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§0. Introduction

This paper is the detailed exposition of the report announced in [45].

In 1959 and 1960, M. Sato established the theory of hyperfunctions [31]. His
idea was to consider “functions’’ in the generalized sense as boundary values of
holomorphic functions. Hyperfunctions are the relative cohomology classes with
coefficients in the sheaf of holomorphic functions. This generalizes the concept
of functions more widely than L. Schwartz’s distribution [37].

Recently, by the same method as that of M. Sato, P. D. F. Ion and T. Kawai
[14] has extended the theory of hyperfunctions to the theory of hyperfunctions
valued in a locally convex space, as has been done for distributions by L. Schwartz
[35], [36].

On the other hand, A. Martineau [23] has shown that hyperfunctions are some-
thing of analytic functionals, and especially that hyperfunctions with compact sup-
port are nothing else but real analytic functionals.

In this direction, the extension of the theory of Fourier hyperfunctions by
T. Kawai [17] to vector valued case can be found in Y. Ito and S. Nagamachi [15],
[16], and S. Nagamachi and N. Mugibayashi [27], [28], [29]. Namely, vector
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valued Fourier hyperfunctions are something of continuous linear mappings of the
space of rapidly decreasing holomorphic functions into a Hilbert space.

The extension of the theory of hyperfunctions of Sato-Martineau-Schapira to
the vector valued case has not yet been seen.

So in this paper we established the theory of analytic linear mappings, that is,
continuous linear mappings of the space of holomorphic (or analytic) functions into
a locally convex space and apply it to the theory of vector valued hyperfunctions.
Analytic linear mappings are so to speak “vector valued analytic functionals’’.
Then vector valued hyperfunctions are realized as something of analytic linear map-
pings. Especially vector valued hyperfunctions with compact support are nothing
else but real analytic linear mappings. They, by localization, forms a flabby sheaf
and their section modules are realized as relative cohomology groups with coeffi-
cients in a sheaf of vector valued holomorphic functions, as in Sato-Ion-Kawai’s
theory.

In §1, we introduce the spaces of holomorphic and analytic functions and
mention the properties of their tensor products.

In §2, we introduce the concepts of analytic linear mappings and real analytic
linear mappings, and mention their properties. The structures of the spaces of
analytic (or real analytic) linear mappings are clarified.

In §3, we introduce some operations on analytic linear mappings such as
multiplication by a holomorphic or an analytic function, tensor product of analytic
linear mappings and convolution of analytic linear mappings.

In §4, we introduce the concept of hyperfunctions valued in a Fréchet space
and mention the properties of the sheaf of hyperfunctions valued in a Fréchet space.
It will be shown that this sheaf is flabby and the space of vector valued hyperfunctions
with support in a real compact set is the space of real analytic linear mappings. It
will also be shown that the sheaf of vector valued distributions is a subsheaf of the
sheaf of vector valued hyperfunctions.

In §5, we introduce some operations on vector valued hyperfunctions such as
multiplication by an analytic function, tensor product of vector valued hyperfunc-
tions, convolution of vector valued hyperfunctions and transformation of a vector
valued hyperfunction by an analytic isomorphism.

In § 6, we will prove the elliptic regularity and give the Dolbeault resolution of
the sheaf of vector valued holomorphic functions by the flabby sheaves of differential
forms with vector valued hyperfunctions as their coeflicients.

In §7, we mention Sato’s theory of vector valued hyperfunctions as boundary
values of vector valued holomorphic functions. We will prove some vanishing
theorems of cohomology groups and relative cohomology groups with coefficients
in a sheaf such as Malgrange’s theorem and Martineau-Harvey’s theorem and
Sato’s theorem. The last theorem implies that the real space R" is purely n-codimen-
sional with respect to the sheaf of vector valued holomorphic functions over C".
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Lastly, we will obtain the representation formula of analytic linear mappings as
boundary values of vector valued holomorphic functions.

The author wishes to thank Professor M. Morimoto who informed the author
of the work by A. Martineau [44] and allowed the author to correct some errors of
the manuscript by his friendly advices.

§1. Holomorphic functions and analytic functions

Let ¢ be the sheaf of holomorphic functions over C*. If Q is an open set in
C", we set

o(Q)=I(Q, 0),
the section module on Q. This space has an FS-space topology for semi-norms

px(f)=sup|f],

where K runs over the family of compact subsets of Q. It is known that 0(Q) is a
Fréchet nuclear space. Let K be a compact subset of C*. We put

0(K)= lim 0(%).

We endow ¢(K) with the inductive limit topology. It is a nuclear space of type
DFS (in particular, it is Hausdorff) and its dual ¢'(K)is a nuclear space of type FS.
Further, any bounded subset of ¢(K) is contained and bounded in a space
0(Q) (cf. A. Martineau [24] or H. Komatsu [19]).
Let o7 be the sheaf of analytic functions over R*. If K is a compact subset of
R", we have an isomorphism

#(K)=0(K),

where 27(K) denotes the space of analytic functions in a neighborhood of K in R".
&(K) is endowed with the topology of O(K). Then the space O(C") is dense in
o (K).

Proposition 1.1. Let K, K, be two real compact sets. Then the mapping
H(K)x A(K,)— (K, NK,),
(f1, ) — fi—f2s
is a surjective homomorphism.
Proof. See P. Schapira [33], p. 45, Lemma 111. Q.E.D.

If Q is an open set in R", let «/(Q) be the space of analytic functions on Q
equipped with the topology
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A (Q)= lim (K).
K@

Then () is a complete barreled nuclear space whose dual is a complete nuclear

space.
We now state the properties of tensor product of spaces of holomorphic or
analytic functions.

Proposition 1.2. We have the following canonical isomorphisms:

(i) 0Q)B®O(2,)=0(Q; x2,),
(Q,=C™, Q,cC" open sets);

(i) O(K)®O(K)=0(K;xK,),
(K{=C™ K,cC" compact sets);

(i) (K)®L(K)=L(K;xK)),
(K,=Rm™, K, <R" compact sets);

(iv) H(2)QA(Q,)=A(QxQ)),
(Q,<R™, Q,<R" open sets).

Proof. (i) See F. Tréves [40], p. 530, Theorem 51.6.
(i) Let {Q,;}%, and {Q,;}%, be fundamental systems of neighborhoods of K,

1jJj=
and K,, respectively. Then we have

O(K, x K,) =HTgr,1 0(Qy; % sz)gHTrr; 0(Q)®0(Q,)).
On the other hand, since
@(Ki)=1_ij¥ll (Q(Qij)’ (i=1, 2),
we have continuous injections
0(Q;;) — 0(K)), i=1,2.

Hence we have a continuous injection

0(Q,,)®0(2,;) — O(K)BU(K ).
Hence we have an isomorphism

O(K )®O(K,) =lim 6(2, )@ 0(2,))

~0(K, xK,).

(iii) Since F(K,)=0(K,), #(K,)=0(K,) and «(K;xK,)=0(K;xK,), it is
sufficient to apply (ii).
(iv) Let {K;;}%_; be an increasing compact sets in €; such that

Q=" K, (i=1,2).

Jj=1
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Then we have
O(Q, x Q) =lim (K ; x K, ;) =lim (K, )@ (K ;)).
On the other hand, since
JZf(gzl'):li%nM(Kij), (i=1,2),
we have natural continuous linear mappings
A(Q;) — H(K;)), (i=1,2).
Hence we have a natural continuous linear mapping
&7(91)@%(92) - M(KU)(’?&{(K?J) .
Hence we have an isomorphism

& (Q))® #(2,)=lim M(Klj)®M(K2j)
> al(Q, % Q). Q.E.D.

§2. Analytic linear mappings

Definition 2.1. Let E be a Fréchet space which is topologized by a non-
decreasing countable basis {p, py,--} of continuous seminorms. Let Q be an
open subset of C". Elements of L(O(RQ); E) (=L, (0(Q2); E)) are called analytic
linear mappings on Q valued in E or simply analytic linear mappings on Q. We
say that ue L(0(Q); E) is carried by a compact set K in Q if for all open set w
which contains K, u can be extended to O(w), that is, if, for every p; and for any
w which contains K, there exist a compact subset K,; of w and a constant C
that

wj Such

Pj(u(f))écwj 15<UP |f1.
We then call K the carrier of u. We denote by 0'(Q; E) the space L(0(Q); E).
Proposition 2.1. Let E be a Fréchet space. Then we have:

(i) 0'(Q; E)=L(0(Q); E)y=0'(QKE,
(Q: an open set in C").

(i) 0'(K; E)=L(¢(K); E)20'(K)®E,
(K: a compact set in C").

(iii) «'(K; E)=L(«(K); E)= o' (K)QE,
(K: a compact set in R").

(iv) &'(Q; E)=L(«(Q); E)2 o' (QQE,
(Q: an open set in R").
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Proof. (i) We can evidently prove this by virtue of F. Treves [40], Propo-

sition 50.5, p. 522.
(ii) Since O(K) is a nuclear DFS-space, it also follows from F. Tréves [40],

Proposition 50.5, p. 522.
(ii1)  Since «(K)=0(K), it follows from (ii).
(iv) Since «Z(Q)=1im «/(K) is a complete barreled nuclear space whose dual
K<

is a complete nuclear space, it follows also from F. Tréves [40], Proposition 50.5,
p. 522. Q.E.D.

Proposition 2.2. Let E be a Fréchet space, and K a polynomially convex com-
pact subset of C", and u € L(O(C"); E). Then u is carried by K if and only if u
can be extended to L(O(K); E).

Proof. The condition is evidently sufficient. Conversely, let {Q;}9., be a
fundamental system of Runge neighborhoods of K and u;e L(0(Q)); E) the ex-
tension of u.

Since ¢(C") is dense in ¢(L2;), we have
Hence u;’s define an element of

L(lim 0(2;); E)=L(0(K); E). Q.E.D.

