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In the present paper, we shall study an almost complex projective struc-
ture which is closely related to the concept of the holomorphically projective
change of affine connections.

After some preliminaries, in section 2 we introduce the notion of the
almost complex projective structure and examine its relationship with affine
connections of some type.

In section 3, we construct a so-called almost complex projective tangent
bundle by giving transition functions in explicit form. Also, it is shown that
this bundle is-regarded as an associated bundle of the almost complex projec-
tive structure.

An exposition of an almost complex projective connection is given in
section 4, and section 5 contains a definition of a canonical form on the almost
complex projective structure and investigations of some properties concern-
ing it. Finally, the last section is devoted to consideration on a normal
connection and the local flatness of the almost complex projective structure.

The present auther wishes to express his hearty thanks to Prof. Dr.
M. Matsumoto for his kind criticism and encouragement. The auther also
wishes to express his sincere thanks to Dr. Y. Ichijy6 for his kind instruction.

§1. Complex projective spaces

Let N be an n-dimensional complex projective space with a complex
homogeneous coordinate system (¢%, ..., &7, £%). Let PL(n, C) be the complex
projective transformation group of N and H(n, C) the isotropy subgroup of
PL(n, C) which leaves invariant the point 0=(0, ..., 0, £°), £°5~0. The action
of GL(n+1, C) on C**! induces the action on the complex projective space N
and we can regard PL(n, C) as GL(n+1, C) modulo its center. If (s4)V €
GL(n+1, C), we shall denote the induced complex projective transformation
by {(s®)}. It is obvious that we can take (a“;a¢;a;) as a local complex

1) In the paper the indices 4, B run over the range 1, ..., n,0;a,b, c therange 1, ..., n; h, i, Ikl
the range 1, ..., 2n; a*, b*, c* the range n+1, ..., 2n; and for example, a* means a- n.
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coordinate system in the neighborhood of the identity of PL(n, C) which
consists of {{(s£)};(s4) e GL(n+1, C) s3=~0}, where we set

s¢ s2 .SO
(1.1) at=-30 gqe="% 4 — 5o
02 0 0
So S0 S

The above neighborhood contains H(n, C) and we can regard H(n, C) as
the following

(12) H(n, €)= {(Z_}i

1

and the operation of H(n, C) on N is given, in terms of the homogeneous
coordinate system (¢, ..., &”, €%, by

{ §=DVate’y
E'=Ya, &’ +&°

)EGL(n+1, C)},

1.3)

If we set z°= fz for (&%, ..., 8", &% € N, £°=£0, we can take (2%, ..., 2")
S

as a local coordinate in the neighborhood of O € N defined by &°=20. Then,
the operation of H(n, C) may be written by

B Tiaiz’

1.4) z%= 14 3 aps?

= Nogs’ — - T (fatatan)s'z + -
Put
F=py—1¢, P=7+J-17,
af=pi+y—1 q¢, ar=ps+v—1 qs,
P=at b1y 2=z hy—1 ¥,
then (1.2), (1.3) and (1.4) can be represented as the following form
Pt —q5 |

wl

/

‘ 0
a a [
(L.2y H(n, c>=1 o J €GL@n+2, K)
lg po 01 J,
/=1 / 1
(7 . s U]
: P q :
! : ! b b 0 77%
13y p_ o H <
| En Poe —Yq» 10 Cn
7° 7°
Lé—,o L g Po 0 1 Co’

2) In this section, > means the summation from | to n over the repeated indices.
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and

)o‘c“:Z(pg’xb—qzyb)~-—;—2{Azcxbxc—B‘gc(xbyUrx“yb)—Ach”yc}+~-
1.4

|
{ 7"=Z(%‘xb+p2y”)—%Z{Bzcxbx%A%c(x”y“rx”yb)—Bzcy”yc}+-~
where Aj.=pip.—qiqe+pips—qiqs, Bi.=piqc+qipetpigstqips.

§2. Almost complex projective structures

Let M be a 2n-dimensional manifold®. Let U and ¥V be neighborhoods of
origin O in R*”, Two mappings f:U->M and g: V—M determine the same
k-get at O if they have the same partial derivatives up to order % at 0. The
k-jet determined by f is denoted by j:(f). If f is a diffeomorphism of a
neighborhood of O onto an open subset of M, then the 2-jet j2(f) is called a
2-frame at p=f(0). The set of 2-frames of M will be denoted by P(M).

Let G*(2n) be the set of 2-frames j2(g) at 0 € R**, where g is a diffeo-
morphism from a neighborhood of O in R*" onto a neighborhood in R?", Then,
G*(2n) is a Lie group with multiplication defined by the composition of jets,
l.e,

Ji(greji(g)=ji(gog".
In fact, it is represented as
@1 GX(2n)={(S}, Si); (S € GL(2n, R), Si,=Si;},
and multiplication is given by the formula
(2.2) (Si, Sine(Si, St =(XPSi8!, 3 SiSt+ 3 .5i,S:8p).

