J. Math. Tokushima Univ.
Vol. 14 (1980), 25-74

Theory of Analytic Linear Mappings, 1. General Theory

By

Yoshifumi Ito
(Received April 25, 1980)

Contents
§0. Introduction.
§ 1. Preliminaries: Spaces of holomorphic functions.
§2. General notions on the analytic linear mappings.
1. Definitions.
2. Extension of definitions.
3. The notion of carrier.
4. Identifications.
5. The case of open or compact sets.
§ 3. Carriers and supports.
1. Existence and uniqueness of supports.
2. The intersections of carriers.
3. The case of submanifolds.
§4. €™ and R*, the case of convex sets.
1. The systems of (n+1) convex carriers.
2. Applications.
3. Some special cases.
§ 5. The analytic linear mappings with real support.
§ 6. Algebraic operations on the analytic linear mappings.
§7. The analytic linear mappings as boundary values of vector valued holomorphic

functions.
1. The analytic linear mappings as cohomology classes. Martineau-Harvey’s
theorem.

2. Cauchy-Weil transformation and Cauchy-Hilbert transformation of E-valued
analytic linear mappings.

§0. Introduction

In this paper we study the general theory of analytic linear mappings defined on
a complex analytic manifold valued in a locally convex Hausdorff topological vector
space. Analytic linear mappings are by definition continuous linear mappings of
the space of holomorphic functions into a locally convex Hausdorff topological
vector space. That is, analytic linear mappings are so to speak ‘‘vector valued
analytic functionals™.

Up to now, the theory of analytic linear mappings has been studied by many
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authors in the special situations. See, for example, J. S. Silva [49], G. Kothe [28],
A. Grothendieck [10], A. Martineau [35], P. Lelong [30], M. Morimoto [37], Y.
Ito [18] and so on.  Especially, the theory of analytic functionals has been developed
extensively.

Meanwhile, the concept of distributions has been introduced by L. Schwartz
[48] as the dual object of the function. That is, the space of distributions on R” is
nothing else but the dual space of the space of indefinitely differentiable functions
with compact support. This gives the generalization of the concept of functions.
This has been generalized into many directions. The dual object of the function
space has produced many things newly. Among them, there is the analytic func-
tional, a special form of analytic linear mappings, as a dual object of holomorphic
functions.

In another direction of the generalization of the concept of functions, M. Sato
[40] has introduced the concept of hyperfunctions as boundary values of holomorphic
functions. Many authors follow him, for example, A. Martineau [33], F. Harvey
[15], H. Komatsu [25], P. Schapira [42], T. Kawai [21], M. Morimoto [37] and
so on. Among them, A. Martineau reformulated the theory of hyperfunctions
starting from the concept of analytic functionals. He showed that a hyperfunction
is a class of analytic functionals, and especially, the hyperfunction with compact
support is nothing else but an analytic functional with compact support.

In one another direction of generalizations of L. Schwartz’s theory, there is a
theory of vector valued distributions which was initiated by L. Schwartz [45], [46].
The space of vector valued distributions is the space of continuous linear mappings
of the space of indefinitely differentiable functions with compact support into a
locally convex Hausdorff topological vector space. Here again, the space of con-
tinuous linear mappings of a function space into a locally convex Hausdorff topo-
logical vector space is seen to be meaningful. The author has in this point studied
the theory of analytic linear mappings on the Euclidean space and has used it to
reformulate the theory of vector valued hyperfunctions initiated by P. D. F. Ion and
T. Kawai [17] as A. Martineau did in the scalar case, see [18], [54]. So it is seen
to be worthwhile to study the theory of analytic linear mappings in the general
situation. So we will do this in this paper.

§ 1. Preliminaries: Spaces of holomorphic functions

In this section, we mention some preliminary facts about spaces of holomorphic
functions on a complex analytic manifold, following A. Martineau [35].

Let V be a complex analytic manifold, not necessarily connected. H(V) de-
notes always in the following the vector space of holomorphic functions on V. If
A is a subset of V, H,(V) denotes the inductive limit of vector spaces H(W), W
running over the family ¥°(4) of open sets containing 4, W, < W, if W, cW,, the
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mappings iy, w,: H(W,)—H(W,) being the restriction mappings. An element of
H (V) is called a holomorphic function on ¥ defined in a neighborhood of 4. It is
convenient to write:
H,(V)= U HW).
We 7 (A)
Remark. Let @ be the sheaf of germs of holomorphic functions on V supposed
to be countable at infinity, @ | A the restriction of ¢ to A. By virtue of Theorem

3.3.1 of R. Godement [8], and Lemma I1.2.13 of H. Komatsu [25], all section of
0| A can be prolonged to a section of @ on a neighborhood of A4, hence we have

H(V)=I(4, 0] A).

If B is another subset of V, Bc A4, there exists a homomorphism of H (V') into
Hy(V) which we denote by i, p, obtained as follows: if W, € 7(4), W, € 7 (B), then
W, =W, n W, € ¥°(B), hence there exists iy y,: HW,)—>H(W;). Wj’sform a family
cofinal in ¥°(B), hence by passing to the inductive limit we obtain i, g which we call
homomorphism of restriction.

Let ¢ be a family of subsets of A such that

1) The X’s of ¢ cover A4,

2) If Be¢, Ced, then BUCe .

Then with the homomorphisms of restriction ip ¢ if B> C, the Hy(V)’s form a
projective system. If ¢ contains all the convergent sequences of 4, we can easily
verify that the projective limit of Hg(V), lim Hp(V), is isomorphic to H 4(V) by the
homomorphism which we obtain by pasléiegg to the projective limit in B over the
homomorphisms i, 5. We then identify };i‘__m Hg(V) with H (V).

This can be shown as follows. For E2(1#11 x, x € A, there exists a neighborhood
w(x) of x such that f,e H,(V) can be prolonged analytically in w(x) to f~,

sup |f*(z2)]£M,, and such that, for all yew(x)n A we have f,=(f%),. In fact,

zew(x)
suppose that it is not so and thus implies the existence of a sequence of points x,

tending to x, such that f, #(f*),. We consider L={x}U (U {x,}). Itis a com-
pact subset of A. Hence, since H (V)= lim H(W), fis prolongable to a neigh-
Wey (L)

borhood w, of L, which is in particular a neighborhood of the point x. Hence it
contains a simply connected neighborhood Q, of this point. For sufficiently large
n, x, € Q, from which f, =(f%),,, which is the contradiction.

We can now recollect f¥’s.

We now assume that the manifold V is countable at infinity. Hence we can
equip it with a metric d. For all x, x € V¥, there exist a neighborhood of x, 7n(x),
a space C¥®, an open set w;(x) of C¥® and an isomorphism i(x) of n(x) onto
,(x).

We can find a subfamily X of V such that the n(x)’s, x € X, form a locally finite
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covering of V. A set C included in n(x) will be said to be convex in the chart if
i(x)(C) is convex in w(x). We denote by B(r, y) the set of points z of V such that
d(z, y)<r. For all y, yeV, there exists a p,(y) such that B(p,(y), y) is included in
each m(x) containing y and convex in each of these charts. If ze A, we will take
p(z) such that p(z) < p,(z) and such that B(p(z), z) =n(z). We set n'(z)=B((1/2)p(z),
z). Thenlet n'= \U n'(x). The function f is prolongable to n’. 1In fact, if f* and

xeA

f# denote the prolongations of germs f, and f, to n(y) and n(z), and if uen(y)n
7'(z), being placed in a chart containing y, hence containing z, the value at u of f?
can be obtained by following the “‘segment” i(x)~!([i(x)(y), i(x)(z)]) then the
“segment” i(x)"1([i(x)(2), i(x)(u)]). The paths (y, z), (z, u) are in B(p(y), y) and
the path (z, u) is in 7n'(z). Hence we have f¥(u)=f=(u), which we wish to show.

If ¥ is a family of subsets of 4 whose finite unions form a family ¢ it is con-
venient to write

HA(V)=B®/ Hy(V).

In particular we have the formula

HA(V)szA H (V).

If w; is a covering of a manifold V by open subsets, we have thus

H(V)= N\ H(w).

Equipping each H(w;) with the topology of the uniform convergence on all compact
subset, we can easily verify that the topology of H(V) is the topology of the projective
limit of H(w;). Further in the case where V is countable at infinity this follows
from Theorem 1 of A. Martineau [35], p. 5.

, Proposition. Let K be a compact subset of V. H (V) admits a topology of
space (DFS).

Proof. See A. Grothendieck [11] and A. Martineau [35], p. 8. Q.E.D.

This topology is that of the inductive limit of H(W), W running over the
family of relatively compact open neighborhoods of K. We will write H V)
= lim H(W). Letnow A be a certain subset of V. We have

We7 (K)

H,(V)= U HW)= N HV),
We7 (A4) Key

where ¥ denotes a family of compact subsets containing all the convergent sequences
of A.  We can hence equip A with diverse topologies (being able to be all identical).

We denote by Hp, 4(V) the vector space H (V) equipped with the topology
induced from the product topology:
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[T Hx(V) onto its closed subspace N\ Hg(V).
Key Key

This space is always a complete Schwartz space. We can hence apply Theorem 2 of
A. Martineau [35], p. 6 to it. We denote by Hp (V) the space obtained by taking
for family ¥ the family of all the compact subsets of A.

We denote then by H; ,(V) the space lim H(W). The latter space is ultra-
We7 (A)

bornologic, and its topology is finer than that of Hp (V). We possibly have Hp 4
#H; 4(V) even when 4 is closed in V.

§ 2. General notions on the analytic linear mappings

1. Definitions

In the following of this paper, E is always assumed to be an arbitrary locally
convex Hausdorff topological vector space over the complex number field as far as
the contrary is not mentioned.

Definition 2.1. Let V be a complex analytic manifold which is countable at
infinity. We call all the elements of the space H'(V; Ey=L(H(V); E) of con-
tinuous linear mappings of H(V) into E equipped with the topology of bounded
convergence ‘‘analytic linear mappings” defined on V valued in a locally convex
Hausdorff topological vector space E or shortly (E-valued) analytic linear map-
pings on V.

Analytic linear mappings defined on V valued in a complex one dimensional
Euclidean space C are nothing else but analytic functionals defined on V. Thus,
E-valued analytic linear mappings on V are so to speak ‘‘E-valued analytic func-
tionals” on V.

We define multiplication of an analytic linear mapping 7 on V and a holomorphic
function f on V by the following formula:

(fT)(9)=T(fg)  forall geH(V).

Then the space H'(V; E) of all E-valued analytic linear mappings on V becomes an
H(V)-module.

Proposition 2.1. Let V be as in Definition 2.1, and E a complete locally
convex Hausdorff topological vector space. Then we have the isomorphism

H'(V; EyxH'(V)QE.

Proof. Since the space of analytic functionals on V, H'(V), is a (DFS) nuclear
space, it follows from F. Treves [52], Proposition 50.5, p. 522. Q.E.D.
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Let u be an E-valued measure with compact support in V, that is, an element of
the space of continuous linear mappings of C(V) into E, L(C(V); E)=C'(V; E),
where C(V') is the space of all continuous functions on ¥V equipped with the topology
of compact convergence. The vector space C'(V; E) is equipped with the topology
of bounded convergence. Then the mapping

f— Syfdﬂ, fe H(Y)

defines an E-valued analytic linear mapping which we denote by T(u).

Definition 2.2. We say that the E-valued measure p with compact support
defined on V represents an analytic linear mapping T, or that T is representable by
U, if, for all fe H(V), we have

(/)= fan.

We then write ug, hence T(u;)=T; ur is not, in any way, unique. But all the
E-valued analytic linear mappings are representable by E-valued measures with
compact support. Namely, we have

Proposition 2.2. Let E and V be as in Definition 2.1. Further assume that
E is quasi-complete. Then all E-valued analytic linear mapping defined on V is
representable by an E-valued measure with compact support.

Proof. Since H(V) is a nuclear subspace of C(V), it follows immediately from
Proposition 10 of Chapter 2, § 3, n°1 of A. Grothendieck [13]. Q.E.D.

Replacing C(V) by &(V), the space, defined by L. Schwartz [48], of indefinitely
differentiable functions on V¥, H(V) is again a closed nuclear subspace of &(V).
Thus, H'(V; E) is the quotient space of &'(V; E)y=Ly(&(V); E), the space of E-
valued distributions with compact support on V.

2. Extension of definitions

Let V' be a complex analytic manifold and A a subset, for a moment anyone, of
V. We consider the vector space of locally holomorphic functions defined in a
neighborhood of A, H (V).

Definition 2.3. We call all element of Hp 4V; E)=Ly(Hp V); E) an E-
valued local analytic linear mapping on A.

Definition 2.4.  An element of Hj 4(V; E)=Ly(H; «V); E) is called an E-
valued local analytic linear mapping defined almost on A.