The elements of L(«/(R"); E) are called real analytic linear mappings. They
are analytic linear mappings on C" which are carried by real compact set.

Theorem 2.1. Let ue l{x/(R"); E), u#0. There exists the least real com-
pact set which carries u. We call it the support of u and denote it by supp (u).

Proof. lLet K, and K, be two real compact sets which carry u.
Let N be the kernel of the mapping

(K x A (K,) — (K nK,),
(fi, ) — fi—12-

If (fi, f,) € N, there exists g € o/(K, U K,) which extends f, and f,.
Let g; € O(C™), g, converging to g in «(K; U K,).

u(g):lim u(gj):u(fi)> i=1, 2.

Hence we can set, if fe o/(K; N K,) is of the form f; —f>,
u(f)=u(f)—u(fs).
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This linear mapping is defined on «(K, n K,) and continuous by virtue of Propo-
sition 1.1.
Since u #0, this implies that K; N K, #¢@. The passage to a certain family of
compact sets is then evident. Q.E.D.
We remark that

supp (u, +u,) =supp (u;) Usupp (us),

supp (Au) <supp (u), ~eC.

p
Proposition 2.3. Let K= \U K; be the union of real compact sets. Let ue
i=1
L(«/(R"); E), supp (u)c K. There exist u;e L(«Z/(R"); E) (i=1,---, p) with:

r
u= 3 u; supp(u)<K;.
i=1
Proof. We have to see that the mapping:

1T L/ (Ky); B)—> L(s/(K): ),

14
(143); <isp Zl U;
is surjective, hence that the mapping:
14
S (K)— ¥ Ky,

f__’ (flKi)1§i§p
is injective and of closed range, which is easy to verify. Q.E.D.

We now remark that the distributions with compact support valued in E are ana-
lytic linear mappings, for, by virtue of Stone-Weierstrass’ theorem, the continuous
injection

K (R") — C*(R")
is of dense range.

Analogously .«7(Q2) is dense in C*(Q).

Proposition 2.4. Let ue &'(R"; E). We denote temporarily by supp,(u) its
support considering it as a distribution and by supp (u) its support considering it
as an analytic linear mapping. We then have

supp (1) =supp,(u).

Proof. Let K=supp, (u). For any open set 2> K, u can be extended to
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C*(£2), hence to «7(Q). Consequently
supp (1) =K.

Conversely, let u € &'(R"; E) such that u can be extended to «/(K) and let ¢pe 2(R")
such that

supp (¢) N K=g.
We must show that

u(¢)=0.
For this it is sufficient to construct the functions ¢, having the properties:
¢.€ L (R"),

¢,—~¢ in C*(R"), (e—0),
¢.—0 in Z(K), (e-0).
One verify that if
p.€ A (R"),
p,—0 in 2'(R"), (¢—0),
p.—~0 in Z(R"—{0}), (¢-0),
the functions
b.=dxp,

respond to the question.
We then put

Pa(x)=<8\}7{>” exp (—[x[2/e2), |x[P=x?+4-4x2.

It is clear that p, tend to zero in «/(R"—{0}). We can also easily prove that p,
tend to 0 in 2'(R") [see F. Tréves [40], Lemma 15.1, p. 153]. Q.E.D.

Let now @ be an open subset of R" and K a compact subset of Q. We call
“envelope of K’ (in Q) and denote by K, the union of K and the relatively compact
connected components (in Q) of Q— K. It is again a compact set.

Proposition 2.5. If K=K, «'(6Q; E) is dense in &'(Q—K; E).

Proof. It is sufficient to see that the mapping of «&(Q—K) into «(0Q) is
injective. For this see the proof of Lemma 115 of P. Schapira [33], p. 51. Q.E.D.
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§3. Operations on analytic linear mappings

In this section we now define several operations on analytic linear mappings.
a) Multiplication by a holomorphic or an analytic function
(i) Let Q be an open set in C". If fe 0(Q) and ue 0'(Q; E), we define
fuet'(Q; E)
by the formula

(fu)(g)=u(fg) forall geo(Q).

0'(Q; E) is an 0(Q2)-module.
(11) Let K be a compact set in C*. If fe O(K) and u € ¢'(K; E), we define

fue0'(K; E)
by the formula

(fu)(9)=u(fg) forall ged(K).

By this definition of multiplication by a holomorphic function, ¢'(K; E) becomes
an 0(K)-module.
(iii) Let K be a compact set in R". 1If fe o/(K) and u € &'(K; E), we define

fue «'(K; E)
by the formula
(fu)(9)=u(fg)  forall ge(K).

Then we have
supp (fu) =supp (u).

By this definition of multiplication by an analytic function, «'(K; E) becomes an
2/ (K)-module.
(iv) Let Q be an open set in R*. If fe &/(Q) and u € &'(Q; E), we define

fue'(Q; E)
by the formula
(fu)(9)=u(fg)  forall ge(Q).

Then we have

supp (fu) =supp (u).
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By this definition of multiplication by an analytic function, «'(£2; E) becomes an
&/ (Q)-module.

b) Tensor product of analytic linear mappings

First we recall the tensor product of analytic functionals.

Proposition 3.1. We have the following canonical isomorphisms:

(i) 0'(Q)P®0'(2)=L(0(2)); 0'(2,)=0"(Q,xQ,),
(Q,=Cm, Q,=C" open sets).

(i) O'(KD®O(K)=ZL(O(K,); 0'(K))=0'(K, xK)),
(K, cC" K,<C" compact sets).

(i) ' (K)®'(K)=L(L(K,); ' (Ky) = (K xK,),
(Ky<Rm™ K,cR" compact sets).

(iv) Z'(Q)BA(2,)=L(A(Q)); ' ()= (2, xQ,),
(Q,<R™ Q,cR" open sets).

Proof. (i) See F. Tréves [40], p. 531, Corollary to Theorem 51.6.
(i) Let {Q;}52, and {Q,;}7-,; be fundamental systems of neighborhoods of
K, and K,, respectively. Then we have

O'(K x Kz)zli}{g 0'(Q;;x Q) 1i7]_rg 0'(Q,)®0'(2,)).
On the other hand, since |
@,(Ki)=lijm 0I(Qij)s (i=1> 2),
we have continuous linear mappings
0'(K;) — 0'(2;)), (i=1, 2).
Hence we have a continuous linear mapping
O'(KD®O'(K,) — 0'(2,)R0'(2y)).
Hence we can consider ¢'(K,)®0'(K,) is a closed subspace of
li]__rg 0'(2,)®0'(2,;)=0"(K,; xK3).
But, since the mapping
0(2,;)®0(2,;) — 0(K)®V(K,)
is injective, the mapping
0'(K))®0'(K,) — l.ijm 0'(Q,)®0(2,))

has a dense image in
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12{“ @/(Qlj)®(9l(gzj) s
which is dense in
117YE (91(911‘)®0'(92,’):@/(K1 x K3).

Thus, since ¢'(K,)®0'(K,) is dense in ¢0'(K,)®0'(K,), 0'(K,)®0'(K,) is a dense
closed subspace of ¢'(K, x K,). Hence

O'(KD®O'(K)=0'(K, xK,).

(i) Since «Z(K;)=0(K;) (i=1, 2), it is sufficient to apply (ii).
(iv) Since @(Q)=Ilim «(K;;) where {K;}%, is a increasing sequence of

compact sets which exhauét Q; (i=1,2),
Q)@ L' (Q,)=lim (K, )®'(K»)
J
=Ijmd’(Klij21)=M,(QlXQz). Q.E.D.
J

Next we consider tensor product of analytic linear mappings. In the following,
we assume that E; and E, be two Fréchet spaces.  stands for ¢ or = topology in
the sense of F. Tréves [40].

Proposition 3.2. We have the following canonical isomorphisms:

() 0(Q; EN®,0(2,; E))=0' (2 x Q2,5 E,®, E),
(Q,=Cm, Q,<=C" open sets).

(i) O(K;; EN®,0'(Ky; E))=0' (K xKy; E;Q, E,),
(K,<=Cm, K,<C" compact sets).

(1“) M/(KI’ E1)®w MI(KZ; EZ)Q‘MI(KI XKZ; E1®a) EZ)’
(K,<Rm™, K,cR" compact sets).

(iv) '(Q; EN®, (5 E)) =l (Q,x 255 E;Q, Ey),
(Q,=R™ Q,cR" open sets).

Proof. Since the tensor product of locally convex Hausdorff spaces is commu-
tative and associative, it is sufficient to apply Propositions 2.1 and 3.1. Q.E.D.

Thus we have the following definition of the tensor product of analytic linear
mappings.

Definition 3.1. We use the notations of Proposition 3.2.
(i) Let u;=¢;®e;€0'(Q;; E), ¢, €0'(Q), e;cE; (i=1,2). Then we define

U@ u,=(¢;0¢,)(e;®, e;),

i.e.,

(U1 ®,u)(f1®f2)=d:1(f1)d2(f2) (e, ®,e;) for fied(Q), (i=1,2).
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(i) Let u;=¢;®e;€0'(K;; E)), ¢;€0'(K,), ;€ E; (i=1, 2). Then we define
U ®, Uy =(¢;®¢,)®(e;Q, €;),
ie.,
(U ® o u2) (f1®f2)=¢:1(f1)a(f2) (1@ e2) for fied(Ky, (i=1,2).
(iii) Let u;=¢;Qe;€ ' (K;; E), ¢p;€ #'(K,), e,€E; (i=1, 2). Then we define
U @, U =($1Q¢,)®(e;®, e,),
ie.,
(4, ®, u)(f1®f2)=d:1(f1)P2(f2) (e:®, €2) for fie#(Ky, (i=1,2).
(iv) Let u;=¢,Qe;e &' (Q;; E), b;e 2 (Q), e, E; (i=1,2). Then we define
U@, U =(91®¢,)®(e®, e,),
i.e.,
(U ®, u2) (f1®f2) =91 (f1)P2(f2)(€1@, 1) for fiex(Q), (i=1,2).

