A Note on One-parameter Semi-groups of *-endomorphisms of C*-algebras

By

Yoshifumi ITO (Received May 15, 1977)

 $\S 0$. So far many authors have studied one-parameter semi-groups of linear operators on Banach spaces and locally convex spaces, some of which are naturally considered as one-parameter semi-groups of *-endomorphisms of C^* -algebras. So in this note we study one-parameter semi-groups of *-endomorphisms of C^* -algebras.

A *-endomorphism of a C^* -algebra is in a sense a linear operator of the C^* -algebra as a Banach space. So the structure theorem of a one-parameter semi-group of linear operators on a Banach space can be translated word for word. The only difference is the fact that the infinitesimal generator of a one-parameter semi-group of *-endomorphisms of a C^* -algebra is on one hand an unbounded linear operator and on the other hand moreover an unbounded *-derivation of the C^* -algebra. At this point, we borrow many things from the theory of linear operators on Banach spaces, especially from K. Yosida's method of the theory of one-parameter semi-groups of linear operators on Banach spaces [4].

In this note we give an answer to the question of which derivation becomes an infinitesimal generator of a one-parameter semi-group of *-endomorphisms of a C^* -algebra. That is Theorem 6 in § 2.

§ 1. Let R be a C*-algebra. Let $\{\tau_t; 0 \le t < \infty\}$ be a one-parameter semigroup of *-endomorphisms of the C*-algebra R satisfying the following conditions:

$$\tau_t \tau_s = \tau_{t+s}, \ \tau_0 = I \ (= \text{the identity endomorphism}),$$
 (1)

$$\lim_{t \to t_0} \tau_t(x) = \tau_{t_0}(x), \text{ (lim = the strong limit)},$$
 (2)

$$0 \le t_0 < \infty$$
, $x \in R$.

Further we assume that if R contains the unit e then $\tau_t(e) = e$.

In general a *-endomorphism τ of a C*-algebra R has the property

$$\|\tau(x)\| \le \|x\| \qquad \text{for} \quad x \in R, \tag{3}$$

[cf. Sakai, S. [3], p. 5]. Hence the one-parameter semi-group of *-endomorphisms

of the C^* -algebra R has the property

$$\sup \|\tau_t(x)\| \le \|x\|, \quad \text{for} \quad x \in R.$$
 (4)

We now deduce some properties of the one-parameter semi-group $\{\tau_t\}$ of *-endomorphisms of the C*-algebra R such as strong differentiability of $\{\tau_t\}$, some properties of the infinitesimal generator of $\{\tau_t\}$ and the representation formula of $\{\tau_t\}$.

We may define the integral

$$C_{\phi}(x) = \int_{0}^{\infty} \phi(s)\tau_{s}(x)ds, \qquad (x \in R),$$
 (5)

for complex-valued continuous function $\phi(s)$ such that $\int_0^\infty |\phi(s)| ds < \infty$ following after K. Yosida and other authors.

PROPOSITION 1. Let S be the set of all $C_{\phi}(x)$ for all $x \in R$ and for all complex-valued continuously differentiable functions ϕ such that

1)
$$\int_0^\infty |\phi(s)| ds < \infty$$

and

2)
$$\lim_{h \to 0} \int_{h}^{\infty} \left| \frac{\phi(s-h) - \phi(s)}{h} + \phi'(s) \right| ds = 0$$
 (6)

hold. Then S is dense in R.

Proof. Put

$$\phi_n(s) = \eta \exp(-\eta s), \qquad \eta > 0. \tag{7}$$

Then for any $\eta > 0$ $\phi_{\eta}(s)$ satisfies 1) and 2) and moreover, for any $x \in R$,

$$\lim_{n \to \infty} C_{\phi}(x) = x . \tag{8}$$

For $C_{\phi}(x) \in S$, we have by (1)

$$\frac{1}{h}(\tau_h - I) \left(C_{\phi}(x)\right) = \int_h^{\infty} \frac{\phi(s-h) - \phi(s)}{h} \tau_s(x) ds - \frac{1}{h} \int_0^h \phi(s) \tau_s(x) ds.$$

Thus, by (6) and (1), $\lim_{h\downarrow 0} \frac{1}{h} (\tau_h - I)(C_{\phi}(x))$ exists and

$$\lim_{h \downarrow 0} \frac{1}{h} (\tau_h - I) (C_{\phi}(x)) = C_{-\phi'}(x) - \phi(0)x \tag{9}$$

holds.

