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§0. So far many authors have studied one-parameter semi-groups of linear
operators on Banach spaces and locally convex spaces, some of which are naturally
considered as one-parameter semi-groups of #-endomorphisms of C*-algebras. So
in this note we study one-parameter semi-groups of *-endomorphisms of C*-algebras.

A x-endomorphism of a C*-algebra is in a sense a linear operator of the C*-
algebra as a Banach space. So the structure theorem of a one-parameter semi-group
of linear operators on a Banach space can be translated word for word. The only
difference is the fact that the infinitesimal generator of a one-parameter semi-group
of *-endomorphisms of a C*-algebra is on one hand an unbounded linear operator
and on the other hand moreover an unbounded *-derivation of the C*-algebra. At
this point, we borrow many things from the theory of linear operators on Banach
spaces, especially from K. Yosida’s method of the theory of one-parameter semi-
groups of linear operators on Banach spaces [4].

In this note we give an answer to the question of which derivation becomes
an infinitesimal generator of a one-parameter semi-group of *-endomorphisms of a
C*-algebra. That is Theorem 6 in §2.

§1. Let R be a C*-algebra. Let {r,; 0<t<oo} be a one-parameter semi-
group of *-endomorphisms of the C*-algebra R satisfying the following conditions:

T,Ts="Ts+s To=1 (=the identity endomorphism), (1)
lim 7(x) =1, (x), (lim=the strong limit), 2)
t—to

0=5t,< 0, xeR.

Further we assume that if R contains the unit e then 7,(e)=e.
In general a *-endomorphism 7 of a C*-algebra R has the property

[zl =llxll  for xeR, &)

[cf. Sakai, S. [3], p. 5]. Hence the one-parameter semi-group of *-endomorphisms
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of the C*-algebra R has the property

sup [t (¥ = x|, for xeR. 4)

We now deduce some properties of the one-parameter semi-group {z,} of *-
endomorphisms of the C*-algebra R such as strong differentiability of {z,}, some
properties of the infinitesimal generator of {r,} and the representation formula of

{7}
We may define the integral

0= "0meds,  (xeR), )

for complex-valued continuous function ¢(s) such that Sw|¢(s)|ds< oo following after
0
K. Yosida and other authors.

ProposITION 1. Let S be the set of all Cy(x) for all xeR and for all com-
plex-valued continuously differentiable functions ¢ such that

1) §:|¢<s)lds<oo

and

2) 1img:°’ ¢(S‘h}l‘¢(s) +¢'(s)| ds=0 )

h>0
hold. Then S is dense in R.

Proor. Put

¢q(s)=”le7‘p(_'75), 7’]>0 . (7)
Then for any >0 ¢,(s) satisfies 1) and 2) and moreover, for any x € R,

lim Cy(x)=x. (8)

n—o©

For Cy(x) € S, we have by (1)

@D (€)= L= =CC) ¢ a5 L g w)r,0)ds

Thus, by (6) and (1), lilln% (1, — 1) (Cy(x)) exists and
hi0

lim (3, = 1) (C4(x)) =C_y:() ~ $ (0 ©)

holds.
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If we denote by D the totality of x € R for which

w-lim h~1(t, —I) (x) = d(x) (10)
hio

exists, where w-lim means the weak limit. Then we have

THEOREM 1. § is a densely defined closed *-derivation from D to R with the
properties:

lim h4(z, 1., — 7)) (%) = 8(7(x)) = 7 3(x)) , (11)

for any x e D.

Proor. By (9), ScD. Hence, by Proposition 1, D is dense in R.

We have, by (10), for xe D,

wlim L (¢, — 1) (1,(x)) =w-lim L (z,,, —1,) (x) =r,(w-1imi(r,,—1) (x) )

nio h nio h hio h
Hence 7,(D)S D and (t,(x))=1,8(x)) for any x € D, that is, 6 is commutative with
every 1, and the right weak derivative D*1,(x) exists and
D*1(x)=0(t(x))=1,6(x)) for any xeD.

Hence by the continuity (2) we have, for any fe R’ (=the conjugate space of R as a
Banach space),

S =160= ' D 1 pds={ 166 ds

- f(g;rs(a(x))ds>

and therefore

o (xX)—x = S; t(5(x))ds,  for xeD. (12)

Thus we have the strong differentiability.
We now prove the closedness of 6. Let x,eD (n=1, 2,...) and let lim x,=x,

lim&(x,)=z. Then, by (12), "

T(x)—x= S;‘c,(z)ds . (13)

Hence x € D and z=4(x).
Now let x, y be in D, then xy, x*e D and

( o(xy)=0(x)y +xd(y),

(14)
O(x*)=(d(x))*.
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That is, é is a *-derivation of the C*-algebra R. The theorem is proved.

