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§0. Introduction

Recently the theory of vector valued hyperfunctions has been developed by
P. D.F.Ion and T. Kawai, 1975, [14], and by Y. Ito, 1977, [15]. The former
extended directly Sato’s theory [28] [12] [21] [27], while the latter extended the
method of A. Martineau and P. Schapira [25], [29] and then established Sato’s theory
indirectly and rather elementarily. They consider vector valued hyperfunctions
on n-dimensional real Euclidean space. But recently when the author was studying
the general theory of analytic linear mappings, he was forced to study vector valued
hyperfunctions on an n-dimensional real analytic manifold M which is countable at
infinity. Namely we have need of the theory of vector valued hyperfunctions in pro-
ving Martineau-Harvey’s theorem in the case of vector valued functions. This
theorem characterizes analytic linear mappings with a certain compact carrier.

The author has established that a vector valued hyperfunction is some class of
analytic linear mappings and a vector valued hyperfunction with compact support
in M is nothing else but a real analytic linear mapping with compact support. The
vector valued hyperfunctions, by localization, form a flabby sheaf over M and their
section modules are realized as relative cohomology groups with coefficients in a
sheaf of vector valued holomorphic functions, as in Sato-Ion-Kawai’s theory.
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§1. Holomorphic functions and analytic functions

Let M be an n-dimensional real analytic manifold which is countable at infinity
and X a complexification of M. We denote by E0=E0y the sheaf of germs of
holomorphic functions valued in a Fréchet space E over X, and by Fa=Fay=50,M
the sheaf of germs of real analytic functions valued in E over M. We put 0=C0
and a=Ca, where C denotes the complex number field.

In the following we assume that E always denotes a Fréchet space.

If Q is an open set in X, we set

oQ)=r(Q, 0),
the section module on Q. This space has an FS-space topology for semi-norms

pK(.f)=S}(1p If1,

where K runs over the family of compact subsets of Q. It is known that 0(Q)is a
Fréchet nuclear space. Let K be a compact subset of X. We put

0(K)= lim 0(2).

0(K) is the space of holomorphic functions in a neighborhood of K endowed with
the locally convex topology of the inductive limit of ¢(2) where Q runs the family of
open neighborhoods of K. It is a nuclear DFS-space (in particular, it is Hausdorff)
and its dual ¢'(K) is a nuclear FS-space.

Further, any bounded subset of ¢0(K) is contained and bounded in a space 0(Q)
(cf. A. Martineau [26] or H. Komatsu [21]).

If K is a compact subset of M, we have an isomorphism

a(K)=0(K),

where a(K) denotes the space of real analytic functions in a neighborhood of K in M.
a(K) is endowed with the topology of O(K). Then ¢(X) is dense in a(K) by virtue
of the embedding theorem (cf. H. Grauert [6]).

If Q is an open set in M, let a(Q2) be the space of real analytic functions on Q2
equipped with the topology

a(Q)= lim a(K).
K&
Then a(Q) is a complete barreled nuclear space whose dual is a complete nuclear

space.
Now we have

Proposition. Let M; be an n;-dimensional real analytic manifold which is
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countable at infinity and X; a complexification of M, (i=1,2). Then we have
the following canonical isomorphisms:

(1) 0(Q)B®O(2,)~0(2,xQ,),
(2;= X; open set (i=1,2);
(i) O(K)®O(K,)~0(K, xK,),
(K;= X; compact set (i=1,2);
(i) a(K)®a(K,)~a(K, xK,),
(K;=M; compact set (i=1,2);
(iv) a(2)®@a(Q)~a(2, xQ,),
(2;,=M; open set (i=1, 2)).

Proof. (i) See F. Treves [35], Theorem 51.6, p. 530 or A. Grothendieck
[10], Chap. 2, p. 81.
(ii), (iii) They follow from the following

Lemma A. Let E (resp. F) be a locally convex Hausdorff topological vector
space which is an inductive limit of a family {E;} (resp. {F;}) of locally convex
Hausdorff topological vector spaces. Then, on EQF, the projective topology and
the inductive limit topology of projective tensor products E; ®.F; with respect to
the natural linear mapping of each of these spaces into EQF coincide. On the
subspace of E®,F generated by the images of the spaces E;®.,F,, the topology
induced by E® ,F coincides with the inductive limite topology of E;® . F,.

Proof of the lemma A. By duality, the necessary and sufficient condition that
two locally convex topologies of one Hausdorff topological vector space coincide
is that they give the same family of equicontinuous sets of linear functionals. But,
since we have (E®,F) =(E®,F) =B(E, F), where B(E, F) is the space of con-
tinuous bilinear forms on E x F, the assertion of the lemma is equivalent to
the assertion that the necessary and sufficient condition that the set of bilinear forms
on E x F be equicontinuous is that its restriction to each E;x F ; 1s equicontinuous.
It is evident from the topologization of E x F=1lim E; x F,. This completes the proof
of the lemma A.