It is an easy matter to verify that P2(M) is a principal fibre bundle over
M with structure group G*(2n) and natural projection =% 72(j2(f))= f ).

Let P(M) be the usual frame bundle over M with natural projection 7. It
is well known that any local coordinate ststem (u?, ..., z**) on an open subset U
of M induces a local coordinate system (u/, uf) on z=*(U). Furthermore, we
can give a local coordinate system (u’, ui, ui,) on (z%)~*(U) so that the
operation of G*(2n) on (7%)~Y(U) is represented as

3) In the present paper we shall restrict attention to manifolds which are 2n-dimensional and of class

C”. We assume further in the paper that any geometric object, for example, any mapping or any
tensor field, is of class C*.

4) In this and next sections, 3. means summation from 1 to 2n over the repeated indices, unless
otherwise indicated.



40 Toru IsHIHARA

(23) (u’ia u;:) u;tk)°<s_;:: S;k)'—_—(ui) Zuisjl’ Zu§S;k+Zu;hstZ)7

and 72 ((vf, ul, ui,))=(u’, u?), where n? is the natural projection of P*(M) onto
P(M) (that is, 7% projects j2(f) on ji(f)). The local coordinate system
(u), ui, ui,) is called a local coordinate system on (7®)~' (U) induced by (u’).
In this paper, we sometimes employ these local coordinate systems without
notice.

If we put

a a \
Y — b T Yo

= " 5%), |
S§.=— Sfeor =830 = Spr, = — Ai.,
S¢=—S8¢,=S¢,+=S¢x =B}, (
Afe=pipe—qiqe+pips— 9295, J
Bj.=piqc+qip.tpigst+qipo-

then, it is obvious that H*(n, C) is a closed Lie subgroup of G*(2n).

It is shown in the following that there exsists a natural isomorphism
between H(n, C) and H?(n, C). Since H(n, C) acts on N, we can consider
that H(n, c) acts on R* by imbedding R*" into N naturally and that a trans-
formation given by (1.4)" is a local diffeomorphism of a neighborhood of origin
0 € R*" onto a neighborhood of O which sends O to 0. Then we assign to each
element of H(n, C) the 2-jet j2(g), where g is the local diffeomorphism given
by (1.4)" with correspondence to the element. Now, it is easy to show that
each 2-jet defined above is contained in H*(n, C) and the assignment is an
isomorphism. In the sequel, we shall sometimes identify H(n, C) and
H?*(n, C), and the following definition may be adequate.

(2.4) H*(n, C)=(S}, Si,) € G*(2n)

DeriNiTioN 1. An almost complex projective structure on M (simply,
a.c.p.-structure) is a sub-bunddle Pc(M) of P*(M) with structure group
H*(n, C).

If an a.c. p.-structure Pc(M) on M is given, we can regard the image
w3 (Pc(M)) as an almost complex structure on M. We call this almost complex
structure as the underlying almost complex structure of Pc(M). Conversely,
if M has an almost complex structure, we shall show that an a. ¢c. p.-structure
can be constructed on M naturally.

Lemma 1. Let M have an almost complex sturucture ¢ and V be a sym-
metric connection on M. Then, we can construct an a.c.p.-structure on M
naturally.

Proor. Let {U,}.c; be an open covering of M with such a property that
there exists a local section s, of the almost complex structure ¢ defined on
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each U,. We may assume that each U, is a local coordinate neighborhood
with local coordinates ul, ..., u%*. Then, s, is given by

(2.5) sa(p)=(ui(p), uaj(p)),

Now, we define a local section 5, of P*(M) on U, by
(2.6) 5o(p)=(uk(p), uai(p), — LI aintai(p)uai(p)),

where 7 5 0 =]k 0

oui, au{x aijm.

We can verify with ease that 5, has no relation to the local coordinates
ul, ..., u?” and only depends on s,. As we have s,=sgaga, aga € GL(n, C) on
UsnUs#D, we can show 5, = 5zds., Where dge = (aga, 0) € H*(n, C). This
implies that there exists an a.c.p.-structure on M, and also it is easy to show
that the a.c.p.-structure defined above does not depend on the choice of local
sections s,.

DeriniTiON 2. Let Pc(M) be an a.c.p.-structure with an underlying
almost complex structure ¢ and V a symmetric connection on M. We call that
7 belongs to Pc (M) if, for any local section of the almost complex structure
¢ and 7, a local section of P%(M) given by (2.6) is a local section of Pc(M).

In the case of Lemma 1, F also belongs to Pc(M). Now, we shall describe
a relation of two symmetric connections which belong to the same a.c.p.-
structure.