If we denote by D the totality of $x \in R$ for which

$$w - \lim_{h \downarrow 0} h^{-1}(\tau_h - I)(x) = \delta(x) \tag{10}$$

exists, where w-lim means the weak limit. Then we have

Theorem 1. δ is a densely defined closed *-derivation from D to R with the properties:

$$\lim_{h \to 0} h^{-1}(\tau_{t+h} - \tau_t)(x) = \delta(\tau_t(x)) = \tau_t(\delta(x)), \tag{11}$$

for any $x \in D$.

PROOF. By (9), $S \subseteq D$. Hence, by Proposition 1, D is dense in R. We have, by (10), for $x \in D$,

$$w - \lim_{h \downarrow 0} \frac{1}{h} (\tau_h - I) (\tau_t(x)) = w - \lim_{h \downarrow 0} \frac{1}{h} (\tau_{t+h} - \tau_t) (x) = \tau_t \left(w - \lim_{h \downarrow 0} \frac{1}{h} (\tau_h - I) (x) \right).$$

Hence $\tau_t(D) \subseteq D$ and $\delta(\tau_t(x)) = \tau_t(\delta(x))$ for any $x \in D$, that is, δ is commutative with every τ_t and the right weak derivative $D^+\tau_t(x)$ exists and

$$D^+\tau_t(x) = \delta(\tau_t(x)) = \tau_t(\delta(x))$$
 for any $x \in D$.

Hence by the continuity (2) we have, for any $f \in R'$ (=the conjugate space of R as a Banach space),

$$f(\tau_t(x)) - f(x) = \int_0^t D^+ f(\tau_s(x)) ds = \int_0^t f(\tau_s(\delta(x))) ds$$
$$= f\left(\int_0^t \tau_s(\delta(x)) ds\right)$$

and therefore

$$\tau_t(x) - x = \int_0^t \tau_s(\delta(x)) ds, \quad \text{for } x \in D.$$
 (12)

Thus we have the strong differentiability.

We now prove the closedness of δ . Let $x_n \in D$ (n=1, 2,...) and let $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} \delta(x_n) = z$. Then, by (12),

$$\tau_t(x) - x = \int_0^t \tau_t(z) ds . \tag{13}$$

Hence $x \in D$ and $z = \delta(x)$.

Now let x, y be in D, then xy, $x^* \in D$ and

$$\begin{cases}
\delta(xy) = \delta(x)y + x\delta(y), \\
\delta(x^*) = (\delta(x))^*.
\end{cases}$$
(14)

That is, δ is a *-derivation of the C*-algebra R. The theorem is proved.

Further, if the unit $e \in R$, then $e \in D$ and $\delta(e) = 0$.

We now deduce the representation formula of $\{\tau_t\}$. Put

$$I_n = C_{\phi_n}$$
 $(n = 1, 2,...).$ (15)

Then, by (7) and (9), we have

Proposition 2.

(i) The range $\operatorname{Ran}(I_n) = \{I_n(x); x \in R\} \subseteq D$,

$$\delta I_n = n(I_n - I). \tag{16}$$

(ii)
$$||I_n|| \le 1$$
, $\lim_{n \to \infty} I_n(x) = x$, $(x \in R)$. (17)

PROOF. We have by (4) and (7)

$$||I_n(x)|| \le \left(\int_0^\infty n \exp(-ns)ds\right) ||x|| = ||x||.$$
 (18)

The proposition is proved.

Since by the above proposition

$$\delta I_n = n(I_n - I), \tag{19}$$

we have

$$\exp(t\delta I_n) = \sum_{m=0}^{\infty} \frac{(t\delta I_n)^m}{m!} = \exp(tn(I_n - I)), \qquad 0 \le t < \infty.$$
 (20)

Thus

$$\|\exp(t\delta I_n)\| = \|\exp(tnI_n)\exp(-tnI)\|$$

$$\leq \exp(tn)\exp(-tn) = 1.$$
(21)

Since δI_n is commutative with each τ_t , we have, for $x \in D$,

$$\|\tau_{t}(x) - \exp(t\delta I_{n})x\| = \left\| \int_{0}^{t} \frac{d}{ds} \left((\exp(t-s)\delta I_{n})\tau_{s}(x) \right) ds \right\|$$

$$= \left\| \int_{0}^{t} (\exp(t-s)\delta I_{n})\tau_{s}(\delta - \delta I_{n})x \, ds \right\|$$

$$\leq \int_{0}^{t} \|(\delta - \delta I_{n})x\| \, ds, \quad \text{by (4) and (21)}$$

$$= t \|(\delta - \delta I_{n})x\|. \tag{22}$$

We have

$$\delta I_n x = I_n \delta(x), \quad \text{for } x \in D,$$
 (23)

for δ is a closed derivation commutative with each τ_t . Thus, by (22),

$$\|\tau_t(x) - \exp(t\delta I_n)x\| \le t\|(I - I_n)\delta x\|, \quad \text{for} \quad x \in D.$$
 (24)

By (4) and (21), we have

THEOREM 2. For $x \in R$,

$$\tau_t(x) = \lim_{n \to \infty} \exp(t\delta I_n) x = \lim_{n \to \infty} \sum_{m=0}^{\infty} (m!)^{-1} (t\delta I_n)^m x$$

uniformly for t in any finite interval.