In all the real cases, we have
supp (u; ®,, u,) =supp (uy) X supp (u5).

¢) Convolution of analytic linear mappings

We now define convolution of analytic linear mappings. In the following of
this subsection, we assume that E, and E, be Fréchet spaces.

Proposition 3.3. Let ue0'(C"; E\) and ve®'(C"; E,). Then there exists
an analytic linear mapping, called the convolution product of u and v and denoted
by ux, v or vx,u, such that

(ur, 0)(f(2)=W:®, v,) (f(E+m)  forall feo(C),
where w stands for ¢ or w topology.
Proof. Let ¢ € 0’'(C") and fe O(C"). We define

Pxf e O(C")
by the formula

() (2)=¢(f(z—y).
We put

$ =),
where f(z) =f(—2z). If y €0’ (C"), we define ¢p=y by the formula
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(4) () = (@0 ¥,) (f(x+))
= (U ,(f(x+)
= p(Y#f) = (Uf).

By representing analytic functionals on C" by measures with compact support, we
see that, if ¢ and Y € @’'(C") are carried by the compact sets K and L, respectively,
¢y is carried by K+L. Then ¢'(C") becomes a commutative algebra and .oz’(R")
is its subalgebra. If ¢, ¥ € o7'(R"), we have

supp (¢*y) =supp (@) +supp (V).

If u=¢pRe, v=YQf, ¢, yc0'(C"), ec E,, and feE,, we have, by Definition
3.1, an analytic linear mapping in ¢'(C"; E,® , E,) defined by the formula

(U:®0 ) (f(x+ ) =W ,(f(x+ 1)) (e®,,f)
=0+ (f)(e®uf)-

This defines an analytic linear mapping u#, v, the convolution product of u and v,
putting

(ux, V) (f)=u:®, 1) (f(x+)).

This definition can be easily extended to arbitrary elements in ¢'(C*; E,) and
0'(C*; E,). Q.E.D.

By definition of the carrier of analytic linear mapping, we see that, if u e ¢'(C";
E,) and ve 0'(C"; E,) are carried by the compact sets K and L, respectively, ux, v
is carried by K+ L. Ifues'(R*; E,) and ve &/’ (R"; E,), we have

supp (ux,, v) =supp (u) +supp (v).

§4. Hyperfunctions valued in a Fréchet space E

In the following we suppose that E is a Fréchet space.
First we consider hyperfunctions on a bounded open set in R” valued in E.
Let Q be a bounded open subset of R*. We put

#(Q; Ey=x'(Q; E)|s£'(09; E).

Definition 4.1. The elements of #(Q; E) are called the hyperfunctions on Q
valued in a Fréchet space E or the E-valued hyperfunctions on Q.

Let K be a compact set containing Q. Then we have

K=(K-Q)u Q.
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By virtue of Proposition 2.3, every element u € &'(K; E) can be written as follows:
U=u,+u,, u, e (K—Q; E) and u,e'(Q; E).
This shows that the canonical mapping:
'(Q; E)|'(0Q; E) — #'(K; E)| o7 (K-Q; E),
which is evidently injective, is also surjective. Hence, we have
B(Q; E)~&'(K; E)'(K—-Q; E), K>Q.

Let now w be an open set contained in Q.
The mapping

&'(Q; E)— «'(Q; E)|o2'(Q—w; E)
defines a mapping
B(Q; E)y— B(w; E)

called the restriction.
If Te #(Q; E), we denote by T|w its image in Z(w; E). It is clear that, if
Q,cQ,=Q,, and Te #(Q,; E), we have

(T1Q)|25=TI[2;,

hence that the collection of %Z(w; E) defines a presheaf (of vector spaces) over Q
which we temporarily denote by £B| Q.

Proposition 4.1. Let Q be a bounded open subset of R".
1) The presheaf EB|Q is a sheaf.

2) This sheaf is flabby.

3) If K is a compact subset of Q,

'@, EB|Q)=/'(K; E).
p
4y If F=\U F; is a union of closed subsets of Q and TeI'(Q, EB|Q), there
i=1
exist T;e I'p(Q, EB| Q) such that

)4
T=Y T,.
2

14

5) If w is an open subset of Q,
(*B1Q)|o=EB|w.

Proof. 1) (i) Let Q= U Q; and Te #(Q; E) such that T|Q;=0 for all
iel
iel. This is equivalent to say that, if u; e o7'(Q; E) is a representative of T, the
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for all

image of uy in &'(Q; E)/«Z'(2 —Q;; E) is zero for all i. From here we have
supp (ur) N ;=0 i

hence,
supp (uy) =09,

that is, T=0. v
(i) Let 2=Q,U Q, and T;e #B(Q;; E) (i=1, 2) with
T2 nQ=T1Q n2=T

Let ure &' (Q, N Q,; E) and up, € o/'(Q;; E) be representatives of Tand T; (i=1, 2),

respectively. Since
supp (uT;_uT)CQi'—‘Ql neQ,
and since
Q-0 nQ,=(2,-92,n1Q,)U(2;-9),
we can, by replacing u,, with a equivalent u7 , suppose that
Up,=tr+0, supp(v)cQ—-Q,nQ,.
We put
Up=tr+v,+0v,€ (2, UQ,; E).
Let T’ be the image of uy in #2(2, U Q,; E). We have T'|Q,=T, for supp (uy

—uy) N Q;=supp (v;) N Q; (with j#1i) and this set is contained in

iel

(iii)) Let now Q= U Q; and T;e #(Q;; E), with

We can suppose the covering is countable and by virtue of (ii) increasing. Thus
we can suppose Q; € 2;,, and, since the envelope (in Q) of a compact subset of Q is

a compact subset of Q, we can suppose by (ii) that
j=0
Q,€Q;44,
(where {3 ; is the envelope of Q; in Q),

J

Tje Z(Q; E), Tiv| Q;=T;.
Let uTje.szi’(Q ;s E) be a representative of T;. Let d; be a metric defining the
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topology of «'(2—Q;; E) and v; € &'(0Q; E) such that
di(uTjH_UjH—(uT,-"Uj))_S_z_j, forall i<

We construct v;’s by recurrence by virtue of Proposition 2.5. The sequence uy, —v;
converges to an element up e &'(Q2; E). We have

ur=ur—(uy,—v;)+Ur,—v;)
=(uTj—vj)—§—h;‘m {ur,—ve—(ur,—vp}.
Since the sequence
{uTk“vk“(ur,-'Uj)}k

converges in «/'(Q—Q;; E), '

up=ur,—v;+w;, w;e'(Q—Q;; E).
Hence, we have

T1Q=T;,

where T'is the image of u; in Z(Q; E).

2) The sheaf EB|Q is flabby for, if wcQ, Te #(w; E), there exists ure
&'(w; E) and the image of u, in #(Q; E) is an extension of T.

3) We have an injection if K< Q:

' (K; E)— o'(Q; E)|'(0Q; E).
The image of &/'(K; E) is the set of Te #(Q; E) which are zero on 2— K, hence, is
I'(Q, EB|Q).

4) Let F and F; be the closures of F and F; in &, respectively, and ur a represen-
tative of T'in o&7'(2; E) so that

supp (up)<0QU F.

Hence, by applying Proposition 2.3, we can suppose

supp (urp) < F.
Let uy, e Z'(F;; E)
p.
uT:.; ur,.

If T, is the image of ur, in #(Q; E), we have

14
T=3 T,.
i=1
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5) If o'cwc=Q are open sets, we have
[, EB|Q)=%(w'; Ey=I(', EB| w). Q.E.D.

Next we consider hyperfunctions on R valued in a Fréchet space E.
Let £B, be the presheaf over R" defined as follows:

If Q is not bounded, #,(Q; E)={0}.
If Q is bounded, %,(Q2; E)=%(Q; E).
The restrictions are defined by
#(Q; E)—> % ,(w; E)
0—0 if Q is not bounded,
T— T|w if Q is bounded.

This presheaf satisfy the axiom (S1) of sheaves but not (S2) [cf. G. E. Bredon [2],
p. 5, or R. Godement [5], p. 109].

We denote by £4 the sheaf associated to this presheaf £B,. It is a sheaf of
vector space over C.

Definition 4.2. The sheaf % is called the sheaf of E-valued hyperfunctions
over R".

If TeI'(Q2, E#)=%(Q; E), T is an E-valued hyperfunction on Q. Hence an
E-valued hyperfunction on Q is defined by the following:

a covering Q= ike/IQ,- where €;’s are bounded open sets,
T;e #(9Q;; E) satisfying T;| 2,0 Q;=T;|2;n Q;.
Two such couples (2;, T)),.; and (Q;, T;);; define the same E-valued hyperfunction
if
T12:nQ2,=T,|1Q;nQ, forall iel, all i'el.
Theorem 4.1. 1) For all bounded open sets
E#|Q=EB|Q.

2) The sheaf £4 is flabby.
3) If K is a compact subset of R", we have

TR, EB)=x/"(K; E).
4) If F= U F; is a union of closed subsets of an open set Q in R" and 1f
TeT(Q, £E#), there exist T, e I'p(Q, EZ) with
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Mo

T= 3 T,.

1

~.
]

We write B(Q; E) for T'r(Q, EB). We write supp(T) for the support of an E-
valued hyperfunction T.

Proof. 1) is evident.
2) Let T,e B(Q,; E) and Q, an open set in R". Let & be the family of

couples (2, T) with
rog, TIQ():T().

Z is ordered and inductive for the relation
Q, D<K, T) if Q=Q, T'|Q=T.

Let (2, T) be a maximal element and we suppose that there exists xo& €. Let w
be a bounded open set containing x,. The E-valued hyperfunction T|Q n w can be
extended to T, e #(w; E) by virtue of Proposition 4.1. Hence there exists ae
Z(QU w; E) with

Slo=T,, S|Q=T,

which is a contradiction.
~ 3) follows from 1) and Proposition 4.1.
4) For simplification of notations we suppose that Q=R" and F=F, U F,.
Let & be the family of triplets (Q, Ty, T,) such that

T;e‘@FI(Q;E) (l=1,2)’
T, +T,=T| Q.