Lemma 2. Let Pc(M) be an a.c.p.-structure with an underlying almost
complex structure ¢ and V, V* be symmetric connections on M. We assume
Sfurthermore that v belongs to Pc(M). Then, V'* belongs to Pc(M) if and only if
there exists a 1-form A on M such that

@7 FEY-—rxY=2X)Y+2(N)X—{2(e(X)e(Y)+(p(Y))e(X)},
for any vector fields X, Y.

Proor. Firstly, we assume that 7* belongs to Pc(M). Let U be an open
set in M over which there is a local section s of the almost complex structure
¢. Then, we can construct the local section 5 from s and 7 as in the proof of
Lemma 1 and 5* from s and F/*.

From the assumption, 5 and 5* are local sections of Pc(M) over U. So,

2.8) s*(p=s(p)S(p), pelU, S(p)eH*(n,C),

where from (2.2) and the definition of s and s*, S has the form
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S=<12n3 S_;:k)a
S(ch: *SZ*C*:SZ:*:SZ:CZ_6(5})0—62})5’
(2.9) L
1 fape=— 8§, =S4, = 8§ ,»=05q.+0%qs,
L L, ; 2n-dimensional identity matrix.

We may assume that there is a coordinate system (u', ..., u*") on U.

Let Va_a—a]-ﬁr,faak, <3 5%=rjf;e 7 and s(p) = (w'(p), ui (p)), p € Uy then
I Au

(2.8) is represented as

(2.10) I¥i—Ti=—Rui(p)Si(pu " Hpu 7 (p).

It is easy to show that in the above relation, S},(p) do not depend on the
choice of the local section s. Therefore we obtain from (2.10)

(2.11) =TI, =—2uiSh,u ez,
By means of (2.9), it follows from (2.11)
i =Tj= 203 (per 5= qeu™ 1)+ LPi(pen ™5 —geu™s)

+ Lei(peu” 't genT D Lgi(peuT  gouT).

On putting
(2.12) k=5 {peu s+ (— g
1t follows
Seit=— Slpau™ gD,
Hence
(2.13) I —Tit=0i2,+0i2— D2, (@ioi+eie)).

From the expression of A; given by (2.12), 4; define a 1-form on M and F*
is related to ¥ as (2.7) on M.

Conversely, if F* is related to / as (2.7), then for any local section s of
the almost complex structure ¢, local sections of P*(M) 5 and s* constructed
from F and F* respectively satisfy the relation (2.8). Of course s is a local
section of Pc(M), 5* is also a local section of Pc(M). This implies that /*
belongs to Pc(M).

From Lemma 1 and 2, we shall show the following.
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Tueorem 1. Let M be a manifold with an almost complex structure ¢ and
V a symmetric connection on M. Then, we can construct an a.c.p.-structure on
M which depends ¢ and also V.

Conversely, if we assume that M is a paracompact manifold with an
a.c.p.-structure Pc(M), we can consider that Pc(M) is constructed from the
underlying almost complex structure (see the statement after Definition 1) and a
certain symmetric connection V', like the method of the first part of this theorem.

Proor. The first part of the theorem is the same as Lemma 1, so we
shall show the second part. "

Let {U,} «ez be a locally finite open covering of M so that there exist local
coordinate systems (Us, (uk, ..., u%")) of M and {f.}«e; be a partition of unity
subordinated to {U,}«c;. Moreover, we assume there is a local section s, of
Pc(M) over each U,. Then we can represent s, as

Sa :(uzls uazl.a —Zra;:kua]l.uaﬁ)a

so there exists a symmetric connection ¥, on U, defined by /'.i,. Now, we
define a symmetric connection ¥ on M by V=2 faF a.

Let ¢ be a (1,1)-tensor which defines the underlying almost complex
structure of Pc(M). Let p be any point of M and U, be a neighborhood of p.
By means of Lemma 2, for any 8 € I such that U,~Ugz= @, the definition of
V. and 7z implies that 7, and 7 ; satisfy a relation

Vox Y=V ax Y=25a(X) Y+ 25a(Y) X —{2a(¢(X)@(Y) +A5a(@(¥Y))p(X)}

on U,nUgs, where 14, is a certain 1-form on U,nU; and X, Y are any vector
fields.
Now, we have on U,

V_Va:B;[fﬁ(Vﬁ_Va).

If we put \go= 25, for U,nUz+@ and \,,=0 for U, U,= 0, then we can
write the above as

VxY=FaxY=3 fa{hga(X) Y+ Nsa(Y)X— Qsa(@(X))@(Y) +Neal(@(Y))e (X))}
So, put o= fs\pa, then 1, is a 1-form on M and we find on U,

Vx Y=V oax Y=2a(X) Y+ 2a(Y)X—{2a(p(X))e(¥) + 2a(p(¥))p(X)}.
This implies that 7 belongs to Pc(M) and we have proved the theorem.