(iv) follows from the following

Lemma B. Let E (resp. F) be a locally convex Hausdorff topological vector
space which is a projective limit of a family {E;} (resp. {F;}) of complete locally
convex Hausdorff topological vector spaces. Assume that the natural continuous
linear mappings u;: E-E; (resp. v;: F>F;) are of dense range. Then we have
E®nF=1LmEi®nFj-
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Proof of the lemma B. We have first a natural inclusion E®,FclimE;®, F;.
Next we note that E®,F=1imE; ®,F;, (cf. L. Schwartz [32], Exposé n°7, Pro-
position 5). Hence we have E ®, F=lim [u;®v(E ®,F)], where [u;Q0(E®,F)]
denotes the closure of ;®v,(E ®, F) in the space E; ®, F;. Since u(E) (resp. v{(F))
is dense in E; (resp. F}), u(E) ®,v,(F) is dense in E;®,F;. Hence u(E) ®@,v,(F)
is dense in E;®,F; and u;Qv(EQ®,F) is dense in E;®,F;. Hence we have
[u;®v(E®,F)]=E; &, F; Hence we have E®,F=lmE, ®.F;. Q.E.D.

We have the following two corollaries to Lemmas A and B.

Corollary 1. Let E=limE; and F=lim F; be DFS-spaces such as injective
limit spaces of compact injective sequences {E;; and {F;} of F- or DF-spaces.
Then E®,F=ImE;®,F; and E® ,F=lmE;®,F; are also DFS-spaces.

Corollary 2. Let E=lmE; and F=lim F; be FS-spaces such as projective
limit spaces of compact projective sequences {E;} and {F;} of F- or DF-spaces.
Then EQ,F=lmE;®,F; and EQ ,F=1mE;®,F; are also FS-spaces.

Proof of Corollaries 1 and 2 follows from the fact that a continuous linear
mapping u of a locally convex Hausdorff topological vector space E into a locally
convex Hausdorff topological vector space F is injective if and only if its transpose
ty is of dense range, and from A. Grothendieck [10], Chap. I, § 1, n°3, Lemma 4.

Q.E.D.

§2. Analytic linear mappings

Definition 2.1. Let E be a Fréchet space and Q be an open subset of X.
Elements of L(0(Q); E)(=Ly(0(Q); E)) are called local analytic linear mappings
on Q valued in E or simply analytic linear mappings on Q. We say that
ue L(0(Q); E) is carried by a compact set K in Q if u can be extended to O(K).
We then call K the carrier of u. We denote by 0'(Q; E) the space L(0(8); E).
0'(K; E)y=L(0(K); E), a/(K; E)y=L(a(K); E) and o'(Q; E)=L(a(Q); E) are defined
in the same way. We also call their elements analytic linear mappings.

Proposition 2.1. Let E be a Fréchet space. Then we have:
(i) 0(Q; E)=1(0(Q); E)~0'(Q)RE,
(Q: an open set in X).
(i) 0'(K; E)=L(0(K); E)~0'(K)QE,
(K: a compact set in X).
(i) a'(K; E)=L(a(K); E)~a'(K)QE,

(K: a compact set in M).
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(iv) a'(Q; E)=L(a(Q); E)~a'(Q)QE,
(Q: an open set in M).
Proof. See F. Treves [35], Proposition 50.5, p. 522. Q.E.D.

Proposition 2.2. Let E be a Fréchet space, and K a compact subset of X
with the Runge property in the sense of A. Martineau [26] and Y. Ito [16], and
ueL(0(X); E). Then u is carriable by K if and only if it is carriable by all open
neighborhood of K.

Proof. See Y. Ito [16], Proposition 2.14. Q.E.D.

The elements of L(a(M); E) are called real analytic linear mappings. They are
analytic linear mappings on X which are carried by real compact set in M.

Theorem 2.1. Let ue L(a(M); E), u#0. There exists the smallest real com-
pact set which carries u. We call it the support of u and denote it by supp(u).