The injection of H; ,(V) into Hp 4(V) being continuous, it follows that all local



Theory of Analytic Linear Mappings, I. General Theory 31

analytic linear mapping defined on A is a local analytic linear mapping defined
almost on A. '

If A is a compact subset K of ¥V, we have, by definition, Hp x(V)=H, ((V),
which is denoted by Hi(V). If A is an open subset Q of V, we have, by definition,
HI,Q(V)=H(Q)~

Proposition 2.3. Let V be a complex analytic manifold which is countable
at infinity. We denote H'(K; E)=Ly(Hg(V); E) for a compact subset K of V.
Then we have

H'(V; E)= lim H(K; E).

Proof. It follows easily from the definitions of the topologies of H(V)=
lim Hg(V) and of L,(H(V); E) and lim L,(Hx(V); E). Q.E.D.
K<V K<V

Thus we have, for a complex analytic manifold V,

Proposition 2.4. If A is a compact subset, or an open subset of V, which is a
union of a countable family of its compact subsets, the notions of local analytic
linear mappings defined on A and of local analytic linear mappings defined almost
on A coincide.

We encounter the more complicated situations where we have again the same
circumstances.

If A and B are two subset of V' with A< B, *i, 5 denote the natural mapping of
Hpy(V) into H (V). 'i,p is evidently continuous from H; x(V) into H; (V). Let
iy p be the transposed mapping of this mapping, which maps H; ,(V; E) into

1,8V E).

Definition 2.5. We say that Te H} g(V; E) is representable by Ure H; 4«V; E)
if T= i’A,B(UT)'

It is reduced to the same thing to say that T defined on the subspace
iy g(H; p(V)) of H (V) is prolongable to H; 4(V). Thus we can then say that T is
prolongable to H; (V).

Proposition 2.5. Let A be a subset of a complex analytic manifold V. Then
we have

Hp (Vi E)= lim H'(K; E),
Ke4
where K runs over all compact subsets of A.

Proof. It can be proved in the same way as in Proposition 2.3. Q.E.D.

Proposition 2.6. Let K be a compact subset of V which is a finite union of
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compact subsets K, of V and E a complete locally convex Hausdorff topological
vector space. Then we have the surjective homomorphism of

ITH(K,; E) onto H(K; E).
k

That is, for every Te H'(K; E), there exist T,€ H'(K,; E) such that
T= ; iKh,K(Th)'
Proof. Since Hg(V) and Hy, (V) are nuclear (DFS) spaces, and since we have
H'(K; E)=Hy(V)®E, H'(K,; E)=H (V)®E,
it suffices to prove that the mapping

H (V) — 2 H(V),

J— Cig x(Dn
is injective and of closed range, which is easy to verify. Q.E.D.

Proposition 2.7. Let A be as in Proposition 2.5. Then all E-valued local
analytic linear mapping defined on A is representable by an E-valued local analytic
linear mapping defined on a compact subset of A.

Proof. This is the same thing as Proposition 2.5. Q.E.D.

3. The notion of carrier

Let T be an E-valued analytic linear mapping defined on V.

Definition 2.6. a) We say that T is quasi-carriable by a subset A of V if T
is representable by an E-valued local analytic linear mapping defined almost on
A. A is a quasi-carrier of T. b) We say that T is carriable by A if it is repre-
sentable by an E-valued local analytic linear mapping defined on a compact subset
of A. A is a carrier of T.

Proposition 2.8 (Transitivity of the notion of carrier). If A is a quasi-carrier
of T and if B contains A, B is a quasi-carrier of T. If A is a carrier of T and if
B contains A, B is a carrier of T.

Proof. Let Tbe a prolongation of T to H; ,(V) and !i, p the natural restriction
mapping of H; x(V) into H, V). Then Te'i,p is an analytic linear mapping
quasi-carriable by B whose restriction to H(V) is equal to T.

The second assertion follows immediately from the first. Q.E.D.

Proposition 2.9. If A is an open subset of V, which is a union of a countable
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family of its compact subsets, then T is carriable by A if and only if it is carriable
by a compact subset of A.

Proof. It follows immediately from Proposition 2.3. Q.E.D.

Proposition 2.10. Let E be quasi-complete and A an open subset of a complex
analytic manifold. Then an E-valued analytic linear mapping T is carriable by
A if and only if it is representable by an E-valued measure with compact support
in A.

Proof. The sufficience is clear. We note that the necessity follows from the
application of Proposition 2.2 to H; ,(V; E)y=H'(4; E). Q.E.D.

The notions which we will introduce are employed at the paragraph 3.3. When
we speak of submanifold of V' we suppose them closed.

If Wis a submanifold of ¥V and A a subset of W, we can then consider the spaces
H; (W) and Hp 4(W), and the definitions given with respect to ¥ are valid also for
W. But further, if B is a subset of V' with B> A, we have an (algebraic) homomor-
phism of restriction to a neighborhood of A4 in W, 'p. 4 w) sy of Hy(V) into
H,(W). We can easily verify that this mapping is continuous from H;j (V) into
Hy 4(W).

Definition 2.7. A local analytic linear mapping T defined in V almost on B
will be said to be strictly quasi-carriable by A in W if it provide a local analytic
linear mapping defined in W almost on A, that is, if

T= p(A,W),(B,V)(U) WheVe UEH}’A(W; E).
In these conditions we say that W is a strict carrier of T.

Proposition 2.11. Let Q be an open subset of an analytic submanifold W of
V. A necessary and sufficient condition that T defined on V be strictly carriable
by Q is that it is strictly carriable by a compact subset in Q.

Proposition 2.12. Let E be quasi-complete and Q an open subset of an analytic
submanifold W of V. A necessary and sufficient condition that an E-valued ana-
Iytic linear mapping T defined on V be strictly carriable by Q is that there exists
an E-valued measure u with compact support included in Q which represents T.

Let @ be a family of subsets of V.

Definition 2.8. A€ ® will be said to be a ®-quasi-support of Te H'(V; E) (re-
spectively a ®-support of T) if A is minimal for the order relation of the inclusion
among the elements of ® which are quasi-carriers of T (respectively carriers of T).

Let Vand W be two complex analytic manifold, AcV and BcW. We denote
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by an analytic mapping p of (4, V) into (B, W) a mapping defined in an open
neighborhood of A into an open neighborhood of B and analytic in these neighbor-
hoods. We often say that p is a projection of (4, V) into (B, W). Then we deduce
from it the mapping ‘p of Hg(W) into H (V) by : ¢—>¢eop. This mapping is evi-
dently continuous from H; (W) into H; 4(V), its transpose, denoted newly by p,
maps H; 4(V; E) into H} z(W; E).

Definition 2.9. If Te H; «(V; E), p(T) will be said to be the image of T by p.
We very often say that p(T) is the projection of T by p.

This notion generalizes in fact all the formerly introduced notions where p is
injective. These properties are resumed in the

Proposition 2.13. a) If Cc A is a quasi-carrier (respectively a carrier) of T
. in V, p(C) is a quasi-carrier (respectively a carrier) of p(T) in W.

b) If the image of a neighborhood of A in V is contained in a submanifold X
of W, p(T) is strictly carriable by X in W for all Te H} 4V E).

¢) If q is a projection of (B, W) into (D, Y), gop is a projection of (A, V)
into (D, Y) and we have

(qep)(T)=q(p(T))  for all TeH; (V; E).

4. Identifications

We give the definition of Runge property of the subset of V following A.
Martineau [35].

Definition 2.10. We say that a subset A of V has the Runge property (of
order zero) if all bounded subset of H; ,(V') is in the closure of a bounded subset,
in H; ,(V), of elements of H(V).

In these conditions, i,y is injective from H} ,(V; E) into H'(V; E) (without
taking topologies into consideration) and we consent to identify local analytic
linear mappings defined almost on 4 with the subspace i, ,(H; 4(V; E)) of H'(V; E).

In the more general manner, if Bc A, we say that B has the Runge property
with respect to 4 if H; 4(V) is strictly dense in H; g(V), that is, if all bounded subset
of H; y(V) is in the closure of a bounded subset of H; g(V) included in fig ((H; 4(V)).

We say classically that an open subset w of V has the Runge property with
respect to H(V) if H(V) is dense in H(w). This definition is equivalent to Definition
2.10.

% denotes in the following the family of subsets of V' having the Runge property
with respect to V. If A€ 2, we can then identify all element of H ,(V; E) with an
analytic linear mapping defined on V. In this case we have no more to say about
local analytic linear mappings defined almost on A4, but only about analytic linear
mappings on V which are quasi-carriable by A.



Theory of Analytic Linear Mappings, I. General Theory 35

Proposition 2.14. Te H'(V; E) is quasi-carriable by A€ % if (and only if) it
is carriable by all open neighborhood w of A.

Proof. It is clear from the definitions. Q.E.D.

For a quasi-complete locally convex Hausdorff topological vector space E, we
have

Proposition 2.15. Te H'(V; E) is quasi-carriable by Ae % if (and only if),
whatever is an open neighborhood w of A, there exists an E-valued measure u,, with
compact support in @ such that

T(f):gfdyw for all feH(V).

Proof. We denote by T the prolongation of T to H, (V). The ‘“‘restriction”
of T to every space H(w) defines an analytic linear mapping T,, of “‘restriction” T to
H(V). Hence there exists well, for all open neighborhood w of A4, an E-valued
measure p, with compact support representing 7, in w, in particular, for all fe H(V)

1=\, fdu,= rau.

Reciprocally to say that, whatever is an open neighborhood w of A, there exists
an E-valued measure p, with compact support in o such that T(f)= gfduw for all
fe H(V) implies that we can extend T to H; 4(V).

In fact, if fe H; ,(V), there exist an open neighborhood w, of 4 and a sequence
of functions f; of H(V) such that f=Ilim f; in H(w,).

If we put T( f)=g fdu,,, where u, 1s an E-valued measure which represents

T in w,, we have
T(N)=lim T(f).

This definition is independent of the choice of the open subset w,. In fact if w, is
an another open subset in which the approximation of f by a sequence g4, ¢,,...,
Jn-.- Of elements of H(V) is possible, by the same reasoning as the preceding,
lim T(g;) exists.
o But f;’s tend to fin H(w; N w,) and g,’s tend to fin H(w, N w,).

If p,, 00, represents Tin w; N,

[ Jdtoyne,=lim T()=lim T(g).
wiNws ino i— o0

Hence let T be the linear prolongation thus constructed. The restriction of T
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to every space H(w) is continuous. In fact if fi—f, in H(w), {fo} U U {fi} is a
bounded subset of H(w), hence there exists an open subset w;<w such that {fo}

U (U {f}) belongs to the closure in H(w;) of H(V). If p,, represents T in ws,
i=1

since f;—fo,
T(fo) = | fodita, =lim { fidpo, =1im 7(1)
By the definition of the topology of H, 4(V), Tis hence continuous. Q.E.D.

5. The case of open or compact sets

In all the following of this paper, we suppose now, without explicit mention of
the contrary, that V'is a Stein manifold (of complex dimension n) (cf. L. Hérmander
[16]). If K is a compact subset of V, we recall that we mean by envelope of K,
say K, the set of points y of V such that |f(y)|<sup | f(x)| for all fe H(V). The

definition of Stein manifolds (cf. L. Hérmander [16]) assures that K is a compact
subset of V.  We consent that a compact subset equal to its envelope is H(V')-convex.
The definition of Stein manifolds also assures that functions of H(V') separate points
of V and that all point of V possesses a local coordinate system formed by functions
of H(V). Then Lemma 5.3.7 of L. Hérmander [16], p. 126, assures that K admits
a fundamental system of open neighborhoods w; each belonging to #. A bounded
subset of Hg(V) is formed by functions which are holomorphic and bounded in one
of neighborhoods w; , hence is the closure in H(w;,) and a fortiori in Hg(V) of a
bounded subset formed by functions of H(V). The compact subset K hence belongs
to the class £.

If Te H'(V; E) is carriable by all neighborhood of K, then, by virtue of Propo-
sition 2.14, it is carriable by K.

If w is an open subset of V', we mean by & the set KU K. Ttis the envelope of

We propose to prove:

Theorem 2.1. If an analytic linear mapping Te H'(V; E) is carriable by
an open subset w of V, it is carriable by @.

Conversely, for a quasi-complete locally convex Hausdorff topological vector
space E, if an analytic linear mapping Te H'(V; E) is carriable by the envelope @
of an open subset w of V, it is carriable by w.

Proof. The first assertion is trivial. We will now prove the second. Let T
be the prolongation of T to H(®) identified with a closed subspace of H(w) (cf.
Lemma 3 of Theorem 1.1 of A. Martineau [35], p.21). By Proposition 10 of
Chapter 2, §3, n°l of A. Grothendieck [13], there exists a prolongation T of T to
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H(w). Hence Tis carriable by w. Q.E.D.

