (Ganguly and Ariya 2019). The 
first objective of this study was to determine the presence 
of airborne microplastics in cloud water in the atmospheric 
boundary layer and free troposphere. The secondary objec-
tive was to determine the properties of the identified air-
borne microplastics, that is, polymer type, shape, Feret size 
distribution, and concentration in cloud water. The tertiary, 
we aimed to estimate the origin of airborne microplastics 
in cloud water by combining major ion concentration and 
backward trajectory analysis of air masses. To the best of our 
knowledge, this is the first report on airborne microplastics 
in cloud water.

Experimental

Observation sites

The summit of Mt. Fuji (35° 35′ N; 138° 73′ E, 3776 m 
a.s.l.), which is the highest mountain in Japan and an iso-
lated peak, is located in the free troposphere, whereas the 
southeastern foot of Mt. Fuji—Tarobo (35° 19′ N; 138° 48′ 
E, 1300 m a.s.l.) and the summit of Mt. Oyama (35° 26′ N; 
139° 37′ E, 1252 m a.s.l.) are located in the atmospheric 
boundary layer (Fig. S1). Mount Fuji Research Station is 
located on Kengamine, which is the highest of the eight 
peaks of Mt. Fuji. The west side of the Mount Fuji Research 
Station is a sheer, unobstructed cliff, allowing for the collec-
tion of cloud water unaffected by climbers, mountain huts, 
or other human activities. Because Tarobo is surrounded by 
forests, the wind speed is low. Mt. Oyama is located 50 km 
southwest of Tokyo. The northern side of the summit is open 
and cloud (fog) event frequency about 30% per year in here 
(Wang et al. 2021).

Collection of cloud water

A string-type passive cloud collector was used at the sum-
mits of Mt. Oyama and Mt. Fuji (Fig. S3a and b), whereas 
a string-type automatic collector was used at Tarobo (Fig. 
S3c). To collect airborne microplastics from the cloud water, 
a 1.0-μm pore size polytetrafluoroethylene hydrophilic mem-
brane filter (H100A047A; Advantec, Co.) was installed in 
the filter holder of each collector for sampling. Cloud water 
was collected monthly from Mt. Oyama and biweekly from 
Tarobo and only collected during the summer months (July 
and August) on Mt. Fuji. When the researcher was at the 
summit, cloud water was collected every few hours based 
on the cloud density. When the researcher was not at the 
summit, research assistants changed the collection bottles 
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three times a day: morning (6:00), noon (12:00), and evening 
(18:00). Tables S1, S2, and S3 in Supplementary Material 
show the specific sampling dates.

After sampling, the string-type nets of the passive and 
active collectors were cleaned using ultrapure water. The 
polytetrafluoroethylene hydrophilic membrane filter from 
which airborne microplastics were extracted was placed in 
a 50-mL glass centrifuge tube using stainless-steel tweezers, 
sealed with a screw cap, wrapped in aluminum foil, placed 
in a zipper bag, and transported to the laboratory in a cooler 
box. After measuring the liquid volume, the collected cloud 
water was transported to the laboratory in a 100-mL poly-
ethylene bottle.

Pretreatment for analyzing airborne microplastics 
in cloud water

The specific pretreatment process for the samples is shown 
in Fig. S4.

Analysis of ionic components in cloud water

The cloud water was analyzed using ion chromatography 
(Dionex Corp., DX-1000 and DX-320). For details, refer to 
Supplementary Information.

Micro‑Fourier transform infrared spectroscopy 
for detecting and identifying airborne microplastics

Airborne microplastics in the cloud water were identified 
by attenuated total reflection imaging using micro-Fourier 
transform infrared spectroscopy (μFTIR ATR imaging) 
(Spectrum3/Spotlight 400; PerkinElmer, Waltham, MA; 
hereafter μFTIR ATR imaging). For details, refer to Sup-
plementary Information.

Backward trajectory analysis of air masses

Backward trajectory analysis was used to examine the trans-
port processes of the air masses at the three sites. The anal-
ysis was based on the Hybrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT4) model (http://​www.​arl.​
noaa.​gov/​ready/​hyspl​it4.​html, NOAA) and reanalyzed mete-
orological data available from the National Centers for Envi-
ronmental Prediction (http://​www.​ncep.​noaa.​gov).

Results and discussion

Airborne microplastics in cloud water

Nine polymers were detected in cloud water: polyethylene, 
polypropylene, polyethylene terephthalate, polymethyl meth-
acrylate, polyamide 6, polycarbonate, ethylene–propylene 
copolymer or polyethylene–polypropylene alloy, polyure-
thane, epoxy resin, and one rubber were detected. For rub-
ber specific identification method, please refer to Tables S2.