Proof. See Y. Ito [16], Corollary 1 to Theorem 5.1. Q.E.D.
We remark that
Supp (u; +u,) =supp (uy) U supp (u,),

supp (Au) csupp (u), L€ C.

p
Proposition 2.3. Let K= \U K; be the union of real compact sets. Let

i=1
ueL(a(M); E) such that supp(u)cK. Then there exists u;e L(a(M); E)(i=
1,..., p) such that

p
= 2 u; supp(u)<=K;
i=1
Proof. We note first that the mapping
p
Q(K) — Z a(Ki)9
i=1

f“—> (f{Ki)lgigp

is injective and of closed range By this mapping we can identify a(K) with the
nuclear closed subspace of Z a(K;). Hence by virtue of A. Grothendieck [10],
Chap. 2, Proposition 10, p. 69 we have the surjection

[ L(a(K); E) —> L(K); ),
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p
(“i)1gi§p——‘>i§,1ui- Q.E.D.

We now remark that the distributions with compact support valued in E are
analytic linear mappings, for, by virtue of Stone-Weierstrass’ theorem and Grauert’s
embedding theorem, the continuous injection

a(M) — C*(M)
is of dense range. Analogously a(Q2) is dense in C*(Q).

Proposition 2.4. Letue&'(M; Ey=L,(8(M); E). We denote temporarily by
supp,- (1) its support considering it as a distribution and by supp (u) its support
considering it as an analytic linear mapping. We then have

supp (#) =supp,- (u).
Proof. Let K=supp,.(u). For any open set Q> K, u can be extended to
C*(€), hence to a(2). Consequently
supp(u) =K.

Conversely, let u € &'(M; E) such that u can be extended to a(K) and let ¢ € 2(M)
such that

supp(¢) N K=¢.

We must show that
u(¢)=0.

By virtue of the partition of unity we may assume that supp(¢) is contained in a
coordinate neighborhood. Hence we may consider ¢ is defined on R” and may
show this in the Euclidean case. This is shown as in the proof of Proposition 2.4
in Y. Ito [15]. Q.E.D.

Let now Q be an open subset of M and K a compact subset of Q. We call
“envelope of K” (in Q) and denote by K, the union of K and the relatively compact
connected components (in 2) of Q— K. It is again a compact set.

Proposition 2.5. Let Q be a relatively compact open subset of M and K a
compact subset of Q such that K=K. Then a'(0Q; E) is dense in «'(2—K; E).

Proof. It is sufficient to see that the mapping of a(Q2— K) into a(0Q) is injective.
By the identity theorem it is sufficient to see that Q— K has no connected component

which is disjoint from 0Q2. Let w be such a component. Then w is open in 2—K.
Hence
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w=0'"N2—-K

where Q' is open in M. By definition of the closure, we have Q' n(Q—K)#4¢.
Hence Q' n (2—K) is a nonempty open set and since w is closed in Q—K, o n (2 —K)
is closed in Q—K. If wn dQ=¢, we have thus obtained a relatively compact con-
nected component of Q— K. This is a contradiction. Q.E.D.

§3. Operations on analytic linear mappings

In this section we now define several operations on analytic linear mappings.

a) Multiplication by a holomorphic or an analytic function
Let Q be an open set in X. For fe0(Q) and u € 0'(Q; E), we define

fued'(Q; E)
by the formula
(fw)(g)=u(fg) forall geo(Q).

By this definition ¢'(Q; E) is an 0(£2)-module.

For a compact subset K of X (or M) and an open subset Q of M, we can define
an 0(K)- (resp. a(K)-, resp. a(2)-) module structure of ¢’(K; E) (resp. a'(K; E),
resp. a'(2; E)) in the same way.

For a real analytic linear mapping u and a real analytic function f, we have

supp (fu) =supp (u).

b) Tensor products of analytic linear mappings

We recall first the tensor product of analytic functionals.

Proposition 3.1. Let M; be an n; -dimensional real analytic manifold which
is countable at infinity and X; its complexification (i=1, 2). Then we have the
following canonical isomorphisms:

(i) Q)OO (Q)~L(0(Q)); 0'(2,))=0'(2, x Q,),
(2, X, open set (i=1, 2)).

(i) O'(K)®O'(K)~LO(Ky); 0'(K)~0'(K; x Ky),
(K;< X; compact set (i=1, 2)).

(i) o'(K)®a'(Kz)~L(a(K,); a'(Kp))~a'(K; X K)),
(K;=M,; compact set (i=1, 2)).
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(iv) a'(Q)Ra'(2,)~L(a(2,); a'(2,))~a' (2, xQ,),
(2,= M, open set (i=1, 2)).

Proof. See F. Treves [35], Proposition 50.5 and 50.7, and A. Grothendieck
[10], Chap. 2, Theorem 12, and Lemmas of Proposition of § 1. Q.E.D.

Next we consider tensor products of analytic linear mappings. In the following,
we assume that E; and E, be two Fréchet spaces. w stands for ¢- or n-topology in
the sense of F. Treves [35].