Definition 2.11. An analytic linear mapping Te H'(V; E) is said to be
weakly carriable by K if it is carriable by all neighborhood of K.

Corollary of Theorem 2.1. In the notation of Theorem 2.1, if Te H'(V; E)
is weakly carriable by a compact subset K of V, it is carriable by K. ‘

Conversely, for a quasi-complete E, if Te H'(V; E) is carriable by the envelope
K of a compact subset K of V, it is weakly carriable by K.

Proof. If Tis weakly carriable by K it is carriable by all neighborhood of K.
Denoting by @ one of these neighborhoods, & is a neighborhood of K and K admit-
ting a fundamental system of H(V)-convex neighborhoods we thus obtain evidently
a fundamental system of neighborhoods of K. Hence T is carriable by each & by
virtue of Theorem 2.1, that is, by K since we have seen this in the above.

Conversely, for a quasi-complete E, an E-valued analytic linear mapping T
being carriable by K is carriable by each & hence by each w. Q.E.D.

Definition 2.12. We say that K is a good compact subset, if all analytic
linear mapping Te H'(V; E) is carriable by K if and only if it is carriable by K.

We introduce the following condition:

(y) There exists an equicontinuous family @ of mappings from [0, 1] into K
such that, for all y e K, there exists ¢, ¢ € @, satisfying ¢(0)=y, ¢(1)e K.

All compact subset of V satisfies (y) when V is of dimension 1. An analytic
polyhedron of €”, a convex compact subset, the envelope of two polydiscs, and
etc., satisfy (y). We have

Theorem 2.2. If K satisfies (y) and E is quasi-complete, it is a good compact
subset.

Proof. It suffices to prove ix z: H'(K; E)-H'(K; E) is surjective. But this
follows immediately from Proposition 10 of Chapter 2, § 3, n°1 of A. Grothendieck
[13]. Q.E.D.

By summarizing we note:

Proposition 2.16. If E is quasi-complete, for a compact subset K of V, the
following assertions are equivalent:

a) K is a good compact subset;

b) Hg(V) is identified with a closed subspace of Hg(V) (by the mjectwe
homomorphism of restriction);

c) Hg(V) is identified with the closure of H(V) in Hg(V);

d) For all open neighborhood w of K, there exists an open neighborhood w;
of K such that all element of H(w) N Hg(V) can be prolonged to H(w,).
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Proof. It is trivial that b) implies a). Conversely, we will now show that a)
implies b). In fact a) means that the mapping of representation of H'(K; E) into
H'(K; E) is surjective. Applying this for E=C, we may conclude that the mapping
of representation of Hi(V) into Hg(V) is surjective. Hence its transpose, the
homomorphism of restriction of Hg(V) into Hg(V) has a closed range by virtue of
Theorem 4 of preliminaries of A. Martineau [35], p. 6.

Other equivalences have been proved in the proof of Proposition 1.10 of Chap-
ter 1 of A. Martineau [35], p. 25. Q.E.D.

Remark. J.-E. Bjork [55] has shown that every compact set in C” is a good
compact set for analytic functionals. His work [55] is kindly informed the author
by Prof. M. Morimoto. Proposition 2.16 shows that for a compact set in a Stein
manifold to be a good compact set for analytic linear mappings is equivalent to the
fact that it is a good compact set for analytic functionals. So every compact set in
C" is a good compact set for analytic linear mappings.

If K is a compact space and 7 a subalgebra of the algebra C(K) of continuous
functions on K and which separate points of K, there exists the smallest compact
subset, called the Shilov boundary of K with respect to .«Z, such that all fe .« attains
its maximum module on this compact subset (cf. L. Héormander [16], Theorem
3.1.18, p. 67).

Definition 2.13. When K is a compact subset of a Stein manifold V, we mean
by the distinguished boundary of K, and denote by 6K, the Shilov boundary of K
with respect to the algebra of restrictions of H(V) to K.

A compact subset is said to be distinguished compact subset, in V, if it is
equal to its distinguished boundary.

Proposition 2.17. Let E be a quasi-complete locally convex Hausdorff topo-
logical vector space. If an E-valued analytic linear mapping T, defined on V, is
weakly carriable by a compact subset K, it is weakly carriable by the distinguished
boundary of K.

Proof. Tis carriable by K and, since (5K)" =K by virtue of Proposition 1.11
in Chapter I of A. Martineau [35], p. 27, T is also weakly carriable by 6K by ap-
plying Corollary of Theorem 2.1. Q.E.D.

This proposition implies that if f is holomorphic in a neighborhood of K, we
can find in an arbitrary neighborhood w(6K) of 6K an E-valued measure with

compact support u such that T(f ):Sw(ax) fdpu.

Proposition 2.18. Let E,, be a finite m-dimensional complex Euclidean space.
A necessary and sufficient condition that an E,-valued analytic linear mapping T
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carriable by a compact subset K can be represented by an E,-valued measure with
support included in the distinguished boundary 6K of K is that, for all fe H(V),
there exists a domination of the form

IT()I <M sup ().
Proof. Necessity. If T(f)= \ fdu where p is concentrated on 0K,

IT(H) = sup |- [l =sup | f- |l -
xedK xeK

Sufficiency. If we have an inequality of the form |T(f)||=M -sup|f(x)| for
xeK

all fe H(V), T(f) depends only on the function of C(K) restriction of f to the com-
pact subset K.

In fact, if f; and f, have the same restriction to K || T(f, —f3)I|=0 from which
T(f)=T(f,). We denote again by T this linear mapping defined on the subspace
F of C(K) formed by restrictions of functions of H(V) to K.

Since 0K is the distinguished boundary of K we have sup i f(x)l—-sup [ f(x)]
and F can be identified with a closed subspace of the space C((SK) By the Hahn-
Banach type theorem there hence exists an E,-valued measure u defined on the space
86K which prolongs T given on F. The image of this measure by the injection of
JK into V'is the desired measure. Q.E.D.

Corollary. Let E,, be as in Proposition 2.18. All E,-valued analytic linear
mapping carriable by the interior of a compact subset K is representable by an
E,-valued measure with support included in the distinguished boundary of K.

Proof. In fact, such an analytic linear mapping, say 7, is representable by an
E,-valued measure u with compact support L in K. Hence, if fe H(V), we have

ITON= |l sup Ll
But we have
sup [f (W)l =sup FiCIIP
from which we have the majorization

ITHI= - sup £ ()]

This permits us to apply Proposition 2.18. Q.E.D.

Proposition 2.19. Let E be a complete locally convex Hausdorff topological
vector space. Let T be an E-valued local analytic linear mapping defined on an
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open subset w of V. If o= U w; is a finite union of open subsets w; of V and if u;
denotes the natural mappmg ofH (w;; E) into H'(w; E), there exist E-valued local

analytic linear mappings Ty, ..., T, such that T, is defined on w; and T= Z u(T)).
i=1

Proof. This can be proved by the same way as Proposition 2.6. Q.E.D.

Theorem 2.3. Let E be a complete locally convex Hausdorff topological
vector space. If an E-valued analytic linear mapping T defined on V is carriable

14
by an open subset  of V and if w,,..., w, are p open subsets of V such that (\J w;)"
i=1
Dw, then there exist E-valued analytic linear mappings T, such that T; is car-
p
riable by w; and T=3_ T.
i=1

Theorem 2.4. Let E be complete. If an E-valued analytic linear mapping T
defined on Vis carriable by a compact subset K of Vand if K,..., K, are p compact

p P
subsets of V such that \UJ K; is a good compact subset of V and (\U K,;)" > K, then
i=1 i=1
there exist E-valued analytic linear mappings T; such that T; is carriable by K,
14
and T=3Y T,
i=1

Proof of Theorem 2.3. If T is carriable by w, it is a fortiori carriable by

14
( U ;)”. Hence, by virtue of Theorem 2.1, there exists an E-valued local analytic

hnear mapping © defined on U w; which represents T. Hence, by virtue of Propo-

=1
sition 2.19, there exist E- valued local analytic linear mappings @; defined on w; such
that

14
0=73 u(©).
If T, is the restriction of @; to H(V), we have well

P
= Z T
and the problem is resolved. Q.E.D.

Proof of Theorem 2.4. The proof goes analogously noting Definition 2.12
and Proposition 2.6. Q.E.D.
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§3. Carriers and supports

1. Existence and uniqueness of supports

Let ¢ be a subset of the set of compact subsets of V such that, if 4, is a totally
ordered subfamily of »#°, N\ A,e#". In conformity with Definition 2.8, a compact

subset K of " is said to abe o -support of T if T is carriable by K and if K 1is
minimal in the family of elements of .~ which are carriers of T. A compact subset
K of & is said to be weak ¢ -support of T if T is weakly carriable by K and if K
is minimal in the family of elements of .#~ which are weak carriers of T.

Proposition 3.1 (Theorem of existence of supports). If T is weakly carriable
by an element of A", then T admits at least one weak X -support.

Proof. Let K, be a totally ordered by inclusion subfamily of compact subsets,
elements of »#°, which are weak carriers of T. Let K=" K,. K belongsto . It

is a weak carrier of T. In fact, let W be an open neighborhood of K. Then there
exists o, such that K, c W. If otherwise, for all o, we have L,=K,n CW#¢ and
the family of L,’s forms a filter basis on one of L,’s, say L,. Hence N L,#¢

a
which is a contradiction for N\ L,=K. W is hence a carrier of T. This being true

for all neighborhood W of Ig, K is a weak carrier of T. In these conditions, by
virtue of Zorn’s lemma, there exists at least one minimal element in 2#° among weak
carriers of T.

If the family 2#° contains a fundamental system of compact subsets of V, all
analytic linear mapping is carriable, by virtue of Proposition 2.9, by an element of
2", hence admits at least one weak ¢ -support. Q.E.D.

Examples.

1) o, is the family of all compact subsets of V.

2) A, is the family of all compact subsets of a subset of V. If Vis a Stein
neighborhood of a real analytic manifold R, and if o, is the family of all compact
subsets of R, a  ,-support of T will be said to be a real support of T.

3) o, is the family of all compact subsets of V' belonging to the class # of
subsets of V having the Runge property with respect to V.

We note that, as soon as the complex dimension of Vis larger than one, we can
find two compact subsets of o#°, whose intersection does not belong to it.

4) o 4 is the family of all compact subsets of V' which are H(V')-convex.

A o ;-support of T will be called to be an H(V')-convex support of T.

5) If Vis a complex vector space, ", is the family of all convex compact
subsets of V.
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A A 4-support of T will be said to be a convex support of T.
o9, if p is a complex norm in ¥, denotes the family of all p-balls with center at
zero, that is,

Keda9e= |1 eR*, K={z|p(z)<0}].

A 1s the family of all p-balls with center at z and ", the family of all p-balls of V.

6) If V=Cn.

A5 is the family of all compact polycylinders of V. We can also consider
HsNAH 5, A sNAH .

A ¢ will be the family of all compact polydiscs of V. Tt is a particular case of
A ,. In all the families ¢";, i=2, the compact subsets are good compact subsets.
We have the

Theorem 3.1 (Uniqueness). Let E be a complete locally convex Hausdorff
topological vector space. All H(V)-convex compact subset of V is the only one
H(V)-convex support of an appropriate E-valued analytic linear mapping defined
on V.

Proof. Let K be an H(V)-convex compact subset of V and L an H(V)-convex
compact subset of V' which does not contain K. The sets L and K being H(V)-
convex, the mappings Hy(V) and of Hi (V) into H'(V) are injective. Thus the
mappings of Hy(V; EY~H(V)®E and on Hy(V; Ey~H;(V)®E into H'(V; E)
~H'(V)®E are injective. We identify Hy(V; E) and H,(V; E) with subspaces of
H'(V; E). The analytic linear mappings carriable by L and by K are the elements
of Hy(V; EyYn Hy(V; E). We equip Hyx(V; E)n Hy(V; E) with the upper bound
topology of topologies of Hy(V; E) and of Hy(V; E) which makes it evidently a
Fréchet space.

The injection Hy(V; Eyn Hy(V; E)>Hy(V; E) being, by definition, continuous,
the image of Hy(V; E)n Hy(V; E) is a subspace of Hi(V; E), whether it is meager,
or it is equal to Hy(V; E) by virtue of the celebrated theorem of Banach (cf. S.
Banach [1], Theorem 3, p. 38).