Z is ordered and inductive for the relation of order of inclusion and extension.
Let (@, T,, T,) be a maximal element and suppose that there exists xq& £.

Let o be a bounded open set containing x,.
Let T;| 2 nwe B (2 Nw; E) can be extended to T € Br7p(w; E) and

Tlwo—T1—~T2€ B F,ur,-F vy (@; E).
Hence, by virtue of Proposition 4.1, there exist S; € #r,_r,,o(w; E) such that
Tlo=T{+T57+S,+S,.
Since (T:+S))| 2N w=T;| 2 N w, there exist T} € Z(Q U w; E) such that
T/ |12=T, T{|lo=T;+S§;.
Hence we have -

T;e#¢(QUw; E) and
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TIQUw=T]+T4,
which is a contradiction. Q.E.D.

Theorem 4.2.  The sheaf 9’ of E-valued distributions is a subsheaf of E&.
Proof. Let Q be an open set in R". We define thus the mapping |
2'(Q; E)y—> B(Q; E).
Let Q; be a sequence of open sets with
Q€9 ,Qo Q,=0.

Let ;€ 2(Q;,;) and ¢;=1 in a neighborhood of ‘Q;. Let Te 2'(Q; E) and put
T;=¢,T. Then T;e&'(Q; E), hence T;e.2'(Q; E) and T;|1Q;e€ #(2;; E), where
we denote by T;|Q; the image of T; € «'(Q;; E) in #(Q;; E). If k>,

Ti— T €8 (Qsr —Q)).
Hence supp (T,—T;) n Q;=¢ and

The sequence T;|Q; defines an E-valued hyperfunction T’ € #(Q; E). It is easy to
verify that 7’ is independent of choices of {(Q;, ¢,)} and that we have thus con-
structed a linear mapping of 2'(Q2; E) into #(Q; E) which commutes with restric-
tions.

If Te 2'(Q; E) is of image zero, it is equivalent to say that for all j

supp (¢,;T) N Q;=¢.

Hence, by virtue of Proposition 2.4, the restriction of T'to 2'(Q;; E) is zero. Hence
T=0. Q.E.D.

§5. Operations on hyperfunctions valued in a Fréchet space E

In this section we define several operations on E-valued hyperfunctions.

a) Multiplication by an analytic function

Let © be an open set in R". If fe «&/(Q) and Te Z(Q; E) and {Q;}%, be an
open covering of Q with Q;€ Q;.,,, we shall define f T as follows. Let ur,€ L' (Q;;
E) such that '

ur,19,=T|Q,=T,,

where uy, | Q; denotes the image of uy, in Z(Q;; E). Since «'(Q;; E) is an d(ﬁj):
module, we have ‘
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fuTj+k|Qj=fu7‘j|Qja for k=0.

Hence, fur,|Q;’s define an E-valued hyperfunction which depends only on f and on
T and which we denote by fT.

We verified that we have thus defined on Z(Q; E) a structure of «/(£2)-module
and at the same time that the sheaf £ is an «/-module.

b) Tensor product of E-valued hyperfunctions

Let now E; and E, be two Fréchet spaces, and w stands for & or n topology.
Let then Q, and Q, be open subsets of R™ and R”, respectively. Let Ty € #(Q,; E,)
and T, € #(Q,; E,). Let

QIZU Ql} and QZZU 921
j=1 j=1
with
Q;€802;4+1 and Q;;€£54,,
uije'Ml(Qlj; E,), uT,j|Q1j=T|Q1j,
”T”EM'(Qzﬁ Ey), ur,;|Q,;=T|Q,;.
We have

(“T1j+k®wurzj+k) | QX sz=(“T,,»®w ur, )| Q% Q2y;

and the sequence (ug,,®,, ur,,)| 21;x Q2,; defines a hyperfunction on Q, x 2, which
sT\®,T,.

We can verify that this product has properties of tensor products of vector
valued distributions and extends them. In particular we have

supp (T; ®,, T) =supp (T}) x supp (T3) .

¢) Convolution of E-valued hyperfunctions

Let E, E, and E, be Fréchet spaces, w stands for ¢ or = topology. Let now
Te Z(R"; E,), and ue «'(R*; E;). We will now define ux, T, the convolution of
an E,-valued analytic linear mapping u and an E,-valued hyperfunction T. Let
Q; be an open ball with center at the origin and with radius j, and

Let k be such that u e &#'(Q; E;). If j'=j>k, we have
(u*muTj) l Qj—kz(u*muTj') ] Qj—k’
since

supp (u,, (g, —ur, ) CQ+(Q; —2) = CQ; .
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The sequence (ux,, ur,)|2;_ defines a hyperfunction which we denote by ux, T.

We verify that we have thus defined a linear mapping of #(R"; E,) into Z#(R";
E.®,E,) which extends the convolution of analytic linear mappings, and, if ue
&'(R"; E,), which extends the convolution of vector valued distributions.

The convolution product of several hyperfunctions, all but at most one with
compact support, can be defined and commutative and distributive with respect to
addition.

Letue'(R"; E,) and Te 4 (R";E,). We have

supp (u*, T)=supp (u) +supp(T).

In fact, let ury, e o7'(Q;; E;) with uy,|Q;=T|Q;. We can, modifying ur, on 69,
suppose

supp (ur,) =supp (T).
Then we have
supp (ux, T) N Q;_, =supp (ux,ur) N Q;_;
< (supp (u) +supp (ur,) N 2;_
< (supp (u)+supp (7)) N Q;_.

This permit us to extend our definition of the convolution.
If Te #(Q; E,) and ue &/'(w; E,), where Q and w are open sets in R*, and if
' is an open set such that

(0+CANQ =g,
we set
(us, T)| Q' =(ux,T)|

where T is an prolongation of T to #(R"; E,). In particular, if ue «'({0}), u*
defines a morphism of the sheaf £4%.

Definition 5.1. Let £ be a subsheaf of £E#. We call EF-support of an
element Te #(Q; E) and we denote by EZ-supp (T) the smallest closed subset of
Q outside of which T belongs to E#. (Or again E& -supp (T) is the support of the
image of T into the quotient sheaf EB|EF).

If E# ={0}, we have hence
{0} —supp (T)=supp (7).
If £ =E%, we have

Eg-supp (T)=0.
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Theorem 5.1. Let- Te Z(R"; E,) and ue o/'(R"; E,). We have then
E@szJa?-supp (ux, T)<EieZ-supp (u)+E;M—supp (T).

Proof. 1) It suffices to prove this formula for Te o?'(R"; E,), for if Q; is the
ball. of radius j with center at the origin and if u;, €.2/'(Q;; E,) coincides with T in
Q;, we have

El@w“&f—supp (ux, T)= (F1o7-supp (u) +£2.27-supp (T))
U (supp (u) +supp (T—ur,))
and, for a fixed k and a sufficiently large j, this set coincides on €, with
Eio7-supp (u)+E2.7-supp (T).

ii) Hence we suppose Te «7'(R"; E,) and let K, and K, be compact neighbor-
hoods of £i1.e7-supp (u) and E2.7-supp (T) respectively. We can write

u=u;+u,,

T=v,+v,
with

supp (u) =Ky,

supp (v,) =K,

Uy =JoJ1s

V2= Xw,f2>

where g, is the characteristic function of w;=R"—K; (i=1, 2) and f; is an E;-valued
analytic function in a neighborhood of ;.
The theorem then follows from

Lemma 5.1. Let Q be an open subset of R", fe «#/(Q; E,) and ue o«'(R"; E,).
Then we have

Ei®uE2.07-supp (uk,, yof ) < 0Q+ supp (u)
and, if xo& 0Q+supp (u),
(taf*ou) (xo) =<ty f(Xo=X))0
where {u,, f(x)), denotes the bilinear mapping which extends
(e f() 0 =1i(f) (€, ®,, €))
foru=ii®e, and f=f®e, and e;e E; (i=1, 2), ii e o'(R"), fe Z(R").
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Proof. We can suppose that Q is bounded. Let y, be the characteristic func-
tion of the ball of radius ¢ with the center at x,. Put

U=XQf*w U— Xc<ut’ f(.X - t)><‘U :

We have to prove that, for ¢ small enough, x, does not belong to supp (v). Let
g;€ «(R") be a sequence of analytic functions which tends to zero in & (R" —{x,}).
It is sufficient to prove that

U(gj) _)O)

o) =Ctn | ol = 0 (= X)g (1= ),

_ SR 109 (%) ity f(x =1 dx.

We can then interchange the integrations and the bilinear mapping. Hence,

)=t | 10 (x)g 1+ x)dx

= a9 0f =D

But we have

|, 1)/ (g (x+ )
= 10,0 (x= 1

| Gt 0= 100001 (x— .
Let K=supp(u). We have to see that
[ Gax=0= 100900/ (x = )dx

tends to zero in «/(K; E;). If tis in a neighborhood of K and if |x—x,|<é& and
x—te Q, the integral is equal to

} o 2= 09 ) (x = )
Suppose that x,=0. We are reduced to prove that the mapping

- g9 (xaf) with gri=1—y,
is a continuous linear mapping of &/ (R"—{0}) into «&/(K; E,) if K< Q and ¢ is small
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enough. Let Q, be an open ball centered at the origin with radius r. It is sufficient
to prove that our mapping transforms &/ (2;—Q, ) into «/(K; E;). The continuity
then follows from Lebesgue’s theorem. Q.E.D.