DerFintTION 3. Let M be a manifold with an almost complex structure ¢
and F a connection on M. Let a(¢) and #(¢) be certain functions of the
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parameter t. Then we call such a curve in M a holomorphically planar curve
(simply, h.p.-curve) that is defined by means of differential equation of the
form

d*u*

— k.A.;— ﬂk_ kdil“'
dtz +ZFU dt dt _a(t) di +.8(5)Z¢

tode

where ¥ and ¢ have components /'%; and ¢! respectively with respect to some

local coordinates u!, ..., u®".

The following lemma is well knowm (see [ 27]), so we shall describe only
the result.

Lemma 3. Let M be a manifold with an almost complex structure ¢. Let
V and V* be connections on M. Then, V and V* have all h.p.-curves in common
if and only if V and V* satisfy the following relation

(2.14) PEY—P x Y=2(X)Y+A(Y)X+0o(X)p(Y)+p(Y)p(X)
+FPEY VX)) —FxY—FyX),
where X and o are 1-forms on M.

From Lemma 3, we shall show the following lemma, which will be applied
to the proof of Theorem 2.

Lemma 4. Two connections V and F* have the same torsion and all h. p.-
curves in common, and satisfy the relation Vo=r*¢ when and only when the
relation

215)  FEY—FxY=2X)Y+2AY)X—{Ap(X)e(Y)+ A(e(Y))e(X)}

holds for a certain 1-form A and any vector fields X, Y.

Proor. We assume that 7 and /* satisfy the relation (2.15). Then from
Lemma 3, ¥ and F* have all h.p.-curves in common and also satisfy F3Y—rix
—(FxY—FyX)=0, that is, ¥ and /* have the same torsion. We shall show
Vo=F*p. In fact, we have

T )Y —Fxp)Y=V%0(Y)—Fxp(Y)—9(FXY—FxY).
Hence, from (2.15) it follows
Fxe)Y—(Fxe)Y=0.

Conversely, if 7 and 7* have all k.p-curves in common, then from Lemma
3, we have (2.14). If, in addition they have the same torsion, then
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(2.16) PEY—F 3 Y=2(X) Y+ A D)X+ 0(X)p( V)4 0( V)o(X).
From (2.16) and (F¥¢)—(F x¢)=0, we obtain
(o) +0(Y)} X+ {0(p (7)) — AT} o (X) =0.

Let u', ..., u** be any local coordinates and 2, p and ¢ have components 2,
o; and @i, respectively with this local coordinates. Now, we can write the
above equation as

(L@t 00+ (Lorpt— )9l =0.

2n .
Since ) ¢/=0, we have p;=— ¥ 2:0? or p=—1g.

j=1

If we substitute the above into (2.16), we have (2.15).

Let 7 be a connection on M and 7 be the torsion of F. If we put

F=r -——“}2— T, then we have easily that F is a symmetric connection.

DeriniTiON 4. Let /7 be a connection on M with torsion 7 and Pc (M) an
a.c.p.-structure on M. We call that 7 belongs to Pc(M) if and only if

V:V—%T belongs to Pc(M) in the sense of Definition 2.

From the preparation described above, we shall show the following
theorem.

Tueorem 2. Let M be a manifold with as almost complex structure ¢, ¥
and F* be connections on M with the same torsion T and Pc(M) be an a.c.p.-
structure on M to which V belongs. Then, V'* belongs to Pc(M) if and only if ¥
and V* have all h.p.-curves in common and satisfy the relation Vy=7r*gp.

Proor. We assume that 7* belongs to Pc(M). Let F=r —-%
Frx=p *~%T, then from Lemma 2, it follows that

-T and

PEY =P x Y=2(X) Y+ 2(Y)X—{2(p(X)p(¥) + 2(¢(Y)e(X)}.
Hence, the relation
PXY—PxY=2X)Y+ U)X {2(e(X)p(Y)+ A(e(Y ) (X))}

holds. This implies together with Lemma 4 that ¥ and F* have all h.p.-curves
in common and satisfy Fo=/F*gp.
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Conversely, if we assume ¥ and F* have all k.p.-curves in common and
satisfy Vo =rF*gp, it may be shown that /* belongs to Pc(M), by reversing the
order of the previous discussion.

By this time, we have dealt with general a.c.p.-structures, but in sections
5 and 6, we shall treat rather limited a.c.p.-structures whith are defined in
the following.

Let ¢ be a (1,1)-tensor giving an almost complex structure and 7 be a
g-connection, that is, it satisfies the relation Fp=0. The a.c.p.-structure
with the underlying almost complex structure ¢ and the belonging connection
V is called an a.c.p.-structure of restricted type. Specially, it is called a
standard a.c.p.-structure when g-connection 7 has the torstion %E, where E
is the Nijenhuis tensor of ¢ (it is well known there exists such a connection

[4D.