Proposition 3.2. Let M, and X, be as in Proposition 3.1 (i=1, 2). Then we
have the following canonical isomorphisms:

(i) 0(Q,;E)®,0(Q,; E)~0(Q,xQ2,; E,®,E,),
(Q;,= X, open set (i=1, 2)).

(i) O0'(Ky; E)®,0'(Ky; E))~0' (K x K3 E; @, Es),
(K;=X; compact set (i=1, 2)).

(i) o'(Ky; Ey) ®,0'(Ky; Ep)~a' (K x Ky Ey @, Ey),
(K;=M; compact set (i=1, 2)).

(iv) a'(Qs; Ep) ®,0'(Q;; E))~a'(Q; x Q5 E; ®,Ey),
(2;=M; open set (i=1, 2)).

Proof. Since the tensor products of locally convex Hausdorff spaces are
commutative and associative, it is sufficient to apply Propositions 2.1 and 3.1.
Q.E.D.

Thus we have the following definitions of the tensor products of analytic linear
mappings.

Definition 3.1. We use the notations of Proposition 3.2.
Let u;=¢;®e;€0'(Q;; E)), p;€0'(Q), e;€E; (i=1, 2). Then we define

U Quu,=(0;0¢,)R(e; ®,€,),
that is,
(U1 ®uu) ([1® f2)=¢1(f1)d2(f>) (e4 ®w§2)
for f,e0(Q), (i=1, 2).

In all other cases we define the tensor products of analytic linear mappings
analogously.
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In all the real cases, we have

supp (u; ®,,u,) =supp (uy) x supp (u,).

§4. Hyperfunctions valued in a Fréchet space E

We consider first hyperfunctions on a relatively compact open set in M valued
in a Fréchet space E.
Let Q be a relatively compact open subset of M. We put

#(Q; E)y=a'(2; E)/a’(0Q; E).

Definition 4.1. The elements of #(Q; E) are called the hyperfunctions on
valued in a Fréchet space E or the E-valued hyperfunctions on €.
Let K be a compact set containing 2. Then we have

K=(K-Q)u Q.
By virtue of Proposition 2.3, every element u € a’(K; E) can be written as follows:
u=u,+u, u, €a’(K—Q; E) and u,ea'(Q; E).
This shows that the canonical mapping:
a'(Q; E)/a’(0Q; E) — a/(K; E)/a'(K—-Q; E),
which is evidently injective, is also surjective. Hence, we have
B(Q; Ey~a'(K; E)Ja(K—Q; E), KoQ.

Let now @ be an open set contained in Q.
The mapping

a'(Q; E) — a'(Q; E)a'(Q—w; E)
defines a mapping
B(Q2; E)—> %(w; E)

called the restriction.
If Te %#(Q; E), we denote by Tlw its image in #(w; E). It is clear that if
Q,cQ,=Q,, and Te Z(Q;; E), we have

(TIQZ) |~Qs= T|st

hence that the collection of #(w; E) defines a presheaf (of vector spaces) over Q
which we temporarily denote by £B|Q.

Proposition 4.1. Let Q be a relatively compact open subset of M.
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1) The presheaf EB|Q is a sheaf.
2) This sheaf is flabby.
3) If K is a compact subset of Q,

I'y(Q, EB|Q)=d'(K; E).

4) If F= kp/Fi is a union of closed subsets of Q and Te I ((Q, EB|Q), there
i=1
exist T, e I'y(Q, £B|Q) such that

5) If w is an open subset of Q,
(EB|Q)|w=EB|w.
Proof. 1) (i) Let Q= Q; and Te Z(Q; E) such that T|Q,=0 for all iel.
iel
This is equivalent to say that, if u;ea’(Q; E) is a representative of T, the image of
up in a'(Q; E)/a’(2—Q;; E) is zero for all i. From here we have
supp(ur) N Q;=¢ for all i,
hence,

supp (ur) = 0L,

that is, T=0.
(i) Let Q=Q,UQ, and T,e #(Q;; E) (i=1, 2) with

T2 nQ,=T,|Q nQ2,=T.

Let urea’(Q, N Q,; E) and u,, €a’(Q;; E) be representatives of T and T; (i=1, 2),
respectively. Since

supp (ur,—ur)=Q;—Q,n Q,
and since
Q-0 n2=(Q-2,12,)U(2-Q),
we can, by replacing uy, with a equivalent u}.,, suppose that
ur,=ur+v, supp () =(Q—Q,; N Q,).
We put
ur=ur+v,+v,e€d(Q,UQ,; E).

