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In this paper we will study the Fourier hyperfunction solution of the abstract
Cauchy problem

du(t)/dt= Au(t),
u(0)=a,

where A is a closed linear operator in a complex Banach space X and a € X.

The abstract Cauchy problem has been studied by many authors ([1], [2], [7],
[8], [9] and the others quoted there). By modifying Ouchi’s method, our method
of using vector valued Fourier hyperfunctions simplifies the necessary and sufficient
conditions for the well-posedness of the abstract Cauchy problem in the generalized
sense.

As for the notions of Fourier hyperfunctions and vector valued Fourier hyper-
functions we refer [3], [4], [5], [6] and [10].

We wish to express our thanks to Professor H. Yoshizawa for his encourage-

ments and to Subprofessor T. Hirai for his encouragements and suggestions during
the preparation of this work.

§1. Fourier hyperfunctions with values in a Banach space

In the later sections we shall use Fourier hyperfunctions of one variable with
values in a Banach space. So that we recall their notion and properties following
Junker [3], [4]. Let E be a complex Banach space. Let C be the space D x \/ —1R
with the product topology where D=[— o0, 0] is the radial compactification of
the space R in the sense of Kawai [5], [6]. Let Q be an open set in C. Consider
the space @#(Q; E) of all E-valued slowly increasing holomorphic functions defined
on Q. Let I be an open set in . We can now characterize an E-valued Fourier
hyperfunction on I as an element of the quotient space

%(I; E)=d(D\I; E)|0(D; E),
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where D is an open neighborhood in € of I containing I as a closed set. If fe 2(I; E)
is defined by f(z) e d(D\I; E), it is denoted by f=[f(z)] and f(z) is called a defining
function of f. '

Further results for vector valued Fourier hyperfunctions can be found in the
articles cited above.

§2. Existence and uniqueness of Fourier hyperfunction solutions

Let L(E, F) be the totality of bounded linear operators from E into F, where
E and F are complex Banach spaces with norms || - |z and || - || respectively. Then
L(E, F) is a complex Banach space with the operator norm denoted by || - || =|| - ||z -
The space L(E, E) is written as L(E) for short.

Let X be a complex Banach space. For any linear operator 4 in X, we denote
its domain by D(A4). If A is closed, D(A4) becomes a complex Banach space with
the graph norm, which we denote by [D(4)].

The resolvent set p(A4) of A4 is defined as

p(A)={2eC; (A-A)"'e L(X)}.

Now we define the well-posedness of the abstract Cauchy problem in the sense
of Fourier hyperfunctions.

Definition 2.1. Let X be a complex Banach space and A a closed linar operator
in X. Then A is said to be well-posed for the abstract Cauchy problem at t=0
in the sense of Fourier hyperfunctions (well-posed for short), if there exists Te #
(D; L(X, [D(A)])) satisfying the following conditions:

() support of T<[0, o0]
(B) (O —dORA*T=®1x, THS' (ORI - H DR A) =R p( 4,

where I is the identity mapping of [D(A)] into X, and I, and I;pay; are the identities
on X and on [D(A)] respectively, and = means convolution and ® denotes tensor
product.

We shall call T a Fourier hyperfunction fundamental solution.

From Definition 2.1 we deduce the following

Proposition 2.2. If a closed linear operator A is well-posed, then the funda-
mental solution T is unique in Z(D; L(X, [D(A)])).

Proof. This result easily follows from the facts that the support of T'is contained
in [0, co] and that T'is a two-sided fundamental solution. Q.E.D.

Now we give a criterion for the existence of the Fourier hyperfunction funda-
mental solution of the abstract Cauchy problem.
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Theorem 2.3. Let X and A be as in Definition 2.1. Then A is well-posed
if and only if the following conditions hold: '

(1) For any A such as ReA>0, (A— A)~1 exists and belongs to L(X).

(i) For any ¢>0 and any 6>0 there exists C, ;>0 such that

I(A=A)"1 £ C, 5 exp (e A])
holds for A€ Y s, where 3 5 is the set
>s=12€C; Re A=4}.
In order to prove the Theorem 2.3, we need the following

Lemma. Let E be a complex Banach space and f=[f(z)] an E-valued Fourier
hyperfunction with support in [0, +co0]. That is,

fe r[o,+oo](D, Ex).

Define the Laplace transform of f by
Uy exp (=20 ==\ Jrexp (= 220z,
')V

where y is a curve encircling the interval [0, + o) counter clockwise and 0<a =
[Im z|<b for zey and for any a>0 and b>0. Then, for any ¢>0 and 5>0 there
exists C, ;>0 such that

I<f, exp(=20)[eSC, s exp(eld])  for de R,

Proof. Since {f, exp(—A4t)) does not depend on y by virtue of Cauchy’s
theorem, we can take y in the following way:

J —k<x<o0, y=Kk>0;
y: lx=—;<, —KS V=K

—K=<x<00, y=—K.

Then the estimate

”i(z)”Eéck,seslzl’ z E'))
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holds. If we take k=¢/2, then
es{z | |e—}.z| — es|z|e—ux+vy é Cseslllec|x|—ux’

where z=x+iy and A=u+iv. For any 6>0, if we choose ¢>0 so that e<J, then
for p=Re(4) =6 the function e*/*I7#* is integrable on the curve y. Hence

I<f, exp (=70} = C, s exp (¢]])
for any 1e > ;.