§8. Complex projective tangent bundles

Let M be a manifold with an almost complex structure and N be a
complex projective space an in §1. We shall construct a fibre bundle over M
with fibre N, associated with ¢, and study a relation between this bundle and
an a.c.p.-structure on M.

Let {Uq, (ul, ..., u¥)}«er be an atlas of M. For each ordered pair «, B
such that U,~Uz 9, we define a mapping g,z of U.nUs to GL(2n+2, R) by
\/ Oub |
du’ 0
(3.1) Gap= : € GL(2n+2, R),
b0 1o Z@Qgimm 10
cilogi by ,@,l%ii k(@) 0 1
where 4 is guf‘ , pi(8) are components of ¢ with respect to u}, ..., u%* and
up '

b, ¢ are arbitrary constants. Then g.; satisfies the relation gus gsy= gay
for UpynUsnU,#0 and g..=I (identity matrix). Hence, we can construct a
vector bundle 7*(M) over M with transition functions g., and fibre R***2,

Now, we shall show that the vector bundle T*(M) is a complex vector
bundle with a global section. To see T*(M) a complex vector bundle it is
sufficient to find a bundle isomorphism J which maps each fiber onto itself and
satisfies J2= — I (identity mapping).
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Let 7* be a natural projection of T*(M) onto M and X!, ..., X2, R, I be
natural coordinates of R?"*2, For each U,, there is a coordinate function oy
which is a diffeomorphism of U, x R*"*? onto z*~! (U,). We put

; i Xl
{ 0i(@) \ 0 1 z
(3.2) J(X, .., X R, )= | X
| 0 -1
0 | R
| 100,
where ¢}(a) are components of ¢ with respect to ul, ..., u%”. Then, we define

a bundle isomorphism J,. of the restricted vector bundle 72Y(U,) over U, by
Jopadp, (X', .., X, R, Dy =¢a{p, Jo(X', ..., X* R, D}, p€ U..

We shall show that these J, piece together to form a bundle isomorphism
Jof T*(M). For this purpose, it is sufficient to see J,=J; on 7* Y (U~Up)
for each pair «, # with U,~Us=#0. Now, from the definition of Ja

§9a_1]/9§9a{}7> <X1> cey ina R) I)}
:gaﬁ(ﬂﬂ_lfﬁ%egﬁa{l’, (Xl: SRR ina R: I)}
=1{p, gapJogpa(X', ..., X¥, R, D}.

Hence, it follows from the relation

(3.3) Jo=8apls8sas

that J,=Jz on 77 (UanUp), while (8.3) is checked by means of (3.1) and (3.2).
It is evident that J has the required property, because J2=—I for any a € I.

Now we shall show that T*(M) has a section. For each « € I, we define
a local section s, over U, by

sa(pP)=¢aip, (0, .., 0,1, 00}, pe U,

Then, from (3.1) the relation s,=sz holds on U,NUz(5=0). So, these s, fit
together to give a section.

Let C* be a multiplicative group of non-zero complex numbers. Then we
shall see that C* can be regarded as a transformation group of 7*(M) which
maps each fibre onto itself. Firstly, we define the action of C* on R**+2 by

( \ \ ,/Xl
aditbei(@) 0 f | 5 7
c(XY, ..., X R, I)= - | xe
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where ¢i(«) are components of ¢ with respect to local coordinates ul, ..., u%*
and c=a++y—1 b€ C*. Then, we can define the action of C* on T*(M) by

C¢“{_p’ (le A ] Xz”’ R) I)] :{pi C<X17 crtd Xz”) R’ I)}) pE Ua’

because this definition does not depend on the choice of a coordinate function
¢«. It is evident from the definition that C* maps each fibre cnto itself and
the action of C* on each fibre defined above is nothing but natural multiplica-
tion of C* on each fibre that is a vector space with the complex structure
defined by J.

Now, Let T'(M) be the identification space obtained by identifying in
each fibre of T*(M), points which correspond under the action of C*. Then,
we can regard 7'(M) as the fibre bundle over M with fibre N. In addition,
T' (M) has the section induced from the section of T*(M).

DerintTiON 5. We call 7(M) builded above the complex projective tangent
bundle associated with ¢.

We shall describe a relation between a complex projective tangent bundle
and an a.c.p.-structure on M.

Tueorem 3. Let Pc(M) be an a.c.p.-structure on M with an underlying
almost complex structure ¢ of Pc(M). Then, the associated bundle N(M) of
Pc (M) with fibre N s isomorphic to the complex projective tangent bundle
associated with .