Let T’ be the image of uy in #(Q,UQ,; E). We have T'|Q,=T, for
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supp (ur —uy,) N ;=supp(v;) N ; (with j#i) and this set is contained in
(QJ_QI N Qz) n Qi=¢‘

(iii) Let now Q= \U @, and T;e #(Q;; E), with
iel

We can suppose the covering is countable and by virtue of (ii) increasing.
Thus we can suppose Q; € Q;,; and, since the envelope (in Q) of a compact subset

of Q is a compact subset of Q, we can suppose by (ii) that

Q=" Q,

j=0

Qj @ Qj+ 1>
5,:(2, (where K_Ej is the envelope of Q; in Q),
Tie (25 E), T;4lQ2;=T,.
Let uy, €a'(Q;; E) be a representative of T;. Let d; be a metric defining the
topology of a’(2—Q;; E) and v; € a’(éQ; E) such that
i<

The sequence ur,—v;

diur,,,~vjs1—(up,—v))<277, forall i

We construct v;’s by recurrence in virtue of Proposition 2.5.
We have

converges to an element u; €a'(2; E).
uT=uT_(uTj_vj)+(uTj_vj)

=(ur;—v;) +likm {ur,—o—(ur,—v))}

Since the sequence
{ur,— Uk“‘(uTj_ Vi)

converges in a'(Q—Q;; E),
up=tgp,—v;+w;, w;ea'(Q-Q;; E).

Hence, we have

where Tis the image of u; in Z(Q; E).

and the image of u; in #(Q; E) is an extension of T.

2) The sheaf £B|Q is flabby, for, if o= Q, Te #(w; E), there exists u; € a'(@; E)
3) We have an injection if K< Q:
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a'(K; E)y—> a'(Q; E)/a'(0Q; E).
The image of a'(K; E) is the set of Te #(Q; E) which are zero on Q— K, hence, is
I' (2, EB|Q).

4) Let F and F; be the closures of F and F; in Q, respectively, and u, a repre-
sentative of Tin a’(Q; E) so that

supp (up)=dQ U F.

Hence, by applying Proposition 2.3, we can suppose

supp (up)<F.
Let uy, € a'(F;; E)
)4
uT= =Zl uTl,.

If T; is the image of u,, in #(Q2; E), we have
4
T=3 T.
i=1

5) If o'cw<Q are open sets, we have
I, EB|Q)=%(w'; E)y=T(v', EB|w). Q.E.D.

Next we consider hyperfunctions on M valued in a Fréchet space E.
Let £B, be the presheaf over M defined as follows:

If Q is not relatively compact, %#,(2; E)={0}.
If Q is relatively compact, 2 (2; E)=3(Q; E).
The restrictions are defined by
Z1(Q; E) — % (w; E)
0— 0 if @Q is not relatively compact,
T— Tl if Q is relatively compact.

This presheaf satisfies the axiom (S1) of sheaves but not (S2) (cf. G. E. Bredon [2],
p. 5, or R. Godement [5], p. 109).

We denote by £#Z the sheaf associated to this presheaf EB,. It is a sheaf of
vector space over C.

Definition 4.2. The sheaf *% is called the sheaf of E-valued hyperfunctions
over M.
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If Tel'(Q, E#)=%(Q; E), T is an E-valued hyperfunction on ©. Hence an
E-valued hyperfunction on Q is defined by the following:
a covering Q= \U Q,, where Q,’s are relatively compact open sets,

T, B(Qy; E) satisfying TJ;0 2, =T,/2 0 Q;:
Two such couples (2, T)),.; and (Q;,, T;.);..; define the same E-valued hyperfunction if
T}192:;n Q. =T,|2;n Q;, forall iel, andall i'el'.
Theorem 4.1. 1) For all relatively compact open sets Q in M, we have
E#|1Q=EB|Q.

2) The sheaf £ is flabby.
3) If K is a compact subset of M, we have

I'M, £#)=d(K; E).

4) If F= U F; is a union of closed subsets of an open set Q in M and if Te
Iry(Q, t%), there exlst T,eI'p(Q, EZ) with

We write B(Q; E) for I'i(Q, £%). We write supp(T) for the support of an E-
valued hyperfunction T.

Proof. 1) is evident.
2) Let Toe #(Qy; E)and Q, an opensetin M. Let # be the family of couples
(Q, T) with

F 1s ordered and inductive for the relation
(Q, THY=<(Q', T) if Q=Q', T|Q=T.

Let (2, T) be a maximal element and we suppose that there exists x,& Q. Let w
be a relatively compact open set containing x,. The E-valued hyperfunction T|Q n w
can be extended to T, e Z(w; E) by virtue of Proposition 4.1. Hence there exists
Se#(Q2U w; E) with

Sjo=T,, S|Q=T,

which is a contradiction.