Hence we are reduced to prove Theorem 5.1 supposing that T and u are vector
valued distributions. Let £*(Q; E) be a non quasi-analytic class of E-valued func-
tions (for example &*(Q; E)=&M»}Q; E) for a non quasi-analytic sequence
{M,}; [30], [32], [42], [43]). Since there exist partitions of unity in &*(Q)=
&Mp}(Q), it is immediate that, T and u being distributions,

EléwEZé”*-supp (Txg,u)
cEig*-supp (u)+ E26*-supp (T) .
Let F=Ei1o/-supp (u)+ E27-supp (T). Then we have
T+, ,u|R"—Fe&*R"—F: E,®,E,)

and the theorem then follows from the fact ([41], and Appendix) that, if Q is an open
subset of R”, we have

Z(Q; E)=N&éXQ; E),

the intersection being taken over all the non quasi-analytic classes of E-valued
functions. Q.E.D.

d) Image of an E-valued hyperfunction by an analytic isomorphism

Let 2, and Q, be open sets in R" and y an analytic difftfomorphism of 2, onto
Q53

y:Q,— Q,.
If ue /' (Q,; E), we define
ucye L' (Q,; E)
by the formula
(wey) (N =u((foy ™)),  for fewr(Q)),
where |J| is the Jacobian of the mapping y~!. The mapping thus defined
Y '(Qy; E) — '(Qy; E)
is linear and verifies
supp (y*u)= y~!(supp (u)) for uew'(Q,; E).

Hence y* can be prolonged to a morphism of sheaves
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ye: EZ|1Q, — EZ|Q,.

This permits us to define the sheaf £# of E-valued hyperfunctions over a real analytic
manifold M.

§6. Elliptic regularity and the resolution of the sheaf of holomorphic
functions valued in a Fréchet space E

a) Elliptic regularity

Theorem 6.1. Let P be an elliptic differential operator with constant coeffi-
cients. Let Q be an open set in R" and u e #(Q; E) a solution of the equation

Pu=0.
Then u e /(Q; E).

Proof. We can suppose that Q is a bounded open set. Let it € &7'(Q; E) be a
prolongation of u such that

Pi=ve o'(0Q; E).

Let Y be an elementary solution of P. Y is analytic in R"—{0}. Hence, by virtue
of Theorem 5.1,

= YxPii=Y*v

is analytic in the complement of 0Q. Q.E.D.

b) The resolution of £¢

Let Q be an open set in C", C" being identified with R?". Let £%# be one of
the sheaves £/, E€, E9', EZ.

A differential form with coefficients in #(Q; E) is called of type (p, q) if we
can write it as follows:

f= X frdzyndzy,

[I]=p |J|=4
where I=(iy, -, i,), J=(j," j,)»
dzy=dz; A---Adz;
dz;=dz; A---AdzZ; ,
J1,€F(Q; E).
We then define the sheaf £#7-4 of differential forms of type (p, q) with coefficients

in £# and 0 and 0 are the morphisms of sheaves:
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O: Egpra Egzp+1,@

3: EFpa — Egpaati

defined by
of = Zn > éi.fI,sziAdzlAdzh
=1 ||=p [J]=¢ UZ;
~ n 0 _ _
=3 ¥ % O fp,dzAdz A dz,
=111 =p 19154 0Z;

We define in the same way the sheaf £0? of differential forms of type (p, 0) with
coefficients in £¢0. We then have a complex of sheaves:

0 s, Eop , EZp0 _¢ Egp1 _¢ ... _ 0, Egpmn s 0,

for dod =0, and, if fe £#7-9(Q) has holomorphic coefficients, we have ¢f=0.

If £ is one of the sheaves £& or £2’, it is well known that the complex is an
exact sequence of sheaves, hence a resolution of £¢7 [cf. L. Hérmander [13], and
P.D. F. Ion and T. Kawai [14]]. If E&# =£&, it is the resolution of E-Dolbeault-
Grothendieck.

If E# =Eo, the complex is again a resolution of £¢0?. In order to see this, we
have only to take into account the resolution of ¢7 by the sheaves .74 and the
argument of P. D. F. Ton and T. Kawai [14].

Theorem 6.2. The sequence

0 , Eop __, Egp,0 _¢ Egp,1 _& ..._¢ Egpn__
is an exact sequence of sheaves.

Proof. Let ue %7 °%Q; E) satisfy ou =0 If

u= Z uIdZI,
[I]=p
ou=0 implies that
0 -
o7, u;=0 for i=1,---, n,
from which we have
n a a _
2 oz oz =0
Since the operator (on R2")
’ L0 0
e
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is elliptic, it follows from Theorem 6.1 that u,’s are analytic on R2?" and hence
holomorphic. '
Next we have to prove the exactness of the above sequence in the latter steps.
We will reason as in L. Hérmander [13], p. 32. In order to do so, we have
only to note the following

Lemma. Let Q be a relatively compact open set in C". Let ue %74*1(Q; E)
(p, 20) satisfy the condition du=0. If Q' is a relatively compact open subset
of Q, we can find ve #7-9Q'; E) with dv=u in Q. -

Proof. We shall prove inductively that the lemma is true if u does not involve
dZyy 1,0, dz,. This is trivial if k=0, for u must then be zero since every term in
u is of degree g+ 1>0 with respect to dz. For k=n, the statement is identical to
the theorem. ' ‘ :

Assuming that it has already been proved when k is replaced by k— I, we write

u=dz, Ag+h,

where g € #7:4(Q; E), he #747(Q; E), and g and h are i‘ndependent of dik,-f-, dz,.
Write

g= 2" >’ gisdz, ndZy,
[If=p |J]|=q

where 3" means that we sum only over increasing multi-indices. Since ou=0, we
obtain

ag},J -0

03, j>k.

Thus g, ; is holomorphic in these variables.
We now choose a solution G, , of the equation

To do so, we choose
Y=5/_,® - ®,_,,
nZ,

where 6)_; and J,_, are the Dirac measures at the origin in C*~! and C"~* respec-
tively. Let Q" be such that Q'€ Q"€ Q and y5- the characteristic function of Q.
Set . - . Ve I

Gry=Y(ya3.91,)1 Q.
Then G ;€ #(Q; E) and it satisfies in Q"
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aGI,J _
azk )_gl,.l7
aGI,J _— .
7z, =0, j>k
If we set
G= ! GI’JdZI/\dZJ,
[Il=p {J|=q

then we obtain

0G=dz, Ang+h,,
where h, does not involve dz,, -, dz,. Hence h—h,=f—0G does not involve
dz,,---, dz,, so by induction hypothesis we can find we #7-4(Q’; E) so that dw=

f—0G there. But then v=w+ G satisfies the equation dv=u, which completes the
proof. Q.E.D.

§7. Boundary values of holomorphic functions valued in a Fréchet space E

1. Sate’s theory

a) Cohomology groups with coefficients in the sheaf £.o/

Let £/ be the sheaf of E-valued analytic functions over R" and £¢ the sheaf of
E-valued holomorphic functions over C*, the complexification of R*. If xeR",
we have an isomorphism

Eoy ~EQ, .
Hence, for all open subset 2 of R*, we have
Eg|Q=E0|Q.

Since every open set in C" is paracompact, it follows from Theorem B42 of P.
Schapira [33], p. 38, that

(25 E)=_ lim 0(Q; E),
FnRr=Q
where @ is an open neighborhood in €" of an open set Q in R” such that 3N R"=Q
and «/(Q; E) is the section module of EoZ on Q and &(&; E) is the section module of
E® on Q.

In the same way, in the following of this section, & denotes an open set in C”
and Q denotes an open set in R" as far as the contrary is not explicitly mentioned.

Theorem 7.1. Let Q be an arbitrary open set in R*. Then we have

H?(Q, Es/)=0
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for every positive integer p.

Proof. We know, by virtue of Grauert’s Theorem [cf. H. Grauert [6] or
H. Komatsu [19], Theorem V.2.5, p. 194], that Q has a fundamental system of Stein
open neighborhoods. Then, it follows, from Oka-Cartan Theorem B [cf. P. D. F.
Ion and T. Kawai [14], Theorem 2.1, p. 11] and Theorem B42 of P. Schapira [33],
p. 38, that for p>0, we have

HP(Q, Eat)= ﬁn%‘?:,,H"(Q’ E0)=0. Q.E.D.

b) Malgrange’s Theorem

Theorem 7.2 (Malgrange’s Theorem). Let 3 be an open set in C" and F a
closed subset of Q. Then we have

(i) HA, E0)=0, for p>n.

(i) H?(GQ, E0)=0, for p=n.

Proof. (i) By virtue of Theorem 6.2, and Theorem B32 of P. Schapira [33],
p. 27, the cohomology group H2(3, £0) is isomorphic to the p-th cohomology group
of the complex:

0 —> BYQ; E) 2 BYYQ; E) -2 - -2, B97(Q; E)
0—0

Hence, for p>n, this cohomology group is zero.
(i) We apply this result to € with F=C"—{ and have

H2._3(C", E0)=0, for p>n.

We write the exact sequence of cohomology groups with support in €*—Q [cf. P.
Schapira [33], Corollary 1 of Theorem B35, p. 32]:

coo —— HP(C", EQ) — HP(Q, £0)
— Hgﬁl?)(cns E(g) I Hp+l(Cn’ E@) .
The theorem then follows from the fact that

HP(C, E0)=0, for p>0. Q.E.D.

¢) Cohomology groups with support in a compact subset of C*. Martineau-
Harvey’s theorem '

Theorem 7.3. Let K be a compact subset of C" such that

Hy(K, 0)=0, for p>0.
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Then we have

HY(Cr, E0)=0,  for p#n,
and there exists an isomorphism p:

p: HYC", £0) — 0'(K; E).

Further, if K, c K, satisfy the hypotheses of this theorem, it follows from the proof
that the diagram

H;l(l(cn’ E0) - HIH(Z(CH, E@)

0'(K;; E) — 0'(Ky; E)
is commutative.

Proof. We consider the resolutions of ¢ and £0:

(1) 0—b O 008, 01 _&,... &, o0n__ 0,
(2) 0—s O —s FO0-2, 01 2, ... 8, g0n_ 0,
(3) 0 EQ E 50,0 o, Egg0,1 8, ..._3 EgpOn 0.