Proor. Let N(M) be the associated bundle of Pc (M) with fibre R**2
and natural projection 7. As well known, N(M) consists of equivalent classes
{(P, V)}, where P€ Pc(M), V ¢ R**% and the equivalent relation is defined so
as (P, V') is equivalent to (PS, S™'V), if S€ H(n,C). Let {U,, (ul, ..., u?)} ser
be an atlas of M, then points of Pc (M) may be represented as (ué, uai, waly),
i, j, k=1, ..., 2n. Then, coordinate functions ¢,: U.x R***>7"(U,) can be
given by

ot ({(P, MY ={z(P), (X', ..., X*, R, D},
where we put
V:(xl, caey xzn, xz’”l, x2n+2> € R2n+2’
P:(ufz, ua;:; ua;:k)a
Xi:Zuaij,
R=b zjj—{—cai:l(Ta*x“— Tox®) —2(n+1) (ba? 1 —cx?+2),
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I= — b3 U(Tpr®— Tox®™) + ¢ X Tiw' — 2 (n+1) (b2 2+ cx? 1),
a=1

TJ': Z utx]’:kumc%lia
for arbitrary constants b, ¢ because these ¢, do not depend on elements
(P, V)en (U, x R*™** but classes {(P, V)}.

Let T*(M) be the vector bundle with fibre R**** and transition functions
gap given by (3.1), corresponding to ¢. Then, we can find that each g.s=0¢.05"
is the same as g,z. Hence, N(M) is isomorphic to T*(M). Moreover, we can

see that just as 7'(M) is constructed from T*(M), the associated bundle N (M)
of Pc(M) is constructed from N(M). Therefore, N(M) is isomorphic to 7'(M).

§4. Almost complex projective connections

As described in §1, we take the complex local coordinate system (a?, a¢, a;)
in the neighborhood of the identity in complex projective transformation
group PL(n, C).

If we put

a’=p°+V—1 q% af=pi+vV—1 qi ar=q,+V—1 gs,

then we can take (p%, q° p%, g%, ps, qs) as a real coordinate system.

Let w°, 6%, 0¢, 69, w;, 05, a, b=1, ..., n be left invariant 1-forms on PL(n,C)
which coincide with dp®, d¢°, dp§, dq}, dps, dq, at the identity. A calcula-
tion shows that the equations of Maurer-Cartan of PL(n, C) are given by
Cdo®=— D0t Ao —02N6°),

d0°=— 5 (02 Ao+ 0 AO°),
dwi=— 2 (0 ANw§—02 N0 —(0* Ny —0°N0p) 408 2 (0, A —0,\6°),

(4.1)
di¢=— Y (02 Nw§+ w2 NOG) — (0 Nwy+ 0  NOp)+0¢23(0: Ao +w,N0°),

doi=— Y (w. Noj—0,.N0%),

d0y=—2(0. No§+w.N0f).

Let pl(n, C) be the Lie algebra of PL(n, C) and e,, f., E}, Ft, €, f°, the
base of pl(n, C) which is dual to w? 6%, ¢, 0¢, ws, 0, that is,

0*(en)=1, 0°(f)=1, w3(E}) =1, 05(Fi)=1, w,(e’) =1, 0,(f") =1

5) In this sections, >, means summation from ! to n over the repeated indices, unless otherwise

indicated.
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and other pairs equal to zero.
Let S be an arbitrary element of H(n, C) and S~! the inverse of S. Then,

as described in §1, S and S-! are represented as

Pt —qi 0 1 (P — g% o |
S:i,ﬁ_,,,,W 7 ! S_1: qxg P*(blt i
pp—gqp |10 P —q ’ 1 0 ‘
g po 0 1] g P 0 1)

With above notations, the adjoint representation of H(n, C) on pl(n, C) is
formulated as

ad(SHe, = Y (p*les+q*ifa)
+ 2 AP pe—q*iq. — 0pEE + (pHig. + g ip. — 0lgF 3}
+ 2 Aptpe—qtpoe’ +(gip.+pig ) fy,

ad(S™)fe=— 2 (q*lea—p*ifa)

) — 2 Ag*ipe + priq.—04gEG+ (g*iq. — p*iP. + 0¢pF)F e}

— 24qi Pc+p2<qc>ec—(pﬁcpc—qch)fc},

ad(S™HEL= 2 A(p*ipl—q*igDE;+ (p*iqgl+ q*ipDF5}
+ 2 Apipt —q?fqﬁ)e” +(qipl+piqDf Y},

ad(S"HF[=— L A(g*ipl+p*igDE;— (p*ipl—q*iqDF 5}
— 2 A(giplHpigDe’ + (pipl—aqiqDf}.

Let m* be the subspace of pl(n, C) which is spanned by e’, f*,6=1, ..., n
As we have ad (S~H)m* Cm*, S€ H(n, C), the operation ad (S™') on the coset
space pl(n, C)/m* is canonically induced. This operation is given by neglec-
ting the terms of e, f° in each equation of (4.2).