3) follows from 1) and Proposition 4.1.

4) For simplification of notations we suppose that Q=M and F=F, U F,.
Let & be the family of triplets (€2, T}, T;) such that
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T}E‘@Fi(g; E) (l=13 2):
Tl + T2 = T|Q

& is ordered and inductive for the relation of order of inclusion and extension.

Let (@, Ty, T,) be a maximal element and suppose that there exists x,& Q.
Let w be a relatively compact open set containing x,,.

Let T2 N we (2N w; E) can be extended to T; € #rqp(w; E) and

Tlwo—T1—T5€ B F,ur,-(F,vrnof@; E).
Hence, by virtue of Proposition 4.1, there exist S;€ %y, _ . o(w; E) such that
Tlw=Ti+T5+S;+5S,.
Since (T;+S)) 12 n w=T]R N w, there exist T; € Z(Q U w; E) such that
T{Q=T, T/|lw=T;+S,.
Hence we have
T/e#r(2U w; E) and
TIQUw=T{+ T3,
which is a contradiction.

Theorem 4.2. The sheaf 2" of E-valued distributions over M is a subsheaf
of .

Proof. Let Q be an open set in M. We define the mapping
2'(Q2; E) — #(Q; E)
in the following way where we put 2'(Q; E)=Ly(2(Q); E). Let Q; be a sequence

of open sets with

o
Q'@Qj“"l, UQJ=Q.

J =

Let ¢; € 2(Q;,,) and ¢;=1 in a neighborhood of Q;. Let Te 2'(Q; E) and put
T;=¢;T. Then T,e&'(Q2; E), hence T;ea'(Q; E) and T;|Q;e #(Q;; E), where
we denote by T,|Q; the image of T;ea'(Q;; E) in #(Q;; E). If k> j,

Tk_Tjeéa/(Qk+1_Qj)'
Hence supp (T,—T;) N Q;=¢ and

The sequence T;|Q; defines an E-valued hyperfunction T'e #(Q; E). It is easy to
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verify that T” is independent of choices of {(Q;, ¢,)} and that we have thus con-

structed a linear mapping of 2'(Q; E) into #(Q; E) which commutes with re-
strictions.

If Te 2'(Q; E) is of image zero, it is equivalent to say that for all n
supp(¢;T)n Q;=¢.

Hence, by virtue of Proposition 2.4, the restriction of T to 2'(Q ;> E)is zero. Hence
T=0. Q.E.D.

§5. Operations on hyperfunctions valued in a Fréchet space E

In this section we define several operations on E-valued hyperfunctions on M.

a) Multiplication by a real analytic function

Let 2 be an open setin M. If fe a(Q) and Te #(2; E) and {Q;}%-, be an open
covering of Q with Q;€Q;,,, we shall define fT as follows. Let ur,€a'(Q;; E)
such that

ur|Q=TIQ,=T,

where ur |Q; denotes the image of uy, in #(Q;; E). Since a'(2;; E) is an a(Q))-
module, we have

fuT”k[.QJ=fuTJ|.QJ, fO[' kgo.

Hence, fuy [Q;’s define an E-valued hyperfunction which depends only on f and on
T and which we denote by fT.

We have verified that we thus define on #(Q; E) a structure of a(Q)-module and
at the same time that the sheaf £ is an a-module.

b) Tensor product of E-valued hyperfunctions

Let now E; and E, be two Fréchet spaces, and w stands for &- or n-topology.
Let then Q; be an open set in an ni-dimensional real analytic manifold M, which is
countable at infinity (i=1, 2). Let T, € #(Q,; E,) and T, e #(Q,; E,). Let

Il
Cs

Q, Qy;

J

I

and Q,= U Q,;
i=t

i=1

with
Qlj@91j+l and sz@Q2j+1,
uleea/(Qlj; E)), UT‘J.IQU=T|QU,

Ur,, € a’(sz; Ej), ur, |92,;=TI|Q,;.
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We have
(uT1j+k ®qu2j+k) |Ql_] X Qlj
=(uT1j ®qu2j) |Qlj X QZ_[

and the sequence (ur,, ®,ur,,)|Q;;x Q,; defines a hyperfunction on Q; x 2, which
is Ty ®,T,.