Further, if the unit ee R, then ee D and d(e)=0.
We now deduce the representation formula of {7,}. Put

I,=C,, (n=1, 2,...). (15)
Then, by (7) and (9), we have

PrOPOSITION 2.
(i) The range Ran(I,)={I,(x); xe R} <D,

oI, =n(I,—1I). (16)
(i) [LI=s1, limI(x)=x, (xeR). amn

Proor. We have by (4) and (7)

1N (| exp (= ns)ds ) 1xll = Ix] (8)

The proposition is proved.
Since by the above proposition
5In=n(1n_—1)9 (19)

we have
exp(tSl,) = 3 ﬁ%)l —exp (tn(I,—1)), 0St<oo. (20)
m=0 !

Thus
lexp (¢61,)]| = |lexp (tnl,) exp (—tnl)]|
<exp(tn)exp(—tn)=1. 21)

Since 61, is commutative with each 7,, we have, for xe D,

Iz —exp @1)x] = | L ((exp (= )o1)7,(0)ds)

- H S; (exp (t— 5)81,)1,(6— 61,)x ds

< g;n(é—az,,)xuds, by (4) and (21)

=t||(6—ol,)x| . (22)
We have
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ol,x=1,0(x), for xeD, (23)
for ¢ is a closed derivation commutative with each 7,. Thus, by (22),
It (x)—exp (t8L,)x| <t||(I-1,)8x||, for xeD. (24)
By (4) and (21), we have

THEOREM 2. For xeR,
(x)=limexp ((5I,)x =lim 3> (m!)~1(t5I,y"x
n— oo n—>00 m=0
uniformly for t in any finite interval.
Proor. We have only to note that D is dense in R. The theorem is proved.

We now deduce some properties of the infinitesimal generator ¢ of {t,}.

THEOREM 3. ||[(6—nD)x| =n| x| (n=1,2,..) (25)
for xeD.

ProoOF. Assume the contrary and let ||(6—nl)x||=a<n for a certain xe D
with ||x|=1. Let fe R’ be such that f(x)=1, || f|=1. Then, by

At (%) =1,(6%) =nt,(x) + 1, (—nD)x) ,
we obtain
{ gt_¢(z)=n¢(t)+w(t), where

() =f(z(x)), Y(O)=f (T (6 —nD)x)).
Since ¢(0)=1, we have

$(f)=exp (m)(g; exp (— nOW(0)di + 1) .

And hence, by
W= 1l 2 ((6—nDx)| N6 —nDx|=a,
we have
|p(D)] 2 exp (nt) (1 —an™'(1—exp(—nt))).

Thus ¢(t) is unbounded in ¢ when t— oo, contrary to |p(D)|Z| S Iz ()L ]x] =1.
The theorem is proved.

THEOREM 4. Ran(6—nl)=R (n=1,2,..).
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Proor. We first show that Ran(d—nl) is dense in R. If otherwise, there
exists feR’, f#0, such that f(6x—nx)=0 on D. Thus, by (D)< D, we have
fot(x))=nf(r,(x)). And hence

L f ) =nf(x ().

Therefore, by f(7,(x))=f(x), we obtain f(z,(x))=f(x)exp(nt). This is a contradic-
tion. In fact, by f#0 and by the fact that D is dense in R, there exists x € D such
that f(x)#0. Then f(x)exp (nt) is unbounded in ¢ when t— co, contrary to |f(z(x))|
SIS SN lIx]]. Thus Ran (6—nl) is dense in R. Therefore, for any
y€R, there exists a sequence {x,}<D such that ;im (0—nl)x,=y. Because of

(6 —nI)(x,—x)|| =nlx,—x;|| by Theorem 3, {x,} is a Cauchy sequence. Let
lim x,, = x, then by lim (6 —nI)x,=y and by the closedness of § we have y=(6—nl)x.
h— o

h->

Thus the theorem is proved.

THEOREM 5. Let y, be the unique solution of (6—nl)y,=y (n=1, 2,...) by
Theorems 3 & 4, then

limé(—ny,)=4d(y) for yeD. (26)

Proor. We have, by (16), 6I,y—nl,y=—ny. And hence
—ny,= Iny
Thus (17) and (23) imply (26). Thus the theorem is proved.

§2. Main theorem. We now answer the question of which derivation of R
generates a one-parameter semi-group of #-endomorphisms of R.

THEOREM 6. Let conversely 0 be a densely defined closed x-derivation with
the domain D such that

(i) [[(6—nDx||=n|x| (n=1,2,...) for xeD,
(ii)) Ran(é—nI)=R (n=1,2,.).