PROOF. We have only to note that D is dense in R. The theorem is proved.

We now deduce some properties of the infinitesimal generator δ of $\{\tau_t\}$.

THEOREM 3.
$$\|(\delta - nI)x\| \ge n\|x\|$$
 $(n=1, 2,...)$ for $x \in D$.

PROOF. Assume the contrary and let $\|(\delta - nI)x\| = a < n$ for a certain $x \in D$ with $\|x\| = 1$. Let $f \in R'$ be such that f(x) = 1, $\|f\| = 1$. Then, by

$$\frac{d}{dt}\tau_t(x) = \tau_t(\delta x) = n\tau_t(x) + \tau_t((\delta - nI)x),$$

we obtain

$$\begin{cases} \frac{d}{dt} \phi(t) = n\phi(t) + \psi(t), & \text{where} \\ \phi(t) = f(\tau_t(x)), & \psi(t) = f(\tau_t((\delta - nI)x)). \end{cases}$$

Since $\phi(0) = 1$, we have

$$\phi(t) = \exp(nt) \left(\int_0^t \exp(-nt) \psi(t) dt + 1 \right).$$

And hence, by

$$|\psi(t)| \le ||f|| ||\tau_t((\delta - nI)x)|| \le ||(\delta - nI)x|| = a$$

we have

$$|\phi(t)| \ge \exp(nt)(1-an^{-1}(1-\exp(-nt)))$$
.

Thus $\phi(t)$ is unbounded in t when $t\to\infty$, contrary to $|\phi(t)| \le ||f|| ||\tau_t(x)|| \le ||x|| = 1$. The theorem is proved.

THEOREM 4. Ran
$$(\delta - nI) = R$$
 $(n=1, 2,...)$.

PROOF. We first show that $Ran(\delta - nI)$ is dense in R. If otherwise, there exists $f \in R'$, $f \neq 0$, such that $f(\delta x - nx) = 0$ on D. Thus, by $\tau_t(D) \subseteq D$, we have $f(\delta \tau_t(x)) = nf(\tau_t(x))$. And hence

$$\frac{d}{dt}f(\tau_t(x)) = nf(\tau_t(x)).$$

Therefore, by $f(\tau_0(x)) = f(x)$, we obtain $f(\tau_t(x)) = f(x) \exp(nt)$. This is a contradiction. In fact, by $f \neq 0$ and by the fact that D is dense in R, there exists $x \in D$ such that $f(x) \neq 0$. Then $f(x) \exp(nt)$ is unbounded in t when $t \to \infty$, contrary to $|f(\tau_t(x))| \le ||f|| \, ||\tau_t(x)|| \le ||f|| \, ||x||$. Thus Ran $(\delta - nI)$ is dense in R. Therefore, for any $y \in R$, there exists a sequence $\{x_h\} \subseteq D$ such that $\lim_{h \to \infty} (\delta - nI)x_h = y$. Because of $\|(\delta - nI)(x_h - x_k)\| \ge n\|x_h - x_k\|$ by Theorem 3, $\{x_h\}$ is a Cauchy sequence. Let $\lim_{h \to \infty} x_h = x$, then by $\lim_{h \to \infty} (\delta - nI)x_h = y$ and by the closedness of δ we have $y = (\delta - nI)x$. Thus the theorem is proved.

THEOREM 5. Let y_n be the unique solution of $(\delta - nI)y_n = y$ (n = 1, 2,...) by Theorems 3 & 4, then

$$\lim_{n \to \infty} \delta(-ny_n) = \delta(y) \quad \text{for} \quad y \in D.$$
 (26)

PROOF. We have, by (16), $\delta I_n y - nI_n y = -ny$. And hence

$$-ny_n = I_n y$$
.

Thus (17) and (23) imply (26). Thus the theorem is proved.

§2. Main theorem. We now answer the question of which derivation of R generates a one-parameter semi-group of *-endomorphisms of R.

Theorem 6. Let conversely δ be a densely defined closed *-derivation with the domain D such that

- (i) $\|(\delta nI)x\| \ge n\|x\|$ (n=1, 2,...) for $x \in D$,
- (ii) $\operatorname{Ran}(\delta nI) = R$ (n = 1, 2,...).