We can verify that this product has properties of tensor products of vector
valued distributions and extends them. In particular we have

supp (T; ®,, T,) =supp (T;) x supp(73) .

c¢) Image of an E-valued hyperfunction by an analytic isomorphism

Let Q, and Q, be open sets in M and y an analytic diffeomorphism of Q, onto
Q3

y:Q, — Q,.
If ued'(Q,; E), we define

uoyea'(Q; E)
by the formula

(wey) (N)=u((foyHIJD,  for fea()),
where |J| is the Jacobian of the mapping y~!. The mapping thus defined
y*:a'(Q,; E) — d'(Q; E)
is linear and verifies
supp (y*u)=y '(supp (u)) for uea(Q,; E).

Hence y* can be prolonged to a morphism of sheaves

y*: E-%|QZ — E:@lgl.

§6. Boundary values of holomorphic functions valued in a Fréchet space E

1. The resolution of the sheaf of holomorphic functions valued in a Fréchet
space E

Let M be an n-dimensional real analytic manifold which is countable at infinity,
and X its complexification which is in turn considered as a 2n-dimensional
real analytic manifold.

Let Q be an open set in X. Let £# be one of the sheaves fay, £€y, £2%,
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and gy over X.
A differential form f with coefficients in &#(Q; E) is called of type (p, ¢) if, in
every coordinate neighborhood U, we can write it as follows:

f=2" 2 frofane’,
[I=p [J|=q

where, w!,..., ®" being n forms of type (1, 0) with C* coefficients in U such that at
every points in U

<o), o*>=6y, j, k=1,..,n,
we put, for I=(iy,..., i,) and J=(ji,..., j,),

wl'=wiA--- A, and

@J:a—)jx/\...,\ajq,

f1.,€ F(U; E) is assumed to be antisymmetric both in [ and in J and Y.’ means that
summation is extended only over increasing multi-indices. (cf. L. Hérmander [13],
p. 112.) We then define the sheaf £#7-4 of differential forms of type (p, q) with
coefficients in £ and 0 and ¢ are the morphisms of sheaves:

. Egp, E g p+1
0: tEFpa — Egrtlg

o: Egpa __, Egp.q+l

defined in U by, for the above f,

=3 3 30,000 Awl AG 4.,
i=1 |I|=p |J]=¢q

of = > 2 Ofr.4]00' D A 0t AT -
i=1[Il=p |J]=¢

where the dots indicate terms in which no f; ; is differentiated.
We define in the same way the sheaf ¥0?=E0% of differential forms of type
(p, 0) with coefficients in £¢0y. We then have a complex of sheaves:

0— Eop —, EZp.,0 i—) Egprl_2, .. -:a--> Egpn 0,
for do0=0 and, if fe £#7:°(Q) has holomorphic coefficients, we have Jf=0.

If £# is one of the sheaves £& or £2', it is well known that the complex is an
exact sequences of sheaves, hence a resolution of £¢” (cf. L. Hormander [13], and
P. D. F.Ion and T. Kawai [14]). If E# =£¢, it is the resolution of E-Dolbeault-
Grothendieck.

If £E# =Eq, the complex is again a resolution of £0r. In order to see this,
we have only to take into account the resolution of @» by the sheaves a?:¢ and the
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argument of P. D. F. Ion and T. Kawai [14].

Theorem 6.1. The sequence

0 Egp Egp,0 _G , Egp,1 5. ... & Egp,n 0
is an exact sequence of sheaves over X.

Proof. The argument is local. So that we have only to show this in a coordi-
nate neighborhood of every point of X. So we have only to show this in the
Euclidean space. This has been done in Y. Ito [15], Theorem 6.2. Q.E.D.

2. Sato’s theory

a) Cohomology groups with coefficients in the sheaf Fqa

Let Eq be the sheaf of E-valued real analytic functions over M and £¢ the sheaf
of E-valued holomorphic functions over X, the complexification of M. If xeM,
we have an isomorphism

Eq ~EQ@, .
Hence, for all open subset 2 of M, we have
Eq|Q=E0|Q.

Since every open set in X is paracompact, it follows from Theorem B42 of P. Schapira
[29], p. 38, that

a(Q;Ey=_1lim 0(8Q; E),
2nM=0

where @ is an open neighborhood in X of an open set Q in M such that 3 nM=0Q
and a(Q; E) is the section module of £a on Q and ¢(Q; E) is the section module of
Eg on Q.

In the following of this section, Q always denotes an open set in X and Q denotes
an open set in M as far as the contrary is not explicitely mentioned.

Theorem 6.2. Let Q be an arbitrary open set in M. Then we have
HP(Q, Ea)=0
for every positive integer p.