Among the identified airborne microplastics, polycarbon-
ate, polymethyl methacrylate, polyurethane, polyethylene 
terephthalate, and polyamide 6 exhibited C=O stretching 
vibrations at 1770 cm−1, 1725 cm−1, 1720 cm−1, 1710 cm−1, 
and 1630 cm−1, respectively (Perkin Elmer, FTIR Blog). 
Airborne microplastics other than polymethyl methacrylate 
and polycarbonate were identified by screening for C–H 
stretching vibrations; however, 94% of polyethylene tereph-
thalate and 50% of polycarbonate were identified by screen-
ing for C=O stretching vibrations (1740–1710 cm−1). A 
wider screening range for the C=O stretching vibrations 
could improve the detection of these types of polymers. 
The degradation level, carbonyl index, of polypropylene 
was calculated as the ratio of the intensity of the peak at 
1715 cm–1 (carbonyl groups formed during degradation) to 
the peak at 2920 cm−1 (CH2 asymmetric stretching). Five 
of the 14 polypropylene in cloud water were degraded, with 
medium and high degradation levels of 21.4% (Fig. S6). The 
hydroxyl index calculated from the ratio of the peak at 3467 
cm–1 (hydroxyl formation due to degradation) to the peak 
at 2920 cm–1 suggested that most polypropylene (85.7 %) 
formed hydroxyl groups and became hydrophilic.

Figure 1 shows polyethylene terephthalate (fragment, 
75.2 µm) in cloud water at Mt. Oyama, polymethyl meth-
acrylate (fragment, 80.3 µm) and polypropylene (fragment, 
27.2 µm) in cloud water at Tarobo, and polyamide 6 (frag-
ment, 15.5 µm) in cloud water at Mt. Fuji as some examples.

Figure 2 shows the number of airborne microplastics 
detected in cloud water and their proportions of polymer 
types. There were 20 pieces at Mt. Oyama (n = 9), 13 pieces 
at Mt. Fuji (n = 19), and 37 pieces at Tarobo (n = 16). There 
were number concentrations of 6.8 pieces L−1, 6.7 pieces 
L−1, and 13.9 pieces L−1, respectively. The number concen-
trations in cloud water obtained in this study were very low 
compared with those in snow cover and ice sheets in the 
Arctic (10,700 pieces L−1; Bergmann et al. 2019), Europe 
(1434 pieces L−1; Bergmann et al. 2019), Everest (30 pieces 
L−1; Napper et al. 2020), and Antarctica (29 pieces L−1; 
Aves et  al. 2022). The analytical methods used in each 
study were different; therefore, caution should be exercised 
when comparing the data. Using the same analytical method 
as that used in this study, we recently reported a number 

http://www.arl.noaa.gov/ready/hysplit4.html
http://www.arl.noaa.gov/ready/hysplit4.html
http://www.ncep.noaa.gov
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concentration of 119 pieces L−1 in snow cover at Mt. Fuji 
in 2022 (Tani et al. 2023), indicating that the number con-
centration of airborne microplastics in cloud water was low.

Polypropylene and polyethylene terephthalate were pre-
dominantly detected at Mt. Oyama and Tarobo in atmos-
pheric boundary layer. Other polymers detected in the cloud 
water were polyurethane at Mt. Oyama, polymethyl meth-
acrylate at Tarobo, and ethylene–propylene copolymer or 
polyethylene–polypropylene alloy at both locations. How-
ever, many types of polymers were detected in the cloud 
water at Mt. Fuji, with polycarbonate being the major 
polymer. The number concentration and polymer types 
of airborne microplastics in cloud water likely depend on 
the air mass. The origin of the air masses with airborne 

microplastics detected in the cloud water during the observa-
tion period was analyzed using backward trajectory analysis 
(Fig. S7). Air masses from northern China (NC), southern 
China (SC), peripheral maritime (PM), and northwestern 
(NW) directions prevailed at Mt. Oyama and Tarobo, where 
the types of airborne microplastics were similar. However, 
the air masses at Mt. Fuji in summer originated not only 
from the NC and SC directions but also from the southern 
maritime (SM), eastern maritime (EM), and southeastern 
(SE) directions. This explains why the similarity in the types 
of airborne microplastics in cloud water was higher than that 
in the other two locations. In Southeast Asia, the concentra-
tion of airborne microplastics is high and many types of 
polymers have been detected (Onozuka et al. 2023).