Then there exists a unique one-parameter semi-group τ_t of *-endomorphisms of R which satisfies

$$1) \quad \tau_t \tau_s = \tau_{t+s}, \ \tau_0 = I \tag{27}$$

2)
$$\|\tau_t(x)\| \le \|x\|$$
, for $0 \le t < \infty$, (28)

3)
$$\lim_{t \to t_0} \tau_t(x) = \tau_{t_0}(x), \quad 0 \le t_0 < \infty, \ x \in R,$$
 (29)

A Note on One-parameter Semi-groups of *-endomorphisms of C*-algebras

4)
$$\lim_{h \to 0} h^{-1}(\tau_{t+h} - \tau_t)(x) = \delta(\tau_t(x)) = \tau_t(\delta(x))$$
 (30)

for any $x \in D$.

Proof. By (i) and (ii), the operator J_n defined by

$$J_n y = -n y_n \qquad (n = 1, 2, ...),$$
 (31)

7

where y_n is the unique solution of $(\delta - nI)y_n = y$ (n = 1, 2,...), satisfies

$$||J_n|| \le 1 \tag{32}$$

$$J_n = -n(\delta - nI)^{-1}, \qquad (33)$$

$$J_n J_m = J_m J_n \,, \tag{34}$$

$$\delta J_n = J_n \delta , \qquad (35)$$

$$\lim_{n \to \infty} J_n x = x, \qquad x \in R \,, \tag{36}$$

$$\lim_{n \to \infty} \delta J_n x = \delta x, \qquad x \in D. \tag{37}$$

Since

$$\delta J_n y = \delta(-ny_n) = -n(y+ny_n) = n(J_n - I)y$$
, (38)

we have, by (32),

$$\|\exp(t\delta J_n)v\| = \|\exp(ntJ_n)\exp(-ntI)v\|$$

$$\leq \exp(nt) \exp(-nt) \|y\| = \|y\|.$$
 (39)

Hence the linear operator defined by

$$\tau_t^{(n)} = \exp(t\delta J_n) \tag{40}$$

satisfies

$$\|\tau_t^{(n)}x\| \le \|x\|,$$
 (41)

$$\tau_t^{(n)} x - x = \int_0^t \tau_s^{(n)} \delta J_n x ds , \qquad (42)$$

$$\lim_{h \to 0} h^{-1} (\tau_{t+h}^{(n)} - \tau_t^{(n)}) x = \tau_t^{(n)} \delta J_n x . \tag{43}$$

By (34) and (35), δJ_n is commutative with $\tau_t^{(m)}$ and hence

$$\|(\tau_t^{(m)} - \tau_t^{(n)})x\| = \left\| \int_0^t \frac{d}{ds} \left((\exp((t-s)\delta J_n) \tau_s^{(m)} x) ds \right) \right\|$$
$$= \left\| \int_0^t (\exp((t-s)\delta J_n) \tau_s^{(m)} (\delta J_m - \delta J_n) x ds \right\|$$

$$\leq \int_0^t (\delta J_m - \delta J_n) x ds, \quad \text{by (41) and (43)},$$
$$= t \| (\delta J_m - \delta J_n) x \|.$$

Therefore, by (37),

$$\tau_t(y) = \lim_{n \to \infty} \tau_t^{(n)} y \qquad (y \in D)$$
(44)

exists uniformly for t in any finite interval. Since D is dense in R and since we have (41), we see that the limit $\tau_t(y)$ exists for all $y \in R$ and that τ_t satisfies (27)–(29). Hence, by letting $n \to \infty$ in (42), we obtain

$$\tau_t(y) - y = \int_0^t \tau_s(\delta(y)) ds, \qquad y \in D.$$
 (45)

Thus, $\{\tau_t; 0 \le t < \infty\}$ is a unique strongly continuous one-parameter semi-group of linear operators of R whose infinitesimal generator is δ .