Lemma 1 of Theorem 2.1 of Chapter 1 in A. Martineau [35], p. 33, assures
that it is meager. In fact, the proof of Theorem 2.1 of Chapter 1 in A. Martineau
[35], p. 33, shows that, if L does not contain K, the image of Hy(V)n Hy(V) is
meager in Hy(V). Thus the image of Hi(V; E) n H(V; E) is meager in Hi(V; E).
Lemma 2 of Theorem 2.1 of Chapter 1 in A. Martineau [35], p. 33, assures that the
union of the spaces Hy(V; E)n Hy(V; E) when L runs over the family of H(V)-
convex compact subsets of V' which do not contain K is included in the countably
infinite union of some of these subspaces. Hence it is a meager subset of Hi(V; E)
and its complement is nonempty.

Theorem 3.1 can be proved with the supplementary precision: In the Fréchet
space of E-valued analytic linear mappings carriable by K, the set of those which
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admit K as only one H(}V')-convex support is non-meager. Q.E.D.

Corollary. Let E be as in Theorem 3.1. If o is the family of all compact
subsets of V, a compact subset is a weak X 4-support of a certain E-valued analytic
linear mapping on V if and only if it is a distinguished compact subset.

Proof. If an E-valued analytic linear mapping T on V is weakly carriable by
a compact subset K, by virtue of Proposition 2.17, T is weakly carriable by the dis-
tinguished boundary 6K of K. Hence, if K is a weak support, we have K=05K.
On the other hand, if L is a distinguished compact subset in V, there exists by virtue
of Theorem 3.1 an E-valued analytic linear mapping T whose only one H(}V')-convex
support is L. Then, by virtue of Corollary of Theorem 2.1, T is weakly carriable
by L, and since, by virtue of Corollary 1 to Proposition 1.11 of Chapter 1 in A.
Martineau [35], p. 27, if L, and L, are two unconformable distinguished compact
subsets, L, # L,, T cannot be weakly carriable by a subset of L. Q.E.D.

Remark. In using, for example, Proposition 2.17, we see that all E-valued
analytic linear mapping admits an infinity of weak 27" ,-supports. Theorem 3.1 does
not impede that a given E-valued analytic linear mapping could admit several H(V)-
convex supports.

The support can not be stable for the topology. In fact, let K and L be two
compact subsets of V, Lc K, and let i, x be the natural mapping of H;(V; E) into
Hi(V; E). If X is a topological space, Y a subset of X, we mean in abuse of lan-
guage by “‘connected component” of Yin X the union of the connected components
of the points of Y. We have

Proposition 3.2. Let E be a complete locally convex Hausdorff topological
vector space. A necessary and sufficient condition that i ((H7(V; E)) is dense in
H(V; E) is that the connected component of L in K is equal to K.

Proof. In fact, to say that i, x(H}.(V; E)) is dense in Hy(V; E) is reduced to
say that ‘i; g is injective from Hg(V) into H (V). It is to say, by the principle of
analytic continuation, that the connected component of L in K is equal to K.

Q.E.D.

Corollary. Let x, be a point of V. All analytic linear mapping defined on
V carriable by the connected component of x, in V is the limit, in H'(V; E), of
analytic linear mappings carriable by x,.

Proof. We apply the preceding propositicn as follows: If N is a compact
subset and Te Hy(V; E), N included in the connected component of x, we can
find a connected compact subset K containing N U {x,}. We then apply the propo-
sition to K and to L={x,}. We can hence find that a filter T, of elements of
H (V; E) converges to Tin Hi(V; E), hence a fortiori in H'(V; E).
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We note further that we can always suppose that T, is in a countable basis.
Q.E.D.

2. The intersections of carriers

We consider in this section only the systems of carriers which are all compact
or all open.
Let Kg, Ky,... K, be (/+1) compact (or open) subsets of V. They form a

covering U of K= UK We denote by K; the set K; nK; n---nkK;. The
i=0

topological vector space of alternate k-cochains of U with values in the sheaf ¢ of
germs of holomorphic functions on V is the topological vector space

ig ik

CHA; 0)= I1 Hy,o..o V).

o=(ig<iy<-<ig)

The coboundary operator d, which maps C*(2; ¢) into C¥T (2, 0), is defined by:

the sum, i,..., iy, being given, having a sense in Hyg, ... (V) in abuse of language.

Definition 3.1.  We call entire k-cochains of U the elements (f,..;) of C*(L; 0),
such that, for all 6=(i,..., iy), fi, ;. is in the image of H(V) in Hg, ...(V).

ZXU; 0) denotes the kernel of
J: CHU; 0) — CF (U, 0).

It is a closed subspace of CKU; 0). We say that an element of Z*Q; ©) is an
alternate k-cocycle of covering.
Z¥U; 0) denotes the subspace of entire k-cocycles of covering.

We introduce the temporary definition.

Definition 3.2. The compact (respectively open) subset K is said to have the

Runge property of order k with respect to the covering of K= U K; by K;’s, if
ZXU; 0) is dense in Z*¥(UL; 0).

We have:

Proposition 33. Let Ky, Ky,..., K; be (I4+1) H(V)-convex compact (or open)

subsets of V, such that the connected component of K,.., in V contains \J Ko j
i=0

Let E be quasi-complete.

If K has not the Runge property of order [—1 with respect to U, there exists
an E-valued analytic linear mapping T defined on V, carriable by each K,
and is not carriable by K,,..,.

ceefeee]
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(T is inevitably different from zero).
Proof. We denote by Tj,..,.., the prolongation of Tto K,,..;.;. We use

Lemma 1. If K,.., is a carrier of T, for all (I1—1) cocycle f,..;.., of covering
we have

iéo(— DTy sk forin) =0.

Proof of Lemma 1. We have noted that, if each K; is an H(V)-convex
compact subset, K; ..; is H(V)-convex for all system (iy,..., i;) of indices. It is the
same if each K; is an H(V)-convex open subset.

We denote by Tj.., the prolongation of T to Hy, (V). Taking consideration
of the uniqueness of prolongation, we have

TO'“i“'l(fO"'i"'l): TO'“l(fO'“i'“l) fOI‘ aH i=0, ],..., ].

Consequently,

l .
= T0~--z( EO(— l)lfo---iu-z) = T0-~-z(0) =0.
Lemma 2 (K;'s are not more supposed to be H(V)-convex). Let
i
(o) €T Hi, ;. (V; E)=L(C""'(U; 0); E).
i=0

A necessary and sufficient condition that each of local analytic linear mappings
Ug..;..q provides an analytic linear mapping u defined on V, is that the continuous
linear mapping (uq..;...;) is zero on the subspace ZL-1(U; 0) of C'~1(U; 0).

Proof of Lemma 2. Necessity. Let (f,..;...)eZL1(U; ¢0). The topological
hypothesis of Proposition 3.3 implies that

i=zlo (— I)ifo...i...l =0

on the connected component of \U Kg..;..;in V.
i

If f; and f,, two elements of H(V), coincide on this component, we have surely,
for all i:

u(f1)=ug..ia( f1) =tho..s.s(f2) =u(f2).

Consequently:
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igl‘b (—‘ 1)"uo...i...l(fo...i‘..,)

Sufficiency. Let u be the restriction of ug.., to H(V). wu is an analytic linear
mapping defined on V, prolongable to Hg, (V).
Let fe H(V) and f...;.., its image in Hy, . (V). For given iy, we put

PR DN

gﬁl zfél
go...ﬁ...l=0 lf h#O, io.

1
Then 3 (=1)'go.si=Ff51—foi1o-1=0, go......, 18 an entire (I—1) cocycle.
i=0
Hence, by hypothesis,

uﬁl(fﬁl) + ( - 1)i0+1("' 1)i0u0~'~i-"l(f0'"'io"'l) =O,

that is,

u(f)=ug...q.1(f)-

Uo...4,- T€Blizes well the prolongation of u to Kj..;,...,. This proves Lemma 2.

i
If K= \U K; has not the Runge property of order [—1 with respect to I, there

exists a conltil?luous linear mapping of Z!"1(U; ¢) into E, not identically zero, with
zero restriction to ZL-Y(U; ¢). By Proposition 10 of Chapter 2, §3, n°l of A.
Grothendieck [13], it can be prolonged to a continuous linear mapping (Ty...;..,) not
identically zero on C!~1(U; 0).

By virtue of Lemma 2, there exists an analytic linear mapping T defined on V
carriable by each Kj..;..;; Tp.....q being a prolongation of T to Hg, , (V). By
virtue of Lemma 1, since the restriction of Ty..;..; to Z'~1Q; @) is not zero, T is

i

not carriable by K,,.... Q.E.D.

Proposition 3.4. Let Ky, K;,..., K; be (I+1) compact (or open) subsets of V
(not necessarily H(V)-convex). If K has the Runge property of order 1—1 with
respect to U, a sufficient condition that all analytic linear mapping defined on V
and carriable by each one of (14 1)-sets K,...;...,, is carriable by their intersection,
is that H'(U; 0)=0. If K,.., and each one of K,.;.,'s are Runge compact (or
open) subsets, this condition is necessary.

Proof. We note first that Z!QU; 0)=CYQ; ¢). We consider the continuous
linear mapping 0 defined from C*~1(U; @) into CYU; 0).
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When K has the Runge property of order I with respect to U, dC*Y(U; 0) is
dense in C'(U; ¢). In fact, let fe H(V) and f5., the image of f in Hgs (V),

hypothesis, H(V) is of dense image in Hy, (V), 0C'"1(U; 0) is a fortiori of dense
image in CYU; 0). If K;’s are compact subsets, C'"'(U; ¢) and C!U; ¢) are
(DFYS) spaces; if they are open subsets, they are (FS) spaces. Consequently (Theo-
rem 4 of Preliminaries in A. Martineau [35], p. 6) the following properties are
equivalent:

a) o(CIQU; 0))=CU; 0),

b) 0 is a homomorphism,

c) '0, which is injective, is such that ‘0((C*QQl; 0))’) is closed in (C'1(U; 0))'.

The condition a) can be also expressed:

a’) HYU; 0)=0.

The condition ¢) is equivalent to

¢) (L,(C'AU; 0); E)) is closed in L(C*=Y(U; 0); E) for any complete E.

Sufficiency of the condition. Let T be an analytic linear mapping defined on
V and Ti..;., a prolongation of T to K,..;.;. Suppose that 0 is surjective. If
fo...€ CHU; 0), we put

Ty i fo) = iio(— DTy fornd)

for fo.,= ;ZO (=Difooure

Two representations of f,.., differ in an (I—1)-cocycle. But if (f,..;...,) € ZL1(U; 0),
by virtue of Lemma 2 to Proposition 3.3, we have

2’;0 (= 1) Ty fornr) =0

and since ZL1(U; 0) is dense in Z'Y(U; 0), for all (I—1)-cocycle (Yq..s..;) of U
with values in ¢ we have

~

A (_ 1)iTO"'i"'l(lpO“'i'“l) = 0

1l

Hence this definition does not depend on the chosen decomposition. ¢ being a
homomorphism, the linear mapping f,..,— Ty...(fo...,) is continuous.

Necessity. H(V) is supposed to be dense in Hy, (V). Suppose that H!(; 0)
#0. In these conditions ‘0(L,(C*Ql; 0); E)) is not closed by virtue of the condi-
tion ¢’). The set ‘0(L,(C'QU; 0); E)) is the set of elements which annihilate the
kernel of 0, that is, of ZI71(U; 0). If (T..;..) is an element of *0(L,(CYQ; 0); E))

e ZL YU 0)
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izio(— DTy (o) =0.

Lemma 2 to Proposition 3.3 shows that there exists then T defined on V and carri-
able by each compact subset K,..;.,. The set K,..;is not a carrier of T; in fact,
if K,.., is a carrier of T and T,.., then denotes the unique prolongation of T to
Hy, (V), we will necessarily have

(Tyiot) € 0(Tp..)

since each K,..;.., has the Runge property. But this is not so.
Hence T is not carriable by K,..;, and the necessity of our condition is demon-
strated. Q.E.D.

As corollaries we obtain the following theorems.

Theorem 3.2. Let K, and K, be two compact (or open) subsets of V. If
Ko U K, is H(V)-convex, all analytic linear mapping carriable by K, and by K,
is carriable by K, N K.

Proof. The cohomology group of K=K ,U K, with values in ¢ is equal to
Hg(V) in degree zero, and then we have

Hi{(K, 0)=0 for i=1

by virtue of Oka-Cartan Theorem B (cf. L. Hormander [16]). K being H(V)-
convex, H(V) has a dense image in Hg(V). On the other hand, it is well known that
the natural mapping of H(, @) into H(K, ¢) is injective. Since H'(K, 0)=0,
we have hence H!(U, 0)=0. We then apply Proposition 3.4. Q.E.D.

Theorem 3.3. Let K,,..., K; be (I4+1) H(V)-convex compact (or open) subsets
1
of V. If \U K, is H(V)-convex, all analytic linear mapping carriable by each
i=0
Kq..;..p is carriable by K,...,.