In interpreting the results of this study, it should be noted 
that the cloud water collectors used at the three sites were 
not identical. In particular, an active-type collector that can 
collect more cloud water was used at Tarobo. In addition, 
the string-type collectors used at all sites are used for the 
analysis of major ions in cloud water and are unsuitable 
for the analysis of suspended particles such as airborne 

0

0.4

0.8

75.2 µm

0

0.1

0.2

15.5 µm

0

0.5

1

4000 3000 2000 1000
Wavenumber [cm-1] 

Hit Quality Index HQI : 94.3 %

Hit Quality Index : 82.8 %

0

0.6

1.2

Hit Quality Index : 94.4 %

Hit Quality Index : 92.5 %

PET 
reference

PMMA 
reference 

PP
reference

Polyamide 6 
reference

1.0

0.5

0 

0.8

0.4

0 

1.2

0.6

0 

0.1

0.04

- 0.02

0.05

0.02

- 0.01

0.14

0.06

- 0.02

0.09

0.04

- 0.01
27.7 µm

Polyamide 6 in cloud

PP in cloud

PMMA in cloud

PET in cloud

80.3 µm

Absorbance 

0.1

0 

0.2

Fig. 1   Fourier transform infrared spectroscopy (FTIR) spectra of air-
borne microplastics detected in cloud water, including a polyethylene 
terephthalate; PET, b polymethyl methacrylate; PMMA, c polypro-
pylene; PP, and d polyamide 6, as well as reference spectra and the 
Feret diameter of airborne microplastics

0

50

100

1 2 3

100

50

0 

Composition [%] 

PP

PET

PMMA

Polyamide 6 (PA)

PE/PP
Polyurethane  

(PUR)

PE

Epoxy resin           
(EP)

PC

Rubber 

Mt. Oyama

Summit
(3776 m)

Foot
(1300 m)

Summit
(1252 m)

Mt. Fuji

Fig. 2   Material composition of airborne microplastics (AMPs) 
in cloud water at the summit of Mt. Oyama, at the summit of Mt. 
Fuji, and at the foot of Mt. Fuji-Tarobo. Twenty pieces AMPs (sam-
ple numbers = 9) were detected in Mt. Oyama, 13 pieces (sample 
numbers = 19) at Mt. Fuji, and 37 pieces (sample numbers = 16) at 
Tarobo. The full names of the abbreviations in the legend are as fol-
lows: polyethylene (PE), polypropylene (PP), polyethylene tereph-
thalate (PET), polymethyl methacrylate (PMMA), polyamide 6 (PA), 
polycarbonate (PC), ethylene–propylene copolymer or polyethylene–
polypropylene alloy (PP/PE), polyurethane (PUR), epoxy resin (EP), 
and rubber



3059Environmental Chemistry Letters (2023) 21:3055–3062	

1 3

microplastics, as some of them may become trapped in 
strings and flow channels. This suggests that the number 
concentrations of airborne microplastics reported in this 
study were likely underestimated.

The Feret diameter distributions of airborne microplastics 
in cloud water at three sites, are ranging from 7.1to 94.6 µm 
(identified airborne microplastics number, n = 70) in Fig.S8. 
The mean Feret diameter was found to be 32.0 ± 20.6 μm at 
Mt. Oyama (n = 9), 29.9 ± 17.5 μm at Mt. Fuji (n = 19), and 
38.3 ± 23.8 μm at Tarobo (n = 16), respectively. The propor-
tion of Feret diameters between 10 and 20 μm in cloud water 
at Mt. Fuji was approximately twice that of the other two 
sites in this study. These results suggest that smaller airborne 
microplastics are more likely to diffuse (Evangeliou et al. 
2020) and advect at cloud-forming altitudes (Aeschlimann 
et al. 2022). The shape of airborne microplastics in cloud 
water was nearly fragmented (more than 87%) at three sites, 
similar to the trend of airborne microplastics in wet and dry 
depositions measured in mountainous areas (Allen et al. 
2019). In particular, the proportion of fragmented airborne 
microplastics in the cloud water was higher at Mt. Fuji than 
at the other two sites. Mt. Fuji is located in the free tropo-
sphere, whereas Mt. Oyama and Tarobo are located at simi-
lar altitudes in the atmospheric boundary layer. Our results 
suggest that small and fragmented airborne microplastics are 
more likely to be transported to higher altitudes than large 
and fibrous airborne microplastics because of their size. This 
indicates that the physical properties of airborne microplas-
tics, specifically their size, play a role in their atmospheric 
transport.