Lastly, we now show that τ_t is a *-endomorphism of R. Put

$$\phi(t) = \tau_t(xy) - \tau_t(x)\tau_t(y) \quad \text{for} \quad x, y \in R.$$
 (46)

Since δ is a derivation of R, we have

$$\begin{cases}
\frac{d}{dt} \phi(t) = \delta \phi(t) \\
\phi(0) = 0
\end{cases}$$
(47)

for $x, y \in D$. This Cauchy problem is correct in the meaning of S. G. Krein [1] (p. 47, Theorem 2.8). Thus $\phi(t) \equiv 0$ for $x, y \in D$. Since D is dense in R, we have by (28)

$$\tau_t(xy) = \tau_t(x)\tau_t(y) \qquad \text{for} \quad x, \ y \in R \ . \tag{48}$$

Next we put

$$\phi(t) = \tau_t(x^*) - \tau_t(x)^*, \quad x \in R.$$
 (49)

Then, since δ is a *-derivation of R, we have

$$\begin{cases}
\frac{d}{dt}\phi(t) = \delta\phi(t) \\
\phi(0) = 0
\end{cases} (50)$$

for $x \in D$. This Cauchy problem is also correct. Hence $\phi(t) \equiv 0$. Thus we have

$$\tau_t(x^*) = \tau_t(x)^*, \quad \text{for} \quad x \in D.$$
 (51)

Since D is dense in R, we have by (28)

$$\tau_t(x^*) = \tau_t(x)^*, \qquad x \in R. \tag{52}$$

§3. Examples. We have some examples.

EXAMPLE 1. $R = C([0, \infty)) =$ the C^* -algebra of all complex-valued bounded continuous functions on the interval $[0, \infty)$. The product is defined by pointwise multiplication. We define $||x|| = \sup_{s} |x(s)|$ and $x^*(s) = \overline{x(s)}$ for $x \in R$. Then if we define

$$\tau_t(x)(s) = x(s+t)$$
 for $0 \le t < \infty$, (53)

 $\{\tau_t; 0 \le t < \infty\}$ is a one-parameter semi-group of *-endomorphisms of R. The infinitesimal generator δ of τ_t is defined by

$$\delta(x) (s) = \frac{dx}{ds} (s), \qquad (54)$$

where D is the set of functions in $C([0, \infty))$ whose first derivatives are also in $C([0, \infty))$.

EXAMPLE 2. Let H be a Hilbert space and L(H) be the C^* -algebra of all continuous operators on H. We define $R = C([0, \infty); L(H)) =$ the C^* -algebra of all L(H)-valued bounded continuous functions on $[0, \infty)$. The product of R is defined by

$$(ST)(s) = S(s)T(s). \tag{55}$$

We define $|||T||| = \sup_{s} ||T(s)||$ and $T^*(s) = T(s)^* =$ the adjoint operator of T(s). Then if we define

$$\tau_t(T)(s) = T(s+t), \qquad 0 \le t < \infty , \qquad (56)$$

 $\{\tau_t; 0 \le t < \infty\}$ is a one-parameter semi-group of *-endomorphisms of R. The infinitesimal generator δ of τ_t is defined by

$$\delta(T)(s) = \frac{dT}{ds}(s), \qquad (57)$$

where D is the set of L(H)-valued functions in $C([0, \infty); L(H))$ whose first derivatives are also in $C([0, \infty); L(H))$.

EXAMPLE 3. Let A be a C^* -algebra. We define $R = C([0, \infty); A) =$ the C^* -algebra of all A-valued bounded continuous functions on $[0, \infty)$. The product of R is defined by

$$(xy)(s) = x(s)y(s). (58)$$

We define $||x|| = \sup_{s} ||x(s)||$ and $x^*(s) = x(s)^*$ where * in the right-hand side is the involution in A. Then, if we define

$$\tau_t(x)(s) = x(s+t), \qquad 0 \le t < \infty , \qquad (59)$$

 $\{\tau_t; 0 \le t < \infty\}$ is a one-parameter semi-group of *-endomorphisms of R. The infinitesimal generator δ of τ_t is defined by

$$\delta(x) (s) = \frac{dx}{ds} (s), \qquad (60)$$

where D is the set of A-valued functions in $C([0, \infty); A)$ whose first derivatives are also in $C([0, \infty); A)$.

Department of Mathematics College of General Education Tokushima University

References

- [1] Krein, S. G.: Linear Differential Equations in Banach Space. American Mathematical Society, Providence, Rhode Island, 1971. (English translation of Lineinye differentsial'nye uravneniia v banakhovom prostranstve.)
- [2] Robinson, W.: Unbounded derivation of C*-algebras. International Symposium on Mathematical Problems in Theoretical Physics, Ed. by H. Araki, Springer-Verlag, Berlin, Heidelberg, New York, 1975. pp. 303-311.
- [3] Sakai, S.: C*-algebras and W*-algebras. Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- [4] Yosida, K.: On the differentiability and the representation of one-parameter semi-group of linear operators. J. Math. Soc. Japan. 1 (1948) 15-21.
- [5] —: Topological Analysis I. Iwanami, Tokyo, 1951. (In Japanese.)
- [6] ——: Functional Analysis. Springer-Verlag, Berlin, Heidelberg, New York; Kinokuniya, Tokyo, 1971.