Then there exists a unique one-parameter semi-group 1, of *-endomorphisms of R
which satisfies

1) Tls= T+ TO=I (27)
D) lwl=lx],  for 0st<oo, (28)

3) limt(x)=1,,(x), 0=ty<o, x€eR, (29)
t—to
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4) N A7, —1,) (0) = 6(7(x)) = 7((x)) (30)
forany xeD.
Proor. By (i) and (ii), the operator J, defined by

J,y=—ny, (n=1,2,.), (31)

where y, is the unique solution of (6—nl)y,=y (n=1, 2,...), satisfies

IJull =1 (32)
J,=—n(d—nl)"1, (33)
Jdm=d o u » (34)
6J,=J,0, (35)
iijilo]nx=x, X€ER, (36)
}'i_l)lgoéJ,,x=5x, xeD. (37
Since
0Juy=0(—ny,)=—n(y+ny,)=n(J,— Iy, (38)

we have, by (32),
lexp (t6J,)y |l = llexp (ntJ,) exp (—ntD)y||
Sexp(nt)exp(—n) |yl =yl . (39)

Hence the linear operator defined by

(M =exp (6J,) (40)
satisfies
Ieimx) < x|, 41)
0y —x= g' “W8] xds (42)
0
lim h=1(z{®), — M) x =157 x . (43)

h—0

By (34) and (35), 8J, is commutative with {™ and hence

I —<xll=[ | L (exp @~ s)67)emx)ds

|

= “ S;( exp (t—s)8J )t (8J ,,— 8J,)xds
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< S‘ (6], —6J )xds, by (41) and (43),
0

=1[[(0J,,— T )x]| .
Therefore, by (37),
t(y)=limtz{"y  (yeD) (44)
exists uniformly for ¢ in any finite interval. Since D is dense in R and since we have

(41), we see that the limit 7,(y) exists for all ye R and that 7, satisfies (27)—(29).
Hence, by letting n— oo in (42), we obtain

o) -y={ 2 0Dds,  yeD. (45)

Thus, {r,; 0<t<oo} is a unique strongly continuous one-parameter semi-group
of linear operators of R whose infinitesimal generator is 4.
Lastly, we now show that 1, is a *-endomorphism of R. Put

o) =1 xy)—1(x)(y)  for x,yeR. (46)

Since ¢ is a derivation of R, we have

d

- P()=5¢(t
{dt P(1)=0¢(2) )
$(0)=0

for x, yeD. This Cauchy problem is correct in the meaning of S. G. Krein [1]
(p. 47, Theorem 2.8). Thus ¢(1)=0 for x, ye D. Since D is dense in R, we have
by (28)

t(xy)=1(x)7(y)  for x, yeR. (48)
Next we put

P(O)=1x")—1{x)*,  x€eR. (49)

Then, since 6 is a *-derivation of R, we have

d
——¢()=0¢(2
{ G H(D=36() 0

$(0)=0
for xe D. This Cauchy problem is also correct. Hence ¢(t)=0. Thus we have
T(x*)=1,(x)*%, for xeD. (51)

Since D is dense in R, we have by (28)
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T(x*) =1,(x)*, xeR. (52)

§3. Examples. We have some examples.

ExampLE 1. R=C([0, o0))=the C*-algebra of all complex-valued bounded
continuous functions on the interval [0, ov). The product is defined by pointwise
multiplication. We define ||x| =sup|x(s)| and x*(s)=x(s) for xe R. Then if we

define

T(x)()=x(s+1) for 0=Zt<ow, (53)
{r,; 0Zt<oo} is a one-parameter semi-group of x-endomorphisms of R. The
infinitesimal generator 6 of 1, is defined by

5(x) (s)=-9% (s) (54)
ds ’

where D is the set of functions in C([0, c0)) whose first derivatives are also in C([0,
00)).

ExAMPLE 2. Let H be a Hilbert space and L(H) be the C*-algebra of all con-
tinuous operators on H. We define R=C([0, 0); L(H))=the C*-algebra of all
L(H)-valued bounded continuous functions on [0, c0). The product of R is de-
fined by

(ST)(s)=S(s)T(s). (55)

We define || T || =sup || T(s)| and T*(s)=T(s)* =the adjoint operator of T(s). Then

if we define
t(TY(S)=T(s+1), 0<t<o0, (56)

{r,; 0<t< o} is a one-parameter semi-group of #-endomorphisms of R. The
infinitesimal generator d of t, is defined by

5(T) (9)=-2L (), (57

where D is the set of L(H)-valued functions in C([0, o0); L(H)) whose first deriva-
tives are also in C([0, «); L(H)).

ExaMPLE 3. Let A be a C*-algebra. We define R=C([0, o0); A)=the
C*-algebra of all A-valued bounded continuous functions on {0, c0). The product
of R is defined by

(xy) () =x(s)y(s).- (58)
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We define ||x||=sup|[x(s)|| and x*(s)=x(s)* where % in the right-hand side is the
involution in A. Then, if we define

T(x) () =x(s + 1), 0=t<oo, (59)

{t,; 0St<oo} is a one-parameter semi-group of %-endomorphisms of R. The
infinitesimal generator § of t, is defined by

d

3(x) (9)=-"2-(5), (60)

where D is the set of 4-valued functions in C([0, 00); A) whose first derivatives are
also in C([0, o0); A).
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