Proof. We know, by virtue of Grauert’s Theorem (cf. H. Grauert [6] or
H. Komatsu [21], Theorem V. 2.5, p. 194), that Q has a fundamental system of Stein
neighborhoods. Then, it follows, from Oka-Cartan Theorem B (cf. P. D. F. Ion
and T. Kawai [14], E. Bishop [1], and L. Bungart [3]) and Theorem B42 of
P. Schapira [29], p. 38, that, for p>0, we have
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H?(Q, Ea)=_lim HP(Q, £0)=0. Q.E.D.
2aM=0

b) Malgrange’s Theorem

Theorem 6.3 (Malgrange’s Theorem). Let O be an open set in X and F a
closed subset of 3. Then we have

(i) HYQ, £0)=0, for p>n.
(i) H~(Q, Ee)=0,  for p=n.

Proof. (i) By virtue of Theorem 6.1, and Theorem B32 of P. Schapira [29],
p. 27, the cohomology group HZ(Q, E¢) is isomorphic to the p-th cohomology
group of the complex:

0— BPUD; E) -2 391D E) s o 2, 397(3; E)

0 0

Hence, for p>n, this cohomology group is zero.
(i) We apply this result to a Stein neighborhood V of @ with F=V—§ and
have

HE_5(V, £0)=0, for p>n.

We write the exact sequence of cohomology groups with support in V—@ (cf. P.
Schapira [29], Corollary 1 of Theorem B35, p. 32):

> HP(V, F0) — HY(@, F0)
B H;’;-_é(V, E@) B Hp+1(Vs E(g) e
The theorem then follows from the fact that

HY(V, 20)=0,  for p>0. Q.E.D.

¢) Cohomology groups with support in a compact subset of X. (Martineau-
Harvey’s Theorem)

Theorem 6.4. Let K be a compact subset of X such that it admits a Stein
neighborhood V and satisfies

Hr(K, 0)=0, for p>0.
Then we have
HY(V, £E0)=0, for p#n,

and isomorphisms
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Hu(V, E0)~H" Y (V—-K, E0)~0'(K; E).
Further, if K, <K, satisfy the hypotheses of this theorem, the diagram
%V, E0) — H,(V, £0)

l l

O'(K; E) — 0'(K,; E)
is commutative.

Proof. See Y. Ito [16], Theorem 7.1. Q.E.D.

d) The relative cohomology groups with support in M. (Sato’s Theorem)

Theorem 6.5. Let Q be an open subset of M and V a Stein neighborhood in

X of M.
(i) The relative cohomology groups Hg(V, £0) are zero for p#n.
(ii) The presheaf over M

Q—— Hy(V, £0)

is a sheaf.
(iily This sheaf is isomorphic to the sheaf *% of E-valued hyperfunctions over

M.

Proof. (i), (ii): Let Q be a relatively compact open subset of M. We have
the exact sequence

s HEG(V, £0) — HY(V, P0) —> HE(V, 20)
s HIENV, FO) > -

(cf. H. Komatsu [21], Theorem II. 3.2, p. 77, or P. Schapira [29], Theorem B.35,
p. 31). Since O and 0Q are real compact sets which consequently satisfy the hy-
potheses of Theorem 6.4, we have

HY(V, £0)=0, p<n—1,
and we have the exact sequence
0 — Hy '(V, 0) —> Hio(V, *0)
— HY(V, £0) — HH(V, £0) — 0.
Since the morphism
1oV, E0) — Hy(V, P0)

is isomorphic to the morphism
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a'(0Q; E) — a'(Q; E)
which is injective, we have
Hyg '(V, *0)=0.
Then we consider the sheaves over M :
A5 (F0)
associated with the presheaves
Q— HY(V, *0).

These sheaves are zero for p<n and since HA(V, E0)=0, if p>n, by virtue of
Theorem 6.3. The parts (i) and (ii) of the theorem follow from Theorem II.3.18
of H. Komatsu [21], p. 89, or Theorem B 36 of P. Schapira [29], p. 34.

(i) Let Q be an open subset of M. From the exact sequence

0 — Hjo(V, £0) — HY(V, E0) — H}{(V, E0) — 0,
we deduce that the sheaf
Hy(E0)

is flabby.

If K is a real compact set, the relative cohomology group H(V, £0) is iso-
morphic to a’(K; E) by virtue of Theorem 6.4. Hence for all relatively compact
open set ©, the relative cohomology groups

Hy(V, F0)=H(V, F0)| H3o(V, £0)
and
B(Q; Ey=a'(Q; E)|a’(0Q; E)
are isomorphic. Consequently the sheaves
H(E0) and Eg
are isomorphic. Q.E.D.

Proposition. Let Q be an open subset of M and V a Stein neighborhood in
X of M. Then we have

Hy(V, 2O)~H""1(V-Q, £0).

Proof. This is an immediate consequence of Oka-Cartan Theorem B and the
canonical long exact sequence of relative cohomology groups,
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