Proof. For /=1 it is a particular case of the preceding theorem. Suppose
hence />1. Since K,,..., K; are H(V)-convex, K;,..;,..;. is then also H(V')-convex.
Hence, by the Lemma to Theorem 2.3 in Chapter 1 of A. Martineau [35], p. 42, the
entire r-coboundaries are dense in the subspace of Z"(U; ¢) formed by the r-
coboundaries.

On the other hand, H/(K;,..;,, ¢)=0 for all j=1, all system of indices iy,...,
i, and all h.  We can hence apply Leray’s theorem on the acyclic covering, valuable
if K;’s are all closed, or all open, which assures that the cohomology group of the
covering is ‘‘equal” to that of the space (cf. R. Godement [8]). We have hence
H'=1 (U, 0)=0=H U, 0), that is, all (I—1)-cocycle of the covering is an (I—1)-
coboundary. Hence, since all entire (I—1)-coboundary is an entire (I—1)-cocycle,
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K satisfies the Runge condition of order (I—1) with respect to .
We apply again Proposition 3.4. Q.E.D.

Theorem 3.4. If V is of complex dimension n and if K,,..., K; are (I+1)
H(V)-convex compact (or open) subsets of V, all analytic linear mapping carriable
by the (n+1) by (n+1) intersections of these sets is carriable by K, n--- n K,.

Proof. We need the following lemma.

Lemma. Let K,,..., K, be (I+1) H(V)-convex compact (or open) subsets of
V. For Ilzn+1 if an analytic linear mapping T is carriable by each set K,..;..,,
T is carriable by K,..,.

Proof of the Lemma. We know that H{(K, ¢0)=0 for i=(n+1).

By virtue of Malgrange’s theorem, if w is an open subset of a complex analytic
manifold of dimension n without compact connected component, we have H"(w, 0)
=0 (cf. B. Malgrange [32]). It is the same for a closed subset F of such a manifold
after passing to the limit over the open neighborhoods of F in V (cf. R. Godement
[8], Theorem 4.11.1, p. 193). Applying again Leray’s theorem, we have hence, if
IZn+1, H7YQU, 0)=0 and HYU, 0)=0. By the reasoning of the preceding
theorem H!"'(U, ¢®)=0 implies that K satisfies the Runge property of order /—1
with respect to 2.

We then apply Proposition 3.4, which assures the lemma. Q.E.D.

We now turn to the proof of the theorem. Suppose that we have proved that
T is carriable by all compact subset K;..; ,n+1=r<lL

Let ig,...,i, be a system of some indices of length r+1, T is carriable, by the
hypothesis, by each set K;..;,..;. (h=0, 1,..., r). Hence, by virtue of the lemma, T
is carriable by K; We can conclude the theorem by induction. Q.E.D.

Lol

Let ¢" be the sheaf of germs of holomorphic differential n-forms over V. If
A is a subset of V, H.(A, 0™) will denote the cohomology group with compact sup-
port of A with values in the sheaf ¢".

We have

Proposition 3.5. Let E be a complete locally convex Hausdorff topological
vector space. Let Ky, K,,..., K, be (I+1) H(V)-convex nonempty open sets in a
manifold V of dimension n. If HL "U(K, 0")=0, all E-valued analytic linear
mapping carriable by each K,..,.., zs carriable by K,...,.

For [>1, if the connected component of Ko..;, in V contains U Ko..;..; and if
i=0

all E-valued analytic linear mapping carriable by each K,..;..; is carriable by
K,..;, we have HY " 1(K, 0™)=0.

Proof. Noting Propositions 3.3 and 3.4, the reasoning of Proposition 2.5 in
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Chapter 1 of A. Martineau [35], p. 43, is valid for this proposition. Q.E.D.
As a corollary we have

Theorem. 3.5. Let V be a connected Stein manifold of dimension n. Let
Ko,..., K, be (n+1) H(V)-convex open sets in V and put K= v K;,. If CK has no
- i=0

compact connected component, all E-valued analytic linear mapping T#0 carri-
able by each K,....., is carriable by K,..,,. Conversely, if all E-valued analytic
linear mapping T+#0 carriable by each K,..;..,, is carriable by K,..,, CK has no
compact connected component, where E is a complete locally convex Hausdorff
topological vector space.

Proof. We can go analogously to the proof of Theorem 2.5 in Chapter 1 of
A. Martineau [35], p. 45. Q.E.D.

We now mention an application of Theorem 3.2.

Proposition 3.6. Let T be an analytic linear mapping defined on V carriable
by a countable compact set K. Then T admits only one H(V)-convex support,
which is included in K.

Proof. Noting Theorem 3.2, we can go analogously to the proof of the Corol-
lary to Proposition 2.6 in Chapter 1 of A. Martineau [35], p. 47. Q.E.D.

3. The case of submanifold

We recall that, for the case of a submanifold, new definitions which we are
going to use have been introduced at § 2.3, Definitions 2.7 and 2.8.

Proposition 3.7. Let T be an analytic linear mapping defined on V. If K is
an H(V)-convex compact carrier of T and if W is an analytic subset of V which is
a quasi-carrier of T, KN Wis a carrier of T.

Proof. Let w be some neighborhood of K n W. We can find an open neighbor-
hood of W, say w,, and an open neighborhood of K, say w,, such that w; N w,cw.
There exist an H(V)-convex open neighborhood @, of W, included in w;, and an
H(V)-convex open neighborhood 2, of K, included in w, (cf. Lemma 2 of no. 2 of
§2 in Chapter 1 of A. Martineau [35], p. 48). ;U Q, is a neighborhood of KU W.
Hence we can find an H(V)-convex open neighborhood Q5 of KU W, included in
Q, U Q,. The analytic linear mapping T is by hypothesis carriable by 2, n Q5 and
by 2, n Q5 and, since the open set (2, N Q3) U (2, N Q;)=Q; is H(V)-convex, T is
carriable by Q, nQ2, N Q5 by virtue of Theorem 3.2, hence a fortiori by w. By
virtue of Proposition 2.14, T'is carriable by K n W. Q.E.D.

Corollary 1. An analytic linear mapping T defined on V, quasi-carriable by
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a complex analytic subset W of V, is carriable by W.

Proof. Let T be an analytic linear mapping quasi-carriable by W, and K an
H(V)-convex carrier of T. By virtue of Proposition 3.7, T is carriable by Kn W
which is a compact subset of W. Q.E.D.

Corollary 2. If T is carriable by an H(V)-convex open subset Q of V and by
an analytic subset Wof V, T is carriable by Wn Q.

Corollary 3. If T is carriable by an analytic subset W of V, all H(V)-convex
support of T is included in W.

Corollary 4. If an analytic linear mapping T defined on V is carriable by
analytic subsets W,,..., W, T is carriable by Wy n--- N W,.

Theorem 3.6. Let W,,..., W, be (k+1) submanifolds of V such that Wyn -
N Wy=W,y.., is a manifold. If Tis strictly carriable by each W; and carriable by

an H(V)-convex compact (or open) subset K of V, T is strictly carriable by K
WO...k in WO...k.

Proof. Suppose that Theorem 3.6 has been proved when K is compact. Let
Q be an H(V)-convex open carrier of T. T is carriable by an compact subset K of
Q@ which is H(V)-convex. Hence it is strictly carriable by W,.., n K in W,..,, hence
a fortiori by Q n W,,.., in W,..,. Hence we can suppose K to be compact.

T being strictly carriable by W, is a fortiori carriable by W, in V. Hence by
virtue of Proposition 3.7 and its Corollary 4 T is carriable by KN W,..,. Let W
be a submanifold of Vand K an H(V)-convex compact subset of V. Let L=WnK.
We denote by ‘p the restriction mapping *pr w),,y in Definition 2.7 continuous
from Hg(V) into H (W). Then ?p is a homomorphism of Hg(V) onto H (W).

Lemma 1. An analytic linear mapping T defined on V is strictly carriable
by a submanifold W of V if and only if, for all f € H(V) with zero restriction to W,
we have T(f)=0.

Lemma 2. An analytic linear mapping T defined on V and carriable by an
H(V)-convex compact set L included in an submanifold W of V is strictly carriable
by L (included) in W, if, for all fe H; (V) with zero restriction to W (p(f)=0), we
have T(f)=0 (c¢f. Definition 2.7).

Proof of Lemmas 1 and 2. The restriction mapping ?p is in each of these cases
a homomorphism. This implies that p(H'(W)) (resp. p(Hz(W))) is closed. Hence
p(H'(W; E)) (resp. p(Hp(W; E))) is closed. But we have expressed that T belongs
to the annihilator of the kernel of !p, hence to p(H'(W; E)) (resp. p(H.(W; E))),
where the closure is taken with respect to the simple convergence topology. Con-
sequently, Te p(H'(W; E)) (resp. Te p(H(W; E))). Q.E.D.
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Proof of Theorem 3.6.

Now let L=Kn W,..,. At all point xe W,..,, there exist a finite number of
functions f; , . € H(V') which generate the ideal of the manifold W; in a neighborhood
of the point x, (and which vanish on W,).

If fe H (V) vanishes on Wj.., in a neighborhood of x there hence exist a finite
number of functions g;, . € H (V) such that f=3 > f;, .9, in a neighborhood

of the point x. Hence we can find a finite number of functions h; ;€ H (V) and
fip> [i,p vanishing on W, for all f, such that f= 2 (Z hi pfip)

In H(V), h; 4 is the limit of a sequence ¢, ;, of functions of H(V). By virtue of
Lemma 1, since T is strictly carriable by W,, we have

T(¢ipnfip)=0.
Since T is carriable by L, we have
T(hipfip)=lm T(¢;p.fi.p) =0
and finally
T(f)=0.

W,... being a manifold, by virtue of Lemma 2, T is strictly carriable by L in Wj..,.
Q.E.D.

Corollary 1. Let T be an analytic linear mapping defined on V and strictly
carriable by a submanifold Wof V. If K is an H(W)-convex strict support of T in
W, it is an H(V)-convex support of T in V.

Proof. If K< Wis H(W)-convex, it is H(V)-convex in V.
If Lc K is an H(V)-convex support of T, by virtue of Theorem 3.6 applied with
k=0, T is strictly carriable by L n W=L. Hence we have L=K. Q.E.D.

Corollary 2. Let T be strictly carriable by (k+1) regular submanifolds
Wos..., W of Vo If Wo.={xo}, then T is of the form a®d,, where a is some
element of E and 9, is the Dirac measure at the point x,.

Remark. Let fe H(V), we define fT by

(fT)(9)=T(fg).

Let I(W) be the closed subspace of H(V) formed by functions vanishing on W. We
can state Lemma 1 of Theorem 3.6 in the form:

T is strictly carriable by W if and only if, for all feJ, where J is a total subset
of I(W), we have fT=0,
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§4. C" and R", the case of convex sets

1. The systems of (n+1) convex carriers

In the following of this section, C denotes a finite dimensional complex vector
space, and R denotes a finite dimensional real vector space. When we need specify
its (complex or real) dimension, say I (or m), we write C! (or R™).

If R is a real vector space, C =R, denotes its complexification. By tube of basis
K <R, we mean the set Ky of C equal to

K+iR;

K is the basis of K.
C* (resp. R¥) denotes the space of linear forms on C (resp. R).

Proposition 4.1. Let T be an analytic linear mapping different from zero
defined on C. If it is carriable by two convex compact (or open) subsets Ky, K,
then K, N K, #¢.

Proof. 1t is clear that the case of open subsets is reduced to the case of compact
subsets. So we now assume that K, and K, are compact.

Let K be the convex hull of K, U K, supposed to be disjoint, and P a real
hyperplane separating K, and K, (which exists). Let L be the union of real hyper-
planes parallel to P and encountering K, U K. The set CL is a union of hyper-
planes. Hence C(KnL)=CLUCK is a union of hyperplanes. The set Kn L is
a compact subset of the form L; U L,, where L;> K (i=1,2), L; is convex, L; N L,
= ¢, which is polynomially convex by virtue of Lemma 3.1 of A. Martineau [35],
Chapter 1, §3, no. 1. The analytic linear mapping T#0 is carriable by L, and L,.
Then, by virtue of Theorem 3.2, it is carriable by L; N L,=¢. This is a contradic-
tion. Q.E.D.

Let B, Bj,..., B, be convex open (or compact) subsets of C" and T an analytic
linear mapping carriable by each subset

B()”.i..,n= M Bk7
k#i

then T is carriable by B, N B, N--- N B,. In order to prove this we apply Theorem
3.5.

Let y&&ByU By U - UB,,.

There exists a closed half-space F; whose boundary is a real hyperplane P;,
ye P, which does not encounter B, Then FoNF;Nn--N F, contains a half-line
issuing from y. Hence all connected component of C(B, U -+ U B,) contains a half-
line, hence is not relatively compact. Theorem 3.5 is applicable. Hence we have,
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Theorem 4.1. If By, By,..., B, are (I+1) (I=n) convex all open (or all com-
pact) subsets of C* and T an analytic linear mapping carriable by each n by n
intersection of these convex subsets, T is also carriable by B, N B, N - N B,.