Sources of airborne microplastics in cloud water

Figure 3 shows time-course change in the number concen-
trations of airborne microplastics and their composition in 
cloud water at Mt. Fuji during the sampling period between 
July 21–22 and 26–27, 2022. Backward trajectory analysis 
classifies air masses into three categories: northern (Conti-
nental), southwestern (Continental), and maritime (Pacific 
Ocean). Polyethylene terephthalate and ethylene–propyl-
ene copolymer or polyethylene–polypropylene alloy were 
detected in the cloud water from 16:40 to 21:12 on July 21 
and from 21:12 on July 21 to 6:27 on July 22, respectively. 
At this time, the air mass came from the cities of Zhejiang, 
Fujian, and around the coastal sea of Hainan prefecture of 
China at a low height, gradually climbing to Mt. Fuji (Fig. 
S11 & S12), suggesting long-range transportation of air pol-
lutants from the atmospheric boundary layer. The concentra-
tions of NO3

− and non-sea-salt sulfate (nss–SO4
2−) as indi-

cators of anthropogenic emissions and Na+ as an indicator 
of oceanic origin were high during this period in Fig S10. 
This indicates that the airborne microplastics in cloud water 
originate from both anthropogenic and oceanic sources. The 

size of airborne microplastics was 26.3 µm for polyethylene 
terephthalate and 28.7 µm for ethylene–propylene copoly-
mer or polyethylene–polypropylene alloy, respectively. Both 
were fragments. Although the air masses originated from the 
continental area in the sample from 6:27 to 12:00 on July 
22, airborne microplastics were not detected. This is because 
the air mass originated only from within the free troposphere 
and did not pass through the atmospheric boundary layer, 
which was strongly influenced by the ground (Fig. S13).

Airborne microplastics were detected in the cloud water 
collected at 12:10–15:00, 15:00–18:05, and 21:05 on July 
26 to 0:00 on July 27, 2022, when the starting point of the 
air mass was close to sea level, particularly from 12:10 to 
18:05 on July 26 (Fig. S15, S16, and S17). During the stud-
ied period at Mt. Fuji, the highest number concentration of 
airborne microplastics was observed in cloud water col-
lected from 12:10 to 15:00 (polycarbonate: 32.7 pieces/L, 
size: 10.7–17.8 μm, fragment), followed by in cloud water 
collected from 15:00 to 18:05 (rubber: 14.2 pieces/L, size: 
28.7 μm, fragment). Polyethylene was detected in cloud 
water collected between 21:05 on July 26 to 0:00 on July 
27, when the air mass came from below 850 hPa (approxi-
mately 2000 m a.s.l.) in the atmospheric boundary layer (8.2 
pieces/L, size: 61.0 μm, fragment). Pan et al. (2019) reported 
that polyethylene is the predominant component of surface 
seawater in the Northwest Pacific Ocean. Moreover, poly-
ethylene has been detected in cloud water transported by air 
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masses originating near the sea surface, suggesting that it 
may be derived from microplastics in the ocean. Although 
ocean air was present during these periods, the sodium 
concentration in the cloud water was low. Sea salt parti-
cles are typically found in coarse particle regions and are 
easily washed away by precipitation. Rainfall was observed 
around Mt. Fuji during the study period (Japan Meteorologi-
cal Agency 2023). This is likely the reason for the reduced 
sodium concentrations.

An air mass passed through the free troposphere over 
the Pacific Ocean from 0:00 to 4:00 on July 26 and from 
0:00 to 4:30 on July 27, without descending below 850 hPa 
(approximately 2000 m a.s.l.) within the atmospheric bound-
ary layer. This is likely why airborne microplastics were not 
detected in cloud water (Fig. S14 & S18).

Conclusion

To the best of our knowledge, this study is the first to detect 
airborne microplastics in cloud water in both the free tropo-
sphere and atmospheric boundary layer. Polymers with car-
bonyl groups like polyethylene terephthalate, polyamide, and 
polycarbonate were abundant in the cloud water, and most of 
polypropylene were degraded and had carbonyl group and/or 
hydroxyl group. The high concentration of hydrophilic poly-
mers in the cloud water suggested that they were removed as 
cloud condensation nuclei. The Feret diameter of airborne 
microplastics in cloud water was the smallest in the free 
troposphere. The shapes of the identified airborne micro-
plastics in cloud water were mostly fragmented at the three 
sites, especially in the free troposphere. Backward trajectory 
analysis at the summit of Mt. Fuji in the free troposphere 
suggested that airborne microplastics in cloud water were 
originated primarily from the ocean.
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