Since we have

HP(K, &%) =lim.ind. H(Q, &%) =0, for p>0, ¢=0,
2oK

by virtue of Theorem 4.11.1 of R. Godement [5], p. 193 and Lemma 411 of P.
Schapira [33], p. 118, the cohomology groups H?(K, 0) are isomorphic to the
cohomology groups of the complex:

(4) 0 s Z9(K) 2 1K) -2 oo L5 %"(K) — 0,

and since the sheaves E#%? are flabby, the relative cohomology groups HE(C", £0)
with support in K are isomorphic to the cohomology groups of the complex:

(3 0 EpgQ0 8, EgQl 0, .. 8, Egen 0
(where E#%:? stands for #%P(C"; E)). The hypotheses H?(K, 0)=0, p>0, imply
that the sequence (4) is exact. Hence, the operator 0 are homomorphisms, since
they are of closed range, for the spaces «7°#(K) are DFS-spaces. [cf. A. Grothendieck
[11], Chapter 4, § 2, Theorem 3, p. 218.]

If we denote #%-P(C") by &% 7, the spaces &°-?(K) and #% "7 are DFS- and
FS-spaces by the duality pairing:
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(T iz 3 fidz)

[J|=n—p

= > 61,;<¢J,f1>,
TUJ=(1,,n)

where ¢; ; denotes the signature of the permutation (1,---, n)—(I, J). Further, the
transpose of the operator

0: A%P(K) — %P T1(K)
is (aside from sign) the operator
0: BYr Pl ——s BFQinp,

By virtue of Serre’s lemma [cf. H. Komatsu [18], Theorem 19, p. 381 or P. Schapira
[33], Lemma 413, p. 121] the sequence

0 g(l)(,o b V@})(,l o . ... @8 '%’(I%'n
is exact. Hence the sequence

0 EgQ.0 _8,EgQ1 _8, ... &, EgQ.n

is also exact by virtue of Theorem 1.10 of P. D. F. Ion and T. Kawai [14], p. 9,
since the spaces #¢°? are all nuclear FS-spaces and £4% P~ Z%P®E. Consequently,
we have

H(Cr, EQ)=0, for p<n.

At last we consider two exact sequences:

0 — O0(K) — %K) 2, &%1(K)

0« BY"OBY" ' —— BY" L BP L.
The mapping

0: BYr~1 — BY"
is of closed range since it is the transpose of a mapping of closed range. Hence
BYn[0B% "1 (which is isomorphic to HE(C", 0))

is isomorphic to ¢'(K). Since we have

EgVr~g%?@®E and 0'(K; E)~0'(K)QE,
we conclude that

Hy(C, F0)~ HL(C", 0)QE=0'(K; E). Q.E.D.
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d) The relative cohomology groups with support in R” (Sato’s theorem)

Theorem 7.4. Let Q be an open subset of R".
(i) The relative cohomology groups HH(C", £0) are zero for p#n.
(i) The presheaf over R"

Q — Hy(C", E0)

is a sheaf.
(ili) This sheaf is isomorphic to the sheaf E# of E-valued hyperfunctions.

Proof. (i), (i) Let Q be a bounded open subset of R*. We have the exact
sequence

== Hio(C", BO) — H(C", 20)— HB(C", P0) — HG (", BO)— -

[cf. H. Komatsu [19], Theorem I1.3.2, p. 77, or P. Schapira [33], Theorem B35,
p. 31]. Since @ and 0Q are real compact sets which consequently satisfy the hypothe-
ses of Theorem 411 of P. Schapira [33], p. 118, we have

HY%CC", E0)=0, p<n-—1,
and we have the exact sequence
0 — HE1(C, E0) — Hin(C, E0)
— H%(C", E0) — H}(C", E0) — 0.
Since the morphism
3o(C", F0) — HE(C", 20)
is isomorphic to the morphism
Z'(0Q; E)y — o'(Q; E)
which is injective, we have
Hy Y(C", £0)=0.
Then we consider the sheaves over R":
Hn(P0)
associated with the presheaves
Q — HE(C, £0).

These sheaves are zero for p<n and since H(C", £0)=0, if p> n, by virtue of Theo-
rem 7.2. The parts (i) and (ii) of the theorem follow from Theorem II1.3.18 of H.
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Komatsu [19], p. 89, or Theorem B36 of P. Schapira [33], p. 34.
(iii) Let Q be an open subset of R”. From the exact sequence

0—> H}o(C", F0) — HE(C", E0) — H}(C", EO) — 0,
we deduce that the sheaf
Hhn(EO)

is flabby.

If K is a real compact set, the relative cohomology group HE(C*, E¢) is isomor-
phic to &'(K; E) by virtue of Theorem 7.3. Hence for all bounded open set Q,
the relative cohomology groups

HY(C", E0) = HEy(C, £0) | Hig(C", FO)
and
#(Q; E)y=s7'(Q; E)|2'(6Q; E)

are isomorphic. Consequently the sheaves

Hya(EO0) and EZ
are isomorphic. Q.E.D.

Let p be the isomorphism
Hhn(EO) L £,

Let  be an open set in R” and @ an open set in C" with @ nR"=Q. Using the
resolution of £0 by £2%7’s we see that we have an isomorphism (again denoted by

p)
p: BY"(Q; E)0#YY(Q; E) =~ B(Q; E).
The inverse isomorphism is that which assigns to T'e #(Q; E) the class of
T®d,dz, A+ ANdZ,

modulo %% " 1(Q; E).

In order to see this it suffices to prove this on sections with compact support.
We denote by /(K x {0}) the space of analytic functions in a neighborhood of K
in R2" (i.e.: the dual of #g(R?")). The isomorphism

BY"(R*"; E)/389~ (R2"; E) > o' (K; E)
is the transpose of

A (K) — {fe #(Kx{0}); 0f=0},
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that is,
A (K) — O(K) — 2% %(K x{0}),
and the transpose of the mapping
O(K) — «(K)
is the mapping

T— class of (T®3,)dz, A -+ A dz, modulo [08% " '(R*"; E)].

2. Utilization of the Cech’s cohomology groups

a) The mapping of “boundary value”

Let Q be an open set in R" and Q a Stein neighborhood of € in C* with
OnR"=Q.
We have the exact sequence
ooy HY(Q, EO) — Hn-1(§— Q, £0) 2 Hp(Q, £0)
— H"(Q, Ev) =0.
If n=1, we find
HYG, F0)=0(3~Q; B)|0(@; E),
and, if n>1, § is an isomorphism
HY(3-Q, E0) =~ Hi({, £0).

Using the resolution of £0 by the sheaves %%, we recall the construction of J.
We consider the double complex below with exact rows:

0 0

e O

0— H3(3, E0)=0— 0(3;E) — 0(Q—Q;E)

l

0—> BY0; E) — B°°0; E) — B°°(Q-Q;E) —0
3| ;
i

g
él éJ( ;

0—> B 1(Q; E)—> B%"1(3; E) — B> (2—Q; E)—0

él él 5

0—> B%"(3;E) — #°"(3;E) — B (Q-Q;E) —0

l |

0 0

«-—

é

.

e ——

O —— T —
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Let Te H"" (2 —Q, £0) and Te #°" (@ —Q; E) a representative of T (hence
0T=0). Let Te %"~ (Q; E) be a prolongation of T. ¢Te #%"(3; E) shall be a
representative of 6T in 2% %(Q; E)/0#% " (Q; E)y~HX®, £0).

Let now % be a Stein covering of @ —Q, i.e., a covering by domains of holo-
morphy. Since a finite intersection of domains of holomorphy is a domain of
holomorphy [cf. L. Hérmander [13], Corollary 2.5.7, p. 40] and, if w is such an
open set, we have H?(w, E0)=0 for any p>0, the covering % shall be “acyclic’’ [cf.
P. Schapira [33], Definition B51, p.42]. By virtue of Leray’s theorem [cf. H.
Komatsu [19], Theorem I1.3.29, p. 98, or P. Schapira [33], Theorem B52, p. 43],
there exists an isomorphism

At H™ Y%, E9) — HY(( - Q, E0).
We shall consider a special covering . We set
Q:=0n{zeC"; Imz#0},
U= {Qi}?=1 .

% is an acyclic covering of 3—Q by n open sets (but by 2" connected open sets).
Hence we have

CH(, £o)={0}

(since the n-cochains are alternate elements of n+ 1 indices taken in the set {1,---, n}).
We set

We have an isomorphism
Cr\u, E0) —s 0(Q4Q; E)
f — i
and an isomorphism

C2@, E0) —> 11 0(3'; E)
i=1

f - (fl,m,i,---,n)'il=l

(with the convention that this two last groups are zero for n=1). The image of the
mapping

o: C" 2%, o) —> C" Y, E0)
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by these isomorphisms is the mapping which we denote by o

1 0(8i; E)— 0((3%Q; E),
i=1
(figemi=1 — ;1 (=D i
where f1 ;... is the restriction of f; ......, to Q#Q. We denote by
> 0(Q; E)
the image of the mapping . It is equal to the image of the mapping

n
i rotiior — 3 St

Hence we have an isomorphism

0((4Q; E)| Y. 0(QF; E) == H (%, £0).

We denote by u the mapping
0(04Q; E) — H Y%, E0)

thus defined.
We consider the mapping of

o(Q%Q; E) into #(Q; E):
o(34Q; E) £, H\(#, E0) -4 H (3 —Q, E0)
3, HYQ, E0) - #(Q; E).