We underline some elementary aspects of this theorem.

Proposition 4.2. Theorem 4.1 is a consequence of the following assertion:
Let Py, Py,..., P, be (n+1) open half-spaces. If an analytic linear mapping T
defined on C" is carriable by each P,..;..,, then T is carriable by P,...,.

Proof. We prove this in the case of compact subsets. Let {P,} be the set of
open half-spaces such that each P, contains at least one of B/s. Let P,,..., P, be
a system of (n+1) of these half-spaces. Then P,,.;,., contains by hypothesis
one of subsets By..;..,,. Hence it is a carrier of T. Consequently, by virtue of the
hypothesis of Proposition 4.2, P, .. is a carrier of T. By virtue of Theorem 3.4,
T'is carriable by all finite intersections of P,, hence finally by B, n B, n --- n B,

Q.E.D.

We note that we know how we can avoid the use of Theorem 3.5 in the following
cases:

a) each B, is a circled convex set in C”;

b) each B;is a convex tube in the complexification of R";

c) each B;is a product of convex subsets of C,

Bi=InIB,»", BicC, BiCC”=1l[C,-, C,~C.
j=1 i=1

We show first a).

Let A; be the (circled) convex hull of \U By..;..,,. One can easily verify that
J#i

By..i.n=A¢..;.. that on the other hand 0 A; is convex. We then apply Theorem
33. =0

For b), let G,,..., G, be the bases of the tubes B,,..., B, of C".

Since T is carriable by each B,..;.,, by virtue of Proposition 4.1, By..;.., N
By..j.n=Bg.,#¢ (i#)j). We carry out the same construction as before, and note
that, under the hypothesis, A, N 4;# ¢ (which has been verified), j\jjo A; is a convex

tube.

We introduce a new weakened notion of carrier whose utility will appear essen-
tially at Part II of this series of works.

Definition 4.1. A closed convex set G is a semi-carrier of an E-valued analytic
linear mapping T if T is carriable by all convex neighborhood of G.

This notion is a priori weaker than that of quasi-carrier; T is said to be semi-
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carriable by G. If G is compact, as it admits a fundamental system of convex
neighborhoods, if T is semi-carriable by G, then it is carriable by G. Theorem 4.1
then admits the corollary:

Corollary 1. Let B, By,..., B, be (n+1) closed convex subsets of C*. Sup-
pose that BoN By N NB, be compact. Let T be an E-valued analytic linear
mapping which is semi-carriable by each subset B,..;..,. Then T is carriable by
By,

Proposition 4.3. Let C% and C, be two complex vector spaces of finite dimen-
sion, and T an E-valued analytic linear mapping defined on C;x C,. Let B,,...,
B, be (I+1) open (or compact) convex subsets of Ct x C, (I=n), each B; of which is
of the form K, x L where K; is an open (or compact) convex subset of C} (i=0,..., ]),
and L is an open (or compact) subset of C,. If Tis carriable by each n by n inter-
section of B;’s, it is carriable by BonN B, n--- N B,.

Proof. The question is to verify that K= U (K;xL)= (U K,) x L satisfies the

Runge property of order n—1, and that H™(K; (9) 0 for m>n which permits us
to apply Propositions of §3.2. We reason this in the same way as in the proof of
Proposition 3.3 of A. Martineau [35], Chapter 1, p. 56. Q.E.D.

We can show that, in Theorem 4.1 and its particular cases, hence also in Propo-
sition 4.2 and in Proposition 4.3, (n+ 1) is the best possible constant.

2. Applications

We consider in C* a compact convex set of the form K= ﬁ K; where K; is a
(compact) convex subset of the complex plane. =

We define in C" a complex norm p,, r=(ry, r,,..., ), by the condition:

if z=(z4,..., z,), pz) =1 is equivalent to |z,|Sry, |2;| 7y, |2, S 1,

We have

Proposition 4.4. Let r be fixed. If an E-valued analytic linear mapping T
defined on C" is carriable by all p,-ball containing K, it is carriable by K.

Proposition 4.4 (k). Let C;=C*xC and T be an E-valued analytic linear
mapping defined on C,. Let Q be an H(C)-convex open subset of C and B,,..., B
the interior of (I+1) p,-balls of radius a of C*. If T is carriable by all subset
B x Q where B is the interior of a p,~ball of radius a containing By 0 --- N By, it is
carriable by (By N -+ N By x .

Remark. If K is a product compact subset of C* and if T is carriable by all
set Bx Q where int(B)> K, B being a p,-ball, it follows in general only that T is
semi-carriable by K x Q (Q convex).
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Proofs. We can prove the above two Propositions in the same way as in the
proof of Propositions 3.4 and 3.4(k) of A. Martineau [35], Chapter 1, p. 57.
Q.E.D.

Definition 4.2. Let R be a real vector space, and let K, and K, be two closed
convex subsets of R. We say that K, is K,-ribboned if, for any hyperplane P of
R which does not encounter K, there exist xe R and A€ R* such that (x+iK,)
> K, and (x+AK,)n P=¢.

If the property takes place for all compact subset K, K, is said to be ribboned.

If K, is a p-ball and K,=a- K, where a>1, we can take 1=1.

We can easily verify that a necessary and sufficient condition that K is ribboned
is that it is compact, that its interior is nonempty, and that it admits a tangent
hyperplane at each of its boundary points.

py and p, being two real norms, if the unit ball of p, is B,-ribboned where
B, denotes the unit ball of p,, we say that p, is p,-ribboned.

If the unit ball of p is ribonned, we say that p is a ribboned norm.

We will prove in Part 11 the following proposition.

Proposition 4.5. If p, and p, are two complex norms on a complex vector
space C and if p, is p,-ribboned, a necessary and sufficient condition that an
E-valued analytic linear mapping T defined on C is carriable by the p,-ball B of
radius a is that T is carriable by all p,-ball containing B.

In the case p,=p;, if T is carriable by all p,-balls of radius b>a which con-
tains B, it is carriable by B.

And also we have,

Proposition 4.5 bis. Let R be a real vector space, and C its complexification.
Let py and p, be two real norms on R, and assume that p, is p,-ribboned.

A necessary and sufficient condition that an E-valued analytic linear mapping
T be semi-carriable by the tube whose basis is the p,-ball B of radius a is that T
be semi-carriable by all tube whose basis is a p,-ball containing B. In the case
pa=py, if T is semi-carriable by all tubes with a p,-ball of radius b>a which
contains B as basis, T is semi-carriable by Br.

From here we draw the following analogs of Proposition 4.4.

Theorem 4.2. Let p be a ribboned complex norm, and K a compact convex
subset of a complex vector space C. A necessary and sufficient condition that an
E-valued analytic linear mapping T defined on C be carriable by K is that it be
carriable by all p-ball containing K.

Theorem 4.2 bis. Let p be a ribboned real norm in R and K a convex com-
pact subset of R. A necessary and sufficient condition that an E-valued analytic
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linear mapping T defined on the complexification C of R be semi-carriable by K
is that it be semi-carriable by all tube whose basis is a p-ball containing K.

Proof. We can prove these theorems in the same way as that of Theorems
3.2 and 3.2 bis in A. Martineau [35], Chapter 1, p. 60. Q.E.D.

3. Some special cases

Theorem 4.3. a) Let R be a real vector space, and C its complexification.
Let T be an E-valued analytic linear mapping defined on CxC. Suppose that it
admits a convex compact carrier of the form I' x B where I' is a compact subset of
R and B is a compact subset of C. Then it admits the smallest carrier of this
type.

b) Let T be an E-valued analytic linear mapping defined on C. Suppose
that it admits a real compact carrier. Then it admits the smallest real compact
carrier (which we will call real support of T).

If T is defined on C" and admits a real support, all polydisc centered in R"
which is a carrier of T contains the real support of T.

Proof. a) If Tis carriable by I'y x B, and by I', X B,, I’y x B; being minimal
for the inclusion among the carriers of this type, it is carriable a fortiori by

A= Ul',)xB, and by B=(I';yUI,)XB,.
The set AU B is equal to
(ryur,)x(B;uUB,).

Consequently it is polynomially convex. Hence T is carriable by (I'; UI';)x
(B, N B,) [cf. Theorem 3.2]. If I is the convex hull of I'; U I',, T is carriable by
I'x(B,nB,) and I;xB;(i=1,2). {I'x(B,nByju(l;xB)(i=1,2) is poly-
nomially convex. Hence T is carriable by {I'x (By N B,)} n(I'; x B), that is, by
I';x(B,nNB,) (i=1,2). Since (I'y UT',)x(B; N B,) is again polynomially convex,
Tis carriable by (I', N I',) x (B, N B,). Hence we have

(FlﬂFZ)X(BI ﬂBz)=F1><Bl.

b) If Tis carriable by two real compact subsets K, and K, of R, K, supposed
to be minimal among the real compact carriers of T, T is carriable by K, n K, since
K, U K, is polynomially convex. Hence K; =K, N K,.

If Tis defined on C" and admits a real support K, let L be a polydisc L= ﬁ D;
i=1

where D, is a disc centered on R, which is a carrier of T. If we denote by M; the
smallest segment containing the projection pr; K of K onto the i-th real component

and the real diameter of D;, LU (ﬁ M,) is polynomially convex. Hence T is carri-
i=1
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able by L n (f] M), that is, by the trace of L on R" which, by virtue of the unique-
i=1

ness of real support, necessarily contains K. Q.E.D.

§5. The analytic linear mappings with real support

In the following we will consider only the real analytic manifolds W which are
countable at infinity.

We denote by H(W) the space Hy, (V) where V is a complexification of W.
Since two complexifications coincide in a neighborhood of W [cf. H. Whitney et
F. Bruhat [53], Proposition 1, p. 133], Hy,(V) does not depend on the choice of V,
and the same does for H; (V) and Hp (V) which we will temporarily denote by
H (W) and Hp(W) (in fact we can prove that these spaces are equal).

We can suppose that W is a regular submanifold of a space RY for a certain
positive integer N, trace of one of its complexifications V, V regular submanifold of
a suitable polynomially convex neighborhood Q of RM. (cf. Grauert, H. [9] and
Whitney, H. et F. Bruhat [53]). In these conditions an element of H}(W; E) can
be considered as an E-valued analytic linear mapping defined on @ (or on CV)
which is strictly carriable by Vin Q.

Lemma. If an E-valued analytic linear mapping T defined on C" is semi-
carriable by R", it is in fact carriable by R".

Proof. We can take as a fundamental system of convex neighborhoods of R”
the sets '

o N 1
Bm—{z—(x1+ly1,..., Xp+iy,); [y1|<m,..., [y,,]<m} .

Let T be an E-valued analytic linear mapping which is quasi-carriable by R", hence
carriable be B;.
We consider the analytic mapping w=(wy,..., w,)

wl=th<-Z—z,> (I=1,2,..,n)

which is an analytic isomorphism of B, onto the polydisc P, :
wil<1,.., wl <1, w=u+iv, (I=1,2,...,n).

The image of R" is the product K of real open segments |u)| <1 (I=1, 2,..., n). Let
O@=w(T). O is an E-valued analytic linear mapping defined on the polynomially
convex set P, which we can consider to be defined on the space C"(w,,...,w,).
It is carriable by each open subset w(B,), a fortiori by all neighborhood of K, hence
by K. On the other hand, being carriable by P,, it is carriable by a certain compact
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polydisc Q(|w,|=r,..., [w,|=r), 0Zr<1.

Then we apply Theorem 4.3 b). Hence @ is carriable by K n Q, that is, by the
compact subset L of K defined by |u,|<r, [=1, 2,..., n. Consequently Tis carriable
by w™(L) which is a compact subset of R". Q.E.D.

Theorem 5.1. Let W be a C-analytic subset of RN (cf. H. Whitney et F.
Bruhat [53]). If an E-valued analytic linear mapping T defined on CN is quasi-
carriable by W, it is in fact carriable by W.

Proof. If Tis an E-valued analytic linear mapping defined on C¥ and quasi-
carriable by W, it is a fortiori semi-carriable by R", hence by virtue of the Lemma,
admits a real support K.

Let V be a complexification of W in a suitable polynomially convex neighbor-
hood @ of RN in CV. Since K is H(CN)-convex, hence a fortiori H(Q2)-convex, by
virtue of Proposition 3.7, T'is carriable by K n V=K n W. Q.E.D.

Complement. All E-valued local analytic linear mapping T defined almost on
Wis an E-valued analytic linear mapping defined on CN which is carriable by W.