Let M be a manifold and Pc (M) an a.c.p.-structure on M. Let §) be the
Lie algebra of H(n, C). We shall define a connection in Pc (M) in the sence
of Cartan connection.

DerINITION 6.  An almost complex projective connection in Pc(M) (simply,
a.c.p.-connection) is a 1-form o on Pc(M) with values in the Lie algebra
pl(n, C) which satisfies the following conditions,

(@) o(d*)=A4 A€,
(b) R¥w=ad(S Hw Se H(n, ),
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(¢) w(X)==0 for every non-zero vector X of Pc(M),
where A* is the fundamental vector field corresponding to A4 €Y.
An a.c.p.-connection » can be represented as
0="(0",+0F) + L (03E, +03F2) + X (we” +0se”),
with the base e, f., E¢, F, e, f°.
ProrosiTion 1. Let
o= Y (0%, +0°f,) + L(0fE)+05F}) + 2 (w.e’ +0.f%)
be an a.c.p.-connection in Pc(M). Then structure equations of w are given by
1) do*=—2(w*No°—0°N\0°)+ 27,
(2) do*=—2 (02 No+ 0 N60°)+0°
(3)  dot=— (0 Aw§—09 A0S+ 0% Y (0. Ao’ —0, AO)
+wp Ao’ —0, N0+ 21,
4) doi=—3(0° N+ w0400 Ao +w. A0
—0°Nwy—w* N0+ 0,
(5) doy=—2(w: No§—0;N\05)+ 2,
6 doy=—2(0. Noi+w.N05)+ D,

where 2°, D,, 2%, 02, 2;, D, are 2-forms generated by »°, 6°.
We call 2° and @° the torsions of w, and also 2%, @¢ and 2;, @, the curva- -
tures of o.

Proor. By the condition (¢), 0% 0%, w¢, 6%, ws, 0, give rise to a base of
the cotangent space at each point of P.(M). So, we can take dual vector fields
X,, Y., X0, Yb, X, Y, that is,

0(Xa)=es, 0(Yo)=fu, 0(X2)=Eb, o(Y})=Fi, o(X")=e’, o(Y")=f".

By the condition (a), X,, Y., X%, Y? are fundamental vector fields corre- -
sponding to e,, f,, E’, F’ respectively, hence we have

o[ Xoy Xo J=[eq, €], o[ Xa, Yy ]=[e0, f3 ],
o[ Xo, Xi]=les, E7], o[ X, Y{]=[e,, F],
o[ Yo, X¢1=[fo, EL], o[ Yo, Y2 ]=[ fo, F7],
o[ X3, Yi1=[E;, F;l.

(4.4)
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By the condition (c¢), it follows
o[ Xoy, Y]=[eq 7], o[ Yo, X*]=[f, "],
w[Xm ij:[ea, eb], w[Ya, Yb]:[fas fb]

Generally, for 1-form 0, we have

4.5)

(4.6) 2d0 (X, Y)=—0[ X, Y.
From (4.1,) (4.4), (4.5) and (4.6), the relation (4.3) follows with ease.

§5. The canonical form on Pc(M)

In the sequel, we confine our attention to a.c.p.-structures of restricted
type.

Let Pc(M) be an a.c.p.-structure with an underlying almost comlpex
structure ¢. Then, there exists a connection / with torsion 7" which belongs
to Pc (M) and satisfies the relation F¢=0.

Let (u, ..., u?®) be a local coordinate system of M, then points of Pc (M)
are represented as (v, ui, ui,). Let ¢! and T}, be components of ¢ and T
with respect to (u?, ..., u®). If we put

(5.1) Ty, =2@t Thet+ Th)u Yuju]
then 77, are funtions on Pc (M), since they do not depend on the choice of
local coordinate systems.

In addition, we shall show that the functions 7%, have no relation to the
choice of connections which belong to Pc (M) and satisfy F¢=0. In fact, let
P’ be another connection of this kind with torsion 77, then symmetric connec-

tions F=r _ Ll and F/'=p'—- 1 op satisfy the condition of Lemma 2. Hence

2 2
Lemma 4 leads us to Fo=F'g, or

T(X, ¢ (Y)—¢(TX, Y)=T'(X, ¢(¥)—¢(IT'(X, Y))

from which the assertion follows.
Let (6", 09), i, j=1, ..., 2n be the canonical form on 2-frame bundle P2(M)

(see [3]). Then, ¢, 0} satisfy
(5.2) 4= — 30i N0,
We denote the restriction of 67, 6¢ to Pc(M) by 6, 0% and define 1-forms 0} on

6) In this section, Y. means summation from 1 to 2n, unless otherwise indicated.
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Pc (M) by
(56.3) §§=9}1+ > Ti ;0%
LemMa 5. For the 1-form 6%, we have the relation
(5.4) 03="0¢, G3.=—07.