Definition 7.1. We put
b= <%>npoéoiop.
If fe 0(Q%Q; E), b(f) is called the boundary value of f.

b) Properties of the operator b

In order to study the mapping b we have to return to the Leray’s isomorphism
A.  We recall how it is constructed. We consider the double complex:
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0 0 0 0

| L | o
0-0(2—-Q; E)y-»%°°(Q—-Q;, E)5--- 535" 1(Q—-Q; E)YS5%%"(Q—Q;E) >0

l l 5 l 5 |
0— C%, o) — Co(u, E®°0) 5.5 CO(u, EB%m 1) 5 CO(u, EB%") —0

_,

61’ 6l 2 = 51 = o
0— CYu, o) — C'(w, E5°°) 5.5 Cl(w, Egom) 5 C\ (@, EZ%") —0

3] ) 3l )

5i 5i ! H = 6\11 X 6l:
0—Cr2(#, E0)— Cr=2(, ER%0) _g,.,_c,cn—z(%, E.@o,n—l)_ﬁ Cn—z(%, Ego:n) 50

o) o) o ) : o
0—-C=1(%, E0)— Cr1(au, ER0-0) _6),,_1)611—1(%, E'@O,n—l)_“})C:z—l(JZ/’ Egg0.m) 50

! !

0 0 0 0

Let fe 0(Q4Q; E), n>1. We define
feCr(u, ER0r1),
putting
(famD1,m=1,
f,=09,, p<n-—1,
where g, € C?(%, E#° " ?2) is a solution of

59,; =.fp+1’

Cp(%, E(@O,n—p—z) _é__, Cp(%, E.@O,n—p—l)’ gp _5_)f17
| d

Cp+1(%, E@O,n-‘p—z) fp+1'

The solutions g, exist since df,=0 for any p and the columns of the double complex
are all exact except for the first. Finally we obtain

foe Cxu, E5°71), ofy=0.

Hence f,, defines an element of #% " }((—Q; E) (again denoted by f,,) such that
0f,=0. The class of f, modulo 6%°"2(Q—Q; E) will be A(f).
This process of construction is called “Weil’s process’’.

Proposition 7.1. Let E, and E, be two Fréchet spaces. Let Q and Q' be open
sets in C" and C, respectively, with

OnR"=Q and O nR=Q/,

and feo(@4Q; E,) and ' e0(@ —Q'; E,). If fQ,fe0(@xQ4$QxqQ;
E,.®,E,) is defined by
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(f®uf)(z, 2)=f(2)®,.f'(z),
we have
b(f @l )=b(/)®, b(F").,
where w stands for the ¢ or w topology.
Proof. Put
8,=0n {z‘e C"; Imz;#0} .

Let #={Q)r_,, %’={§’—Q’}' and " be the covering of ("—Q" (where Q"=
OxQ', Q"=Qx Q') by the open sets

G =0,x3, 1sisn,
Qi =0x(@Q-Q).

We denote again by E®oF2g the sheafl of E,®, E,-valued hyperfunctions over
R2(»+1) and similarly we denote by ¢ and 6 the differential (in dZ) and the coboun-
dary operator “in’> C"*1,

We temporarily suppose n>1.

Let (f,, g,) be the elements of a Weil’s process departing from f and reaching

)
fy€ Cr(@, Erggom=r1),
g,€CP(a, F1g0nr2),
09p=Fp 09p=fps1
(foDin=fs fo€ B 1 (Q—-Q; E)).
We define
e Cra, E\®uEr ggnt1-p=1y

ghecra’, Ei®oE2 gn+1-p-1)

Jiowip=0 1f n+1&(io, -, i),
f,i/o"'ip—l,n-i—l =fi0-"ip_1®wf,;
g,ilo"'ipzo if n+1§(i09”'7 ip))
Gioip- 1+ 1 =gio~~~ip_1®wf,'

We have
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0g, =17
59; =f;;+1
since
g(giowip_l@wf,) = (59i0-~-i,,_ |)®wfl
and
” 4 g
(39, foipm+1 = ‘Zo(_ D7G iy ipnt1s
=
since g7,..; =0if (n+1)&(ig, -+, i), and the last term of this equality becomes
(59;1— l)io"'il,@wf,'
We finally find
re v, Elészgo,;x—l)’
(D=0 if n+l1&(,j),
(fll,)in+1=fi®mfl 1§l<n+l

with fi=f; on @;nQ,. Let foe #%" (Q—Q; E,) such that fo| 3;=f. From now
on we can suppose n=>1. If n=1, the proof begins now. We define gg thus: let
fo be a prolongation of f, to #%"1(Q; E,). Put

(gglzo (]§l<n+l)a (gg n+1:f_0®wfl‘

Then
(090)in+1=[i®uf"; i<n+1,
(690):,;=0, i, j<n+1.
Hence
6g5=/S1.
Let
fo=0g5.

¢ defines an element of #%"(Q"—Q"; E,®,E,), 6fo®.f', the class of which
modulo 6% 1(Q"—Q"; E,®,E,) is A(f") (with f"=f®,f") for the (f7, g) are
the elements of the Weil’s process issued from f”. :
Let f'e #(Q'; E,) be a prolongation of f’ and
f—6=5f0®wf—/ € ﬂo,n(ﬁ”; E1®wE2) .

f4 is a prolongation of f3.
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By virtue of the definition of b we have

Ef(,:[(_%)"b(f) ®0,+ ii a5 T;]df] A ndZ,,

5}’:[%b(f’)®5y, +—a—‘;T dz'

l nt1 ’ 4 a o a 51 - — -
< _> b(f)@w b(f )®6y®5y'+ i; *55: Tl+~a~2_—, T j|le A A dZn AdZ

with T,, T'e€ B,(Q2"; E,;®, E,). Consequently we have

b(f")=b(f)®,b(f"). Q.E.D.
Proposition 7.2. Let E, and E, be two Fréchet spaces. Let 3 be an open set
in C™ with
OnR"=Q.

Let he ®(Q; E,) and fe 0(Q%Q; E,). We denote again by h the restriction of h
to Q. Then we have

b(h®,f)=h®,b(f),
where w stands for the ¢ or © topology.

Proof. Let (f,, g,) be the elements of a Weil’s process departing from f and
reaching A(f). In order to see that (h®,f,, h®,4g,) are the elements of a Weil’s
process departing from h®,,f and reaching h® , A(f), we have to prove that

d(h®,g,)=h®, g,,
0(h®,9,)=h®,, 09,
which is evident. For p we have only to remark that
p~(h(x)®,, T)=the class of (h(x)®, T)®J,)dZ, A--- A dZ,
=the class of h(z)®,(T®J,)dz, A---Adz,. Q.E.D.

We shall prove in the same way that, if P(D,) is a differential operator, P(D,)
its complexification, we have

b(P(D.)f)=P(D)b(f).

Hence if P(x, D,) is a differential operator whose coefficients can be prolonged to
holomorphic functions on @, we have
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b(P(z, D.)f)=P(x, D)b(f).
In general, we have the following:

Proposition 7.3. Suppose that E, and E, be two Fréchet spaces and @ be a
convex tube domain: @=R"xiw. Let Q be GnR"=R". Let ue«'(R"; E,)
and fe 0(Q4Q; E,). Then we have

b(ux,f)=ux, b(f),

where @ stands for the & or m topology. (If u=¢®e, f=f®f, ¢ €' (R"), fe
0(Q4Q), ec E, and feE,,

(ux,[)(2) =<, [(z—1))eQ,f.
If fe 0(04Q; E,), ux,fe 0(04Q; E,® , E,).)

Proof. Here again we show only that ux, commutes with 1. Let (f,, g,) be
the elements of a Weil’s process issued from f. We have to prove that

(ux,g,)=u*,09,
o(ux,g,)=u*,0g,.

The first equality is evident and the second follows from the fact that if @, =@, are
two tube domains:

QIZR" X ia)l,
92=Rn X ia)z,
W1 Wy,

and if he #(8,; E,), ue o'(R"; E,), we have
(u*wh)lﬁlzu*w(hlﬁl)'

Then we have
pP+1 X ~
(0(u*4, 9)igrrrip 4 = ZO (= Dy, @igotymips | Ligiy s
j=
p+1 ) ~
=u*w [ ZO (— ]')Jgio"'ij'“ip.;.]] | Qio"'il,+ Lt Q. E. D.
j=

Theorem 7.5. (i) Let G be a domain of holomorphy and Q=0 nR". Put
Q,=0n{zeC"; Imz,#0},

1

Qﬂg= fn\ i
i=1
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Qi - /\ Q}'
J#i
The mapping
b: 0(Q4Q; E) — #(Q; E)

is surjective and its kernel is 3. oG E)if n>1or 0(@Q; E) if n=1.
(ii) Letues/'(R"; E). Put

i(z) = <§;1;;>nux<(t;’_ 2:1)".‘.1 '-"’(i,,:}';,'")) :

Then i € O(C"#R"; E) and b(ii)=u.
(iii) Let geoZ(Q; E). There exists a domain of holomorphy Q such that g
can be prolonged to ©(3; E) and G nR"=Q. Let then

Q,={zeQ;0Imz>0}

where 6=(a, -, 0,), 0;= 1, and g, be the function in O(Q4Q; E) which is equal
to zero on all the connected components of Q¥Q except for Q, where it is equal to
9,14, Put

sgn (0)=06,--0,.
Then

b(g,)=sgn (o)g.

Proof. (i) has been proved at the paragraph 2, a).
(i) By virtue of Proposition 7.3, it is sufficient to prove that

*1 —( =77 n
b5t )=(-2ime, @80,
and since

I _ 1 1
R ®...®Zn,

2z, 2,
it is sufficient by virtue of Proposition 7.1 for E;=E,=C to prove this result for
n=1. But since é— is locally integrable in R?, ZL can be prolonged to a distribution

on R? and we have
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(iii) By virtue of Proposition 7.2, it is sufficient fo prove this result for g=1,
but this has been proved in P. Schapira [33], p. 139. Q.E.D.

c) Representation of analytic linear mappings
Let K be a compact set in C" of the form
K=K, x--xK,.

Since K admits a fundamental system of neighborhoods which are domains of
holomorphy,

Hi(K, 0)=0,  i>0.