Proof. In Q, by virtue of Lemma 2 of Proposition 2.7 in A. Martineau [35],
Chapter 1, p. 48, V admits a fundamental system of H(Q)-convex neighborhoods,
hence finally is polynomially convex in the sense of Definition 2.10. It is the same
for RN (cf. H. Cartan [6]). But we can easily verify that all neighborhood of W
contains the intersection of a neighborhood of RY and a neighborhood of V, hence
polynomially convex open subset. Consequently, we can identify H7(W; E) with
a subspace of H'(CV; E). It is then sufficient to apply Theorem 5.1. Q.E.D.

Corollary 1. Let W be a real analytic manifold. For all E-valued analytic
linear mapping Te Hy(W; E) there exists the smallest compact subset K of W
which is a carrier of T.

Proof. The E-valued analytic linear mapping T which is carriable by K n W
according to Theorem 5.1 and strictly carriable by a complexification V of W, a
regular submanifold of Q, is strictly carriable in V' by K n W by virtue of Theorem
3.6. If K, is minimal, in V, among compact carriers of T, it is also that in C¥
(Corollary 1 of Theorem 3.6). From here we have the existence and the uniqueness
of support thanks to Theorem 4.3. Q.E.D.

Corollary 2. Let W be a real analytic manifold, and W, a C-analytic subset
of W. If an E-valued analytic linear mapping T defined on a sufficiently small
Stein neighborhood V of W is quasi-carriable by W,, it is carriable by W,.

Corollary 3. If T is carriable by a compact subset K of W and (quasi-)
carriable by a C-analytic subset of W, then T is carriable by KnW. If T is
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(quasi-)carriable by C-analytic subsets W; of W, it is carriable by N W,.

§ 6. Algebraic operations on the analytic linear mappings

In this section, we mention first the properties of the tensor products of analytic
linear mappings. In the following we assume that E be a complete locally convex
Hausdorff topological vector space.

Proposition 6.1. Let V, and V, be two complex analytic manifolds which are
countable at infinity. Then we have the following canonical isomorphism:

H(V)®H(V,)=H(V X V).

Proof. See A. Grothendieck [13], Chapter 2, p. 81 and F. Tréves [52], Theo-
rem 51.6, p. 530. Q.E.D.

Proposition 6.2. Let V, and V, be as in Proposition 6.l. We have the
following canonical isomorphism:

H'(V)®H'(V,) = L(H(V,); H'(V)=H'(Vy x V).

Proof. See F. Treves [52], Propositions 50.5 and 50.7, p. 522 and p. 524, and
Proposition 6.1. Q.E.D.

Proposition 6.3. Let V|, and V, be as in Proposition 6.1. We have the
following canonical isomorphism:

H'(Vy; EN®, H' (Vs E))=H'(Vix V,; E1®wE2)'

Here E, and E, denote complete locally convex Hausdorff topological vector spaces
and w stands for ¢ or 7 topology in the terminology of F. Treves [52].

Proof. Since the tensor products of locally convex Hausdorff topological
vector spaces are commutative and associative, it is sufficient to apply Propositions
2.1 and 6.2. Q.E.D.

Thus we have the following definition of the tensor product of analytic linear
mappings.

Definition 6.1. We use the notations of Proposition 6.3. Let T,=u;Qe;
eH'(V;; E), u;e H(V,), e, E; (i=1, 2). Then we define

T\®,T,=u;Qu,)®(e;®,e,),
i.e.

(T1®,T5) (f1®1) =u (f)u(f,) (e; ®,e,) Jor fieH(V) (i=1,2).
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Proposition 6.4 If the E-valued analytic linear mapping T, is carriable by

4

an open (or compact) subset L; (i=1, 2), T,®,, T, is carriable by L, x L,.

Next we mention the definition and properties of the convolutions of analytic
linear mappings.

If Vis a complex analytic manifold and t is an analytic mapping of Vx V into
V, we can deduce from this a continuous linear mapping t of H(V) into H(V)®
H(V), which is isomorphic to H(Vx V), as follows

f—tf=((zy, 25) —> f(1(zy, 2,))), z;€V, i=1,2.

The transpose of this mapping defines a continuous bilinear mapping of H'(V; E,)
x H'(V; E,) into H'(V; E,®, E,), which is denoted by

(Tla TZ) - TlthZa

where E; and E, denote complete locally convex Hausdorff topological vector
spaces, and w stands for ¢ or 7 topology.
Ty 7, T, 1s defined by the following equality

(Ti7, ) (f)=(T1®,To) (f((z1, 2,))).

Definition 6.2. We call the analytic linear mapping T,t,T, the composi-
tion product associated with t, of Ty and T,.

In fact, in the following we interest only in the following case:

V=C is a complex vector space, and 7 is the addition of vectors of C. In this
case we say that T, t,, T,, which we denote by T,*,T,, is the convolution of analytic
linear mappings T; and T,.

If u, is an E;-valued measure which represents T;, u, an E,-valued measure
which represents T, then u; ®,, u, represents Ty ®, T, on Cx C. For if ¢p(x)(y)
1s a decomposed holomorphic function on this space, we have, by the definition
itself,

(T1®,T5) (¢ - ¥)=Ti(P) R, T.(¥) = p1(P)®, (W)
=(U Ry 1) (P V).

Consequently, u*,u, (in the sense of L. Schwartz [46]) represents T, *,T>.

Since, if K, is the support of an E,-valued measure u,, and K, is that of an
E,-valued measure u,, pi%,u, has its support in K, + K,, we deduce by virtue of
Corollary of Theorem 2.1,

Proposition 6.5. If an E;valued analytic linear mapping T, is (weakly)

carriable by L, L; being open (or compact) (i=1, 2), then T;*,T, is (weakly)
carriable by L;+L,.
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Corollary. If T, and T,, defined on a complexification C of a real vector space
R, admit a real support, Tyx,T, admits a real support.

§7. The analytic linear mappings as boundary values of vector valued
holomorphic functions

1. The analytic linear mappings as cohomology classes. Martineau-Harvey’s
theorem

0 denotes the sheaf of germs of holomorphic functions on a complex analytic
manifold Y and £¢ denotes the sheaf of germs of holomorphic functions on Y valued
in a Fréchet space E.

Definition 7.1 (Martineau [33]). Let Y be a complex analytic manifold. A
compact subset K of Y is said to be almost convex if H(K, ©)=0 for all i>0, and
if it admits a Stein neighborhood.

In particular if a compact subset K of Y admits a fundamental system of Stein
neighborhoods, it is almost convex.

Theorem 7.1 (Martineau-Harvey). Let Y be a complex manifold and K an
almost convex compact subset of Y. Then, for a Stein neighborhood V of K, we
have

(1) HY(V, *0)=0, p#n,
(i) Hi(V, *o)=H"(V-K, *0)= L(0(K); E).
Here E denotes a Fréchet space.

Remark. In the above theorem, except for the first isomorphism in (ii), V' has
only to be an open neighborhood of K.

Proof. Let #7P-4 denotes the sheaf of germs of differential forms of type
(p, q) with coefficients in a sheaf # over Y. a denotes the sheaf of germs of real
analytic functions on Y and # the sheaf of germs of hyperfunctions on Y and £&%
the sheaf of germs of E-valued hyperfunctions on Y. Then we have the resolutions
of ¢ and £0 (cf. Y. Ito [18]):

(1) ©o ) a%0 8, q01 _3 ... _3 ¢O.m 0,
2 0—0 — R0 7,501 _T7,.. T, 50n 0,
(3) 00— 80— EQO’O_L E 0.1 é NP ) Eg0,n 0.

Since we have
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HP(K, a%4)=lim.ind. H?(Q, a®9)=0, for p>0, g=0,
2>K

by virtue of Theorem 4.11.1 of R. Godement [8], p. 193, the cohomology groups
H?(K, 0) are isomorphic to the cohomology groups of the complex:

(4) 0— a%°(K) -2 a%1 (K) -2 -+ 2, a%"(K) — 0,

and since the sheaves £#%? are flabby, the relative cohomology groups H%(V, £0)
with support in K are isomorphic to the cohomology groups of the complex:

(5) 00— E‘%IO(’O _J, E%?{,l i, ... 3 E‘@(I)(’" 0

(where QP stands for #%?(Y; E)). The hypotheses HP(K, 0)=0, p>0, imply
that the sequence (4) is exact. Hence, the operators ¢ are homomorphisms, since
they are of closed range, for the spaces a®-?(K) are DFS-spaces (cf. A. Grothendieck
[12], Chapter 4, §2, Theorem 3, p. 218).

If we denote B%P(Y) by #%?, the spaces a®P(K) and #% "7 are DFS- and
FS-spaces by the duality pairing:

2 $,dz; X fidzZp)

|J1=n-p Hi=p

= L Z e,

where ¢;; denotes the signature of the permutation (1,...,n)—(I, J), and other
notations are usual ones. Further, the transpose of the operator

0: a%P(K) — a%P+1(K)
is (aside from sign) the operator
0: BYrp~t — FYnop,

By virtue of Serre’s lemma (cf. H. Komatsu [24], Theorem 19, p. 381 and others)
the sequence

0 '93(1)(’0 7 ‘@?(,1 o, ..._20 ggOK,n
is exact. Hence the sequence

0 Eg(l)(,o 2 E@?{,l a 0 Eg?(,n

is also exact by virtue of Theorem 1.10 of P.D.F. Ion and T. Kawai [17], p. 9, since
the spaces #%? are all nuclear FS-spaces and £#%?~%%?QE. Consequently,
we have

HYYV, £0)=0 for p<n.
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Next we consider two exact sequences:
0 —s O(K) — a%°(K) —& a%(K)
0 BY"ORBY" !« B T FYr1,
The mapping
5: g?{,n~l —_— .@(I)(,n
is of closed range since it is the transpose of a mapping of closed range. Hence
B |0#%~1 (which is isomorphic to Hy(V, 0))
is isomorphic to ¢'(K). Since we have
Eg0r~ 3% QE and Ly (0(K); E)y~0'(K)QE,
we conclude that
(¥, FO)=HY(V, O)@E=L,(0(K); E).

At last we will prove the first isomorphism in the statement (ii). We now assume
that V'is a Stein neighborhood. The exact sequence of relative cohomology groups
can be written,

0=H"=1(V, £0) — H"\(V—K, £0) —> HY(V, E0) — H"(V, E0)=0.

(cf. H. Komatsu [25], Theorem II.3.2, p. 77, and P. Schapira [42], Corollary 1 of
Theorem B.35, p. 32). Hence Hi(V, £0) is isomorphic to H*1(V-K, £0).
Q.E.D.

This theorem shows that an E-valued analytic linear mapping can be represented
as a relative cohomology class or a cohomology class. This generalizes the theory
of J. S. Silva-G. Kothe-A. Grothendieck-M. Morimoto [49], [28], [10], [37].

2. Cauchy-Weil transformation and Cauchy-Hilbert transformation of E-
valued analytic linear mappings
In the following we assume that V=C" and E is a Fréchet space.
We will first establish the Cauchy-Weil’s integral formula following M. Mori-
moto [37].
We say that @<C is a ring domain if, for some r, ReR, 0<r<R<w and for
some z, € C, we can write

Q={zeC; r<|z—zy|<R}.

(We consider that an open disc in C is a ring domain). z, is said to be the center
of Q. In the following of this section the letter 2 denotes a ring domain.
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We put V=C1, V¥=C?. A compact set L in V is said to be a special poly-
hedron if, for a finite number of ring domains Q; and {;e V*, j=1,2,...,m, L is
represented as

L= f\C WQ)={zeV;r;SI{(2)ISR; j=1,2,..,m}.

Since L is compact, {;, j=1, 2,..., m must generate V* when m=n.
Now, we assume that {; is in a generic position, that is, each n of them generate
V*. We put

and call it a surface of L. We give the surface S; the orientation as a subdomain of
{71(09Q,)=0(71(Q;)) oriented as the boundary of {74(Q;). We put

S

jOjl"'jk=Sj0 n SJ': AR Sjk'
Then this is a surface with boundary, of dimension 2n—k—1. We define the
orientation of S; ..; by induction with respect to k:
Assuming that S; ...; _, is already oriented, we give S;
the boundary of the subdomain S;,...;, _, N GX(@2;) of S ju_ .
If we exchange the indices of S;..j,, its orientation is reversed although the
two surface is identical as sets. Until now we defined S ...;, assuming that {;,
., {j, are in a generic position, but we agree to define SJ0 Ge=¢ i {oseens (o
1 £k<n-—1, are linearly dependent (especially, the same indice appears more than

twice). Evidently, we have

o - Lk the orientation as

m
Jo Jk T Z JorJxi

taking into consideration the above mentioned orientation.
We can now formulate the Cauchy-Weil’s integral formula.