Proor. It is sufficient to prove in a coordinate system. Let points of
Pc(M) be represented as (u’, u ]' , ui,) with respect to a local coordinate system
(wh, .., u®) of M. Let I}, ¢} and T%, be components of F, ¢ and T.

Now, V=0 is written as

(5.5) 9.+ St~ Tgllh,=0.

As 7 belongs to Pc (M),

1 —1p, -
5.6) rly—3 Tiy=—Tujutu"y

As well known, ¢! can be represented as
(5.7) ¢; == Llugu G —ugpu1).
By the exterior differentiation of (5.5), we have

( duis— X pidul=17, a<0’*u{;du1,
(5.8) ]

In addition, ¢’, 6 have the form
{ 6 =Y u"lidu,

Oi=u"tidut— Y u " ulu"tdu’,

hj

dui+ 2 ¢idul *——Z agﬂ’ ~uidu’.

(6.9)

Well, (5.4) follows from (5.5), (5.6), (56.7), (5.8) and (5.9) after some calcula-
tions.

We remark that 7%, have properties
(6.10) Te,=—T%, T%=T%,

which are shown by (5.7).

Now we put
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(5.11) w*¢=§¢, 0*¢=§e", O*¥ =§
and define the canonical form on Pc (M).
DeriniTION 7. Set
0% =3 0%, + S0%fu+ 3 (0 (EL+ 0%,

Then we call this 6* the canonical form on Pc(M).
From (5.2) and Lemma 5, the following proposition is straightforward.

Prorosition 2. The equations

J do*? = — Z (w*g/\@*b_a*z/\a*b*)_{__;_z T;Ffﬁ*"/\@*f,
(5.12)
1 dO** = — 31 (0*§ NO** + 0*g NO*") +- %f L TH 0% NG,

hold, where
THi— 1 (Ti — T )
ir=9 i ki)
We obtain by calculations the following formulas

( RE0'=Y S1ig,

(5.13) | R¥0i=3571{0} S — 711 8}, S 148,
|\ RET};0%=> S TL,0%St,

and

(5.14) 0*(Ey)=E$, 0*(F{)=F%,

where S=(Si, Si,) € H(n, C) and E¢, F¢" are fundamental vector fields corre-
sponding to E¢, F¢.
From (4.2), (5.13) and (5.14), we verify the following proposition.

Prorosition 3. For the canonical form 6* on Pc(M), we have
Ri60*=ad (S™1)0*, S€ H(n, C),
0X(Ef)=E§, 0%(F{)=F,

where we consider ad(S™Y) to act on the coset space pl(n, C)/m*.

We remark the following. If Pc(M) is a standard a.c.p.-structure (defined
at the end of the section 2), then 7%, and I} equal to
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3 -17,,74,k
ZEJZ'ku iUpl gy

where E}, are components of the Nijenhuis tensor E corresponding to ¢.

§6. A normal a.c.p.-connection and a flat a.c.p.-structure

In this section, we discuss the unique existence of a certain connection
which may be called a normal a.c.p.-connection in Pc(M), and the local flatness
of a standard a.c.p.-structure.

Since the method of proofs is parallel to the method employed by
S. Kobayashi and T. Nagano for the corresponding theorems in [3], we omit
proofs and only describe results.

Thus, from Proposition 2 and 3, we can prove the following.

Tueorem 4. Let Pc(M) be an a.c.p.-structure on M and 6*= Y (6*%e,+
0*“fo)+ X (W iES + 60*%¢Ft) the canonical form on Pc(M), then there exists a
unIque a.c.p.-conmection o which has the form o=0%+ 3 (6%e*+ @ff) and the
Sollowing properties.

Y1K%,. =0, 3 K =0,
a=1 a=
Zn:RZac :O> Zn:Rga‘c‘:Oa

J

where the quantities 2¢= 71? DK§ 08 NO% and @¢= % 2 Re 0 N6 are
defined by the equations (8) and (4) of (4.3) for the condition w.

The above connection, we call a normal a.c.p.-connection in Pc(M).

Next, we consider a standard a.c.p.-structure Pc(M). If the normal
connection in Pc (M) has null torsions, then by virture of the remark at the
end of the section 5, it is easily verfied that M is a complex manifold and
Pc (M) is a holomorphic fibre bundle. Hence the following is established.

Turorem 5. Let Pc(M) be a standard a.c.p.-structure on o 2n-dimensional
manifold M. Then, M is locally, holomorphically homeomorphic to a complex

projective space if and only if all torsions and curvatures of the normal a.c.p.-
conmnection in Pc (M) vanish.
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