(cf. R. Godement [5], Theorem 4.11.1, p. 193 and P. D. F. lon and T. Kawai [14],
Theorem 2.1, p. 11.) By virtue of Theorem 7.3, there exists an isomorphism

Hy(C", E0) — O'(K; E).
Let Q be a domain of holomorphy containing K and put
Qi:Q ﬂ {ZEC", ZiGKi} .

U ={8;}1_, forms an acyclic covering of Q— K since Q; are domains of holomorphy.
Put

Qi= /—\ Q}’
JjFi
QK= Q..

i=1

Let 3 0(Q%; E) be the image in O(Q¥K; E) of fI 0(Q; E) by the mapping
i i=1

(e — 2 (=D
where f; denotes the restriction of f; to Q#K. We can define as in the paragraph
2a the mappings
O(Q¥K; E) L5 H™ Y (%, E0) 4> H1(Q—-K, E0)
—> Hy(C", B0) 2 0'(K; E),
and put
b=<-§—>"poao;.ou.
Theorem 7.6. (i) The mapping

b: 0(Q%K; E)— 0'(K; E)
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is surjective and its kernel is Zn 0(Q; E)if n>1or 0(Q; E) if n=1.
i=1
(i) Letue?®'(K; E). Put

~ 1y I
76 =i 1 ==z
Then tie O(Q%K; E) and
b(#)=u.

(iii) Let fe0(Q4K; E) and ge O(K). Let o=w, %X - Xw, be an open set
containing K with o<Q and g e 0(w). Let I'; (i=1,---, n) be regular contours in
w; enclosing once K; and oriented in the usual sense. We have

bUﬂm=F4V&'“&JUM@MA”WW

Proof. (i) and (ii) can be proved as Theorem 7.5 by modifying slightly Propo-
sitions 7.1 and 7.3.
(iii) The integral

| | r@e@a:

I ry

does not depend on the chosen contours and defines a linear mapping:
b': 0(Q%K; E) — 0'(K; E)

which is zero on 3’ ¢(€*; E). Hence it is sufficient by virtue of (i) and (ii) to prove
that if u € 0'(K; E) we have

b'(@)=u.
But
O, S (et o
(e ], Eharu
Thus we have proved the theorem. Q.E.D.

3. Representation of distributions valued in a Fréchet space E

We preserve the notations of the paragraph 2. Q is a domain of holomorphy
which encounters R" along Q.

Let fe 0(Q4Q; E), ¢ € 2(RQ), and 6=(0,,"--, 0,), 6,= + 1, sgn(c)=0,--0,. We
set



Analytic Linear Mappings and Vector Valued Hyperfunctions 45

Cy(f, )=\ fx+ion)p(ds.

This integral is defined for sufficiently small |y|>0.

We suppose that, for an arbitrary ¢ € 2(Q), C5(f, ¢) has a limit C°(f, ¢) when -
y tends to zero “by positive values” (i.e.: y;>0, i=1,---, n). It follows from the
Banach-Steinhaus theorem that there exists an E-valued distribution T, € 2'(Q; E)
such that

To($)=C(f, ¢)

(cf. F. Tréves [40], Corollary to Theorem 33.1, p. 348).
We denote by 0(34Q; E; b’) the subspace of 0(34#Q; E) of those f such that
Cs(f, ¢) has a limit for an arbitrary ¢ € 2(Q) and for an arbitrary 0. We put then

b'(f)=2 sgn(9)T,.

Now let 0(34Q; E; 2') (resp. 0(Q%Q; E; C%) the subspace of ¢(Q#Q; E) of E-
valued functions whose restriction to each connected component of G#Q can be
prolonged to an E-valued distribution (resp. to an E-valued continuous function up
to the boundary) in the neighborhood of Q.

We evidently have

o(24Q; E; COco(Q4Q; E; b').
Proposition 7.4. Let fe 0(Q#Q; E; C°). Then b(f)eC%Q; E) and b(f)=
b'(f).

Proof. Let O*=0n{y,>0,--,y,>0}. We can for simplicity suppose that
f is zero on all the connected components of Q$Q except for @*. That is, f=
(f*,0,---,0). Let T=(1, 0,---,0) e 0(Q%Q). Let ¢+ be the characteristic function
of {y;>0} and ¢,, that of {y;=0} in C. By virtue of the proof of Lemma 431 of
P. Schapira [33], p. 145, there exist the elements (f,, g,) of a Weil’s process depart-

ing from T and reaching

(£) 100.06,06.,86,,8 @, 83, @114z, A Adz,
eZB>"1(Q-Q),

and such that

09p=Fp 09p=Fp+1

(fn~ 1)1--'n= 1: fO € go,n—l(é_g)'
In fact,

(fn— 1)1"'7;:: 13
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gl'--n—l ® ®¢z,‘l 12
gio"'in—2=0’ if (iO"“’in—2)7é(13"'9n_1)a

Srome1=001m 1= $1,0--06,03,@ @91, 1%,
figwin-2=0, if  (igy ey iy2)#(1,, n—1),
Gron2= b T 45,0 @9 0,@ @, 2
BT Y - Y - LA
Giooi =0, i (igyrer, iy_3)#(Loer, n=2),
Jron-2=0g1.n-2

( > 2 ¢t @ @05, @b, B, ® @7, _,dZ; A dZ;

i
2
LV 61,000,000 @8, ,®b,,®, d2) N5y,

-fio"'in—-3=0’ if (io,"', l‘”_3)7(:(1,"‘,n"‘2),

thus f, and g, are linear combinations of tensor products of

f,oand L (6,®8,)dz,

Hence we can set
[o=I®fp 9,=9®9,
Then (f}, g,)’s are the elements of a Weil’s process issued from f, for

5gp=fp+1 and 8gp=fp

follows from

a- G @ @b ®8, @1 AdZ A ++]=0

&A@ @@ T
=[—;*f®"'®¢x,-®5yi®"‘]d5i/\ = f@dEA[].

Hence

;\n—1
f®<lj> [¢x1®5)’1®"'®¢xn—1®5l’n—1®¢:n]d21 A A dz"" 1
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will be a representative of A(f) in #%" 1(@—Q; E). This element is naturally
prolongable to @ and if we apply 0 we find

(£) @19« ®5,8-86.,03, 142, A+ A dZ,
=<,§) FI@,dZ, A AdE,.

Hence b(f)=f|Q2=b'(f). Q.E.D.

Theorem 7.7. We have 0(Q%Q; E; 2")=0(Q4%Q; E; b). If fe 0(34Q; E; 92,
then for any xeQ there exist a neighborhood & of x in Q, and pe N* and ge
O(S¥w; E; C% such that

Dig=f,
where w=0& N R".

Proof. See L. Schwartz [35]. Q.E.D.
Theorem 7.8. Let fe 0(34Q; E; b'). Then we have b(f)e 2'(Q; E) and
b(f)=b'(f), that is, we have, for any ¢ € D(Q),

BN @)= lim T sgn(0)| fx-+ioy)odx
where 6=(0,,---, 6,), 0;= 1 |, and sgn(6)=a, - 0,.
Proof. 1t suffices to prove that all point x of 2 has a neighborhood w such that
b(flotw)e 2'(w; E),
b(f| d¥w)=>b'(f| d%w)

where @ is a neighborhood of x in @ such that @ n R"=w.

Let then ge 0(d%w; E; C°) and pe N", DPg=f. Such g exists for a suffi-
ciently small neighborhood @& by virtue of Theorem 7.7. By virtue of Proposition
7.4 we have

b(g)="b'(g).
The theorem follows from this, for we have
b(f)=b(D2g)=DZb(g) and b'(Dig)=DIb'(g)
since

[ Drg(x+inpedx=| Drg(x+iy)px)dx

=(=07I{ gCe+inDpxIdx
holds. | Q.E.D.
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Appendix. A characterization of vector valued analytic functions

In this appendix we give a characterization of vector valued analytic functions
by non quasi-analytic classes of vector valued functions.

Let E be a Fréchet space. We denote by a=(ay, -, %,) an n-tuple of non-
negative integers and |a| =o;+ - +a, We also denote x=(xy,--, x,) € R" and

. olal
D - ax%I...ax;lln *

We denote by .# the set of sequences {M,}%, of positive numbers satisfying the
following conditions:
(1) logarithmic convexity,

M;éMp—lMp+1s P’:lazs,

(2) there are constants 4 and h such that
M M, < Ah?* M, , for all p and g,
M, SARPM ;5

(3) non quasi-analyticity,

Let Q be an open subset of R”. We denote by ¢M#}(Q; E) the set of in-
definitely differentiable functions defined in Q valued in E such that, on every compact
subset K < Q, there exist constants 4 and h satisfying

sup [|D* f(x)| £ Ah1* 1M, for all o,
xeK

where | || denotes continuous seminorms defining the topology of E.

We denote by £M»}(Q) the space &M»/(Q; C). Then the space £Mr}(Q; E)
is stable by multiplication by a function of &M»}(Q) and by differentiation and
it contains functions with arbitrarily small support.

We have the following theorem characterizing E-valued analytic functions by
non quasi-analytic classes of E-valued functions. For E=C, this is already known
(cf. Chou [41]).

Theorem.

N EMNQ; E)y=s(Q; E)

{Mplen

= the set of E-valued analytic functions.
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Proof. «w/(Q; E)c Nn&Me(Q; E) is evident. Hence let f&./(Q; E). Then

there exist a compact subset K of Q and a continuous seminorm | || such that
i sup LYy
la] \xek ;OC!'

Hence we can extract a subsequence {a(}(Ja™)| strictly increasing) such that

D™ f(x)|

s, 1/]atm)| 3
T | i z2me.

sup
xeK

We put M,=(m?la™|)r for |at" V|<p=Z|at™| and My=1. Then we can see
that there exists M, e .# with M,<M,. From here we have f & &M»H(Q; E).
Q.E.D.
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College of General Education
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