Theorem 7.2 (Cauchy-Weil). Let L be a special polyhedron represented as

m

r\c-l(g) (zeV;r,<I(2IER, (e VH, j=1,2,.., m},

and S; its surface. Then, for a holomorphic function /" in a neighborhood of L, we
have the formula

G s B Vs O T

{ f(2), ze I:( =the interior of L),

0, zeV\(LU M),
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where Y is taken over all possible combinations of iy, iy,..., i,—;, and we put
M= Vl (710Q)).
J=
Proof. See M. Morimoto [37], Theorem 6.1.2, p. 147. Q.E.D.

We now introduce the notion of linearly convex subsets of C".

Definition 7.2 (M. Morimoto). A subset X of C" is said to be linearly
convex if, for any wes X, there exists a complex hyperplane S such that

weS, and SnX=¢,
in other words, there exists { € V* such that

{wy#£l(z)  forany zelX.

The necessary and sufficient condition that a compact subset K of V is linearly
convex is that the family

WV\K) = {W,={"H(C\U(K)); (e VH\{0}}

becomes an open covering of V\K.
Then we have

- Lemma 7.1. Let K be a linearly convex compact subset of V, and W an
open neighborhood of K. Then there exists a special polyhedron L such that

Kci,, and LcW.
(Here we say that L is placed between K and W).
Proof. See M. Morimoto [37], Lemma 6.2.1, p. 150. Q.E.D.

Hence, for a linearly convex compact set K, an arbitrary element of H(K) has
an integral representation by the Cauchy-Weil’s integral formula.

Now we consider the space H'(K; E) of E-valued local analytic linear mappings
defined on K when K is a linearly convex compact subset of V. We will represent
H'(K; E) as the space of certain cocycles.

Let K be a linearly convex compact subset of V. For { e V*\{0}, we put

Wy ={"HEUK)).-

If {=A{ for arcomplex n'umber A#0, we have W,=W,. Hence, if we denote by
[{] of the class of { in (V*\{0})/C*, we can put W =W, By the assumption of
linear convexity of K, the family of open subsets

WV\K)={W,; {e V*\{0}}
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becomes an open covering of V\K. £0¢"® denotes the sheaf of differential forms
of type (n, 0) with E-valued holomorphic functions as coefficients. Then Z»~1(2W(V\

K); Eo("-9) denotes the space of (n—1)-cocycles of W(V\K) with coefficients in
E@(u,())_

Definition 7.3. e Z"1(W(V\K); E09) is said to be zero at infinity if
the following two conditions hold:

(i) if os L4sener y—y are linearly dependent over G, Yy, ..., =0.

(ii) In the case where {y, {y,..., {,— are linearly independent over C, for

Veotiotno s =orstn Lo A ALy A AL,y
Stotitns EEOWyorrt 1) »
and for an arbitrary open neighnlgrhood U; of {{(K), we have 8y ..., ,—0 if
{{(2)£U;, j=0,1,2,..,n—1, and j;o |{{(z)]—>00. We denote by
Zg (W(V\K); Fot0)
the set of all cocycles Y € Z" Y (W(V\K); E0:D) which are zero at infinity.

Zy Y (W(V\K); o), being considered as a subspace of @EO(Wy,.., )
has the FS*-space structure as the closed subspace of FS*-space (cf. H. Komatsu
[24], Theorem 2, p. 370). ”

When Los Lysrey Ly € V* are given, by the correspondence of the function of
z, H(ij(w) {{(z))"!, to w, a continuous mapping of W, ... _, into H(K) is
determmed Hence, for Te H'(K; E),

W T(H G M=)

determines an E-valued continuous function on W, ..., _,. Itis easily seen by the
representation of T by a measure that this is holomorphic with respect to we
I/VCoCr"Cn We put

Yeotstu (W)
= z(H (CAw)—L(2)™ Ddlo(w) Adly(w) A - A dE, (W)

-1

{$ror o, determines an element of Zg~'(W(V\K); £¢(*9). We call the map-
ping which associates Te H'(K; E) with y={y,..c,_,} €Z§ (WV\K); Eo" )
the Cauchy-Weil transformation, and denote it by y =CWT.

Theorem 7.3. Let K be a linearly convex compact subset of V, W(V\K') an
open covering
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WV\K)={W;; (e V*\{0}}.

Then the Cauchy-Weil transformation CW is an isomorphism of H'(K; E) onto
Z(W(V\K); o) as topological vector spaces.

Proof. It is evident that the Cauchy-Weil transformation is a continuous
linear map. If we show that CW is bijective, it follows from the closed graph
theorem that CW is a topological isomorphism.

Proof of injectivity. Let L be a special polyhedron such that K L. These L’s
form a fundamental system of neighborhoods of K by virtue of Lemma 7.1. For
a holomorphic function f in a neighborhood of L, we have a Cauchy-Weil’s formula

n di,’, (W)f\ “Ad(; (W)
rO=(50=1) = o0 == ok
< 27'5\/ ) Oseeeipn=1 S-5\;051‘”1‘!1 1 H (CIJ(W) C (Z))

Since this integral converges in the topology of H(K), for Te H'(K; E), we can
interchange T and the integral and have

T(f)= <27r\/ >n,o “Z n-lgs,on ) f(W)E//ioir~-in_1(‘/V)~

Here l//m,1 i, 1s given as above Hence 1f Y =0, we must have T=0.

Proof of surjectivity. Assume that ¢ e Zs~1(W(V\K); E0"-9) and fe H(K)
are given. Now, let W be an open neighborhood of K such that fe H(W) and L a
special polyhedron placed between K and W. Then, if we put

T =(arg=t) 0 T o T Wit ),

the right hand side does not depend on the choice of Wand L and T, € H'(K; E) is
determined. Then we have CWT‘,, Y. In the following, we will show this step
by step.

First, in order to show that the right hand side of the above equation does not
depend on the choice of Wand L, we have only to show that, for special polyhedra
L, and L, placed between K and W, the integral in the right hand side has the same
value. Since L, n L, is also a special polyhedron placed between K and W, we may
assume L,<L;. By induction, we may consider only the case where

N _
Li=n YL,
Jj=1

Ly=L; n{3}:(Qysy).

Here, of course, 2y . is a ring domain such that {y, (K)=Qy ., .
Let D be an open disc cocentered with Qy,; such that {y,,(L,)=D. Since
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D\Qy., is a union of two ring domains, Lj={yL;(C\Qy.1) N L;={33:1(D\Qy )
nL, being a union of two special polyhedra, we have L;=L;,U L5. Writing in

short the right hand side by S fi, we have

L

SLlfw=SL2f¢+§L,f¢.

2

Hence we have to prove
g A =0.
L2
Denoting in general by S’ the surface of L), we can calculate as follows.

SWigeina,

. . . 4 .
i0,i1s0eesin-1<N+1 SS;’OH.;"_l

SL; A=

+ SWigeeinoaN+1-

io,ii,...,in_2<N+1SS}O-.-in_2N+1
In case ig,..., ip—2 <N+1, ¥;.; v+ is defined in a neighborhood of Si..;,_, and
is holomorphic there. 1In fact, since Wy, ={5}(C\(y+,(K)) contains L;, we have

S’

fo +in-

7
2 CLZ N VVioil"'in—zc VVio“'in_zN'F 1+

In particular, for ig, iy,..., i,-y <N+1, we have

n—1
Wigipin_ = (=D h;) (= D"ty N+ 1

in a neighborhood of Si,..; ,. Hence we can write the first term of the right hand
side into

n—1
(=00 (=0 gty

{0,y in-1<N+1 iorin—1

Arranging this with respect to the term ¥;...; _,y+1, We have

N+1

z g , f‘//ioil---in_zN+1
Sio"'in—zi

i0,.esin-2<N+1i=1

SL'Zf"b -

fl!/iollr"in—zN‘l'l‘

i0,mesin-2<N+1 Sas’io...in_z

Hence, since the integrand form is holomorphic in a neighborhood of Si..;,_,, we
have

SL,Zfl# =0
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by virtue of the vector valued variant of the Cauchy-Poincaré’s theorem (cf. M.
Morimoto [37], Theorem 6.1.1, p. 145).

By the definition of the topology of H(K), T, is evidently a continuous linear
map of H(K) into E.

Now we will show CWT,=.

Let (o, {45eenr {1 € V* be linearly independent. For e Zi {(W(V\K);
Ep(».0), we put

wCOQ‘“Cn—' :940)' ..,gn_—ldco A dCl FASEEEIVAN an_ 1+

Putting CWT, =1, we calculate ;... _,. Let Q; be a ring domain containing
{{(K), and we V satisfy {(w)&Q;, j=0, 1,...,n—1. Since the integral defining T,
does not depend on the choice of L, we have, by the definition of CW,

lpCoCl"‘Cn— l(w) - g@o:x"'z;n-— l(w)dCO(w) Acee A an— l(w)a
gc‘;a-'-gn- (W)

— _Jim, " ‘9{0{1'“{»1—1(2) d end
<27r\/~—1> Saca‘(ﬂaw-ma;;;«znn1) i:[j;((:j(W)—Cj(z)) Co(2) A Ad,-1(2)

Since {{(w)&Q; and I, is zero at infinity, we have, by the usual Cauchy

integral formula,

$1Cn~1

9@0’;1"'@1— 1(W) = 9{0{1"‘{;1— 1(w) <

The choice of a ring domain Q; containing {;(K) being arbitrary, this equality holds
for an arbitrary we Wy;,...,_,. Hence we have

l/ICOCx“'Cn—x:wioCr“in—x' Q E.D.

Now, if, for a finite number of {,, {,,..., {y € V*, a compact subset K of V can
be represented as

_?'\ LKD),

we call temporarily K a compact polyhedron. A compact polyhedron is evidently
linearly convex. Let K be a compact polyhedron of the above form. If we put

WINK)={W;=GHCLK)); j=1, 2,..., N},

W(V\K) is a Stein open covermg of VAK and QB(V\K)CIB(V\K) holds. The
restriction map acts as B

Z5 {(W(V\K); E¢n:0))y — Za-1{(W'(V\K); Eo1-0)),

Now we consider a compact set L; such that ¢ {(K)eL;eC and OL; is piecewise
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smooth. By Lemma 2.1.1 of M. Morimoto [37], p. 27, such L;’s form a funda-
mental system of neighborhoods of {;(K). Hence a polyhedron of the form

N
L=n {GYL)
j=1

whose boundary is piecewise smooth can be taken as a fundamental system of
neighborhoods of K. As the integral domain of the right hand side of the defining
equation of T, we have only to take into consideration the distinguished boundary
of such L. Hence, for y € Z5~ (W' (V\K); E0("-9), by the formula

1o =(ar ) 2 N TOW it (),

iO"'in—l

T,€H'(K; E) is determined. We will write this as T: ¢—T,. Then we can show
the following corollary 1 by the calculation of the proof of Theorem 7.3.

Corollary 1. Let K be a compact polyhedron of the form
K=jf51 GUGK), eVE j=1,2,..,N.
Then the following diagram is commutative, and all the mappings in the diagram
are isomorphisms of FS*-spaces.
H'(K; E) £% Zg= (B(V\K); F0"?)
N
Zy  (W(V\K); FoD).
Next, we consider a more special case. Let ¥=C" and K be of product type:
K=K, xK,;x--xK,, K;cC(compact), j=1,2,...,n.
Then, W'(V\K) is nothing else but
U={U,,..., U}, U;={z=(zy, 23, 2,) €C"; Z;£ K} .

By the correspondence of f(z) with f(z)dz,---dz,, we can identify *¢ and P¢"-?.
And we have

Zn=1U; Fo)=Cr1(U; £0)
—H(U,n--nU,; E)

=H(C"$K; E),
where
C'#K =(C\K ) x (C\K,) x --- x (C\K,) .

Now, if, for Te H'(K; E), we put
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we have Te H(C"$K; E), and T is zero at infinity. We call T the Cauchy-Hilbert
transform of T and denote it by T=CHT. If we denote by Hy(C"#K; E) the sub-
space of H(C"#K; E) consisting of E-valued functions which are zero at infinity,
CH acts as

CH: H'(K; E) —> H,(C"#K; E).

Conversely, if we put, for 3 € H,(C"#K ; E),

Ts(f)=<ﬁj—-—_—f>"g g FONIW)dw, - dw,

OLiX-x¢L,

(K;j€ L;€C), Ty(f) is determined independently of L as long as f is holomorphic
in a neighborhood of L=L, x--x L, and we have T,e H(K; E). Then we have
the following corollary 2.

Corollary 2. Let K be a product compact subset of C":
K=K;xK,;x--xK,; K;=C (compact), j=1,2,..., n.

Then the above defined Cauchy-Hilbert transformation CH is an isomorphism of
FS*-spaces, and T: 3T, gives the inverse.

The results of this subsection also generalize those of J.S. Silva-G. Kothe-
A. Grothendieck-M. Morimoto [49], [28] [10], [37].
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