Proof of Theorem 2.3. Necessity. Assume that 4 is well-posed and let T be
the fundamental solution in #(D; L(X, [D(A)])). Let T(z) be a defining function
of T. Then we have

T(z) e d(C\[0, + 0]; L(X, [D(4)])).

Consider the Laplace transform of T:
(T, exp (=At)>x= —S T(z)exp(—Jz)xdz  for xeX,
v

where y is a curve encircling the interval [0, c0) in such a way as in the Lemma.
Then we have

(A—AXT, exp (= A)>x =T, Lexp (—At)>x — ALT, exp (— At)yx
=<T, —dfdt(exp (—A))yx— A(T, exp (= An))x
=’ —0()@A)*T, exp (—A)Px={5()RIy, exp(—A)d>x=Iyx=x, xe X
(T, exp (= A))(h— A)x =Tx(0' (R — 5(1)@A), exp (— At))x
= (O®Iipayy €XP (= 20)yx=Iipayx =2, x € [D(4)]
So,
(2= AT, exp (= 20)> =Ly, CT, exp (= 2))(2— A)=Ipq .
Thus we get
(T, exp(—=At)y=(A—A)"! for Rel>0.
Hence the necessity follows from the above Lemma.

Sufficiency. First fix a real we p(4), >0 and put A=u+iv. We take two
half lines:

Irtrpy=w,v20;I;: uy=w, v<0.

We put
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To(z)=(1 /2m’)g e (h— A)y1di, Te(z)=(1 /Zni)g e (— A)1do.
Iy 'y
Then we have the estimate
le*2(A—A) | S C, sexp (ux—vy+e(lul+[v])) (z=x+iy, A=p+iv)

forany >0, and e Y ;(0<d<w). Forany y>2e the integrand of T%(z) decreases
more rapidly than the multiple of e~¢* as v tends to infinity. Hence T9(z) is holo-
morphic in Im z>0 and the estimate

IT4(2)| £C,, exp (@|z]), Im z>a>0,
holds. Analogously we can show that T(z) is holomorphic in Im z<0 and
| Te(z)| £ C,.exp(o|z]), 0<a< —Im z.

If Rez<0, by Cauchy’s Theorem we can deform the paths '), and I'; into
the same path y: u=w, y=0 without changing the values of T%¢(z) and Te(z).
Hence T%(z) and T%(z) are holomorphic in the half plane Re z<0 and coincide with
each other there and

IT2@)) = T22)| £C, . exp (]2]), Re z< —b<0.

Thus we have an L(X, [D(A)])-valued holomorphic function T“(z) defined on
C\[0, + o0] which is the holomorphic extension of T2(z). We can easily see that
To(z) and T9(z) do not depend on w>0 and define T(z) e G(€\[0, + o0]; L(X,
[D(A)]) and T.(2) e (€ ; L(X, [D(A)])). Then T(z) is the holomorphic extension
of T.(z). Differentiate T9(z). Then we have

dTe/dz=ATe(z)+(—1)2mi)(e®?[z)Iy  on X,
dT9dz=T2)A+(—1/2ni)(e**|2)] p4y;  On [D(A)].
Since
H(O®Ix=[(—1/2miz)[x]=[(—e**[2niz)Ix],
S(O®Iipan=L(—1/27i2)1pga] = [(— e 2miz) o]

we see that T=[T(z)]=[T%(z)] is a Fourier hyperfunction fundamental solution.
Q.E.D.

§3. Fourier hyperfunction fundamental solution of exponential increase

Definition 3.1. Let X be a complex Banach space and A a closed linear
operator in X.
Assume that A is well-posed. Then we say that the Fourier hyperfunction
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fundamental solution T is of exponential increase if there exists a real number
Eo such that exp(—¢&NTe 2(D, L(X, [D(A)])) for E>E&,. We write it EFHFS

of type &, for short.

Then we have a criterion for the existence of the EFHFS of type &, of the
abstract Cauchy problem.

Theorem 3.2. Let X and A be as in Definition 3.1. Then A has an EFHFS
of type , if and only if the following conditions are satisfied:

(1) For any A such as Re A>¢&,, (A—A)™1 exists and belongs to L(X).
(i) For any ¢>0 and any 6>¢, there exists C, ;>0 such that

I(A=A)7H = C, 5 exp (elA—&ol)
holds for Ae Y. s, where we put
>s;=14€C; Re 1=6}.

Proof. Necessity. Let Tbe the EFHFS of type &, and T(z) its defining function.
Then

¢ T(2) e G(C\[0, +0]; LX, [DA])  for &>&p.
We have only to consider the Laplace transform of T
(T, exp (—A)yx={exp (— DT, exp (— (A=) x

— —g (exp (=) T(2) exp (—(A—O)xdz  for xeX

where 7 is a curve such as in the proof of Theorem 2.3. Here Re (A1—¢)>0. Since
&> &, is arbitrary, we have
(T, exp(—At))=(A—A)! for Rel>¢,

in the same way as in the proof of Theorem 2.3. The condition (ii) follows from
the same arguments for the Laplace transform of T as in Lemma.

Sufficiency. First fix a real we p(4), o>&,. We take two half lines I'} and
I'; as before and define T2 and T in the same way as before. Then T2 can be
extended to an L(X, [D(A)])-valued holomorphic function T(z) in C\[0, + o) which
does not depend on w. Then we have

e T(2) e G(C\[0, + o0]; L(X, [D(A)])  for &>&,.
Now T=[T(z)] is a desired EFHFS. Q.E.D.
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