J. Math. Tokushima Univ.
Vol. 16 (1982), 33-53

Fourier Hyperfunction Semi-groups

By

Yoshifumi Ito
(Received May 1, 1982)

Introduction

The notion of generalized semi-groups of operators in a Banach space was first
introduced by Lions [7] in the class of the (exponential) distribution semi-groups of
operators in a Banach space.

Since then many authors have studied the generalized semi-groups of operators
in a topological vector space in the several kinds of classes. For this we refer
[1], [9] and many others quoted there.

In this paper we will introduce the notion of the (exponential) Fourier hyper-
function semi-groups of operators in a Banach space and characterize its infinitesimal
generator. This is a generalization of the Hille-Yosida Theorem and the Feller-
Miyadera-Phillips Theorem and the Lions Theorem.

Applying the theory of Fourier hyperfunction semi-groups, we also characterize
the infinitesimal generator of an (exponential) Fourier hyperfunction group. This
is a generalization of Stone’s Theorem.

As for the notions of Fourier hyperfunctions and vector valued Fourier
hyperfunctions, we refer [3], [4], [5], [6], [8].

§1. Fourier hyperfunctions with values in a Banach space

First we recall the concept of Fourier hyperfunctions valued in a Banach space
E following Junker [3], [4]. Let C be the space D x \/—ilR with the product to-
pology where D=[ — o0, oo] is the radial compactification of the space R in the sense
of Kawai [5], [6]. Let Q be an open setin €. The space ¢(®2) of rapidly decreasing
holomorphic functions on Q consists of all holomorphic functions on  n € such
that, for any compact set K in Q, there exists some positive constant é so that the
estimate

If(z)|SCexp(—d|z]) zeKnC

holds. @(Q) is a nuclear FS-space. For a compact set K in C, we define the space
O(K) as the inductive limit of ¢(Q2) for Q containing K. Then ¢(K) becomes a nuclear
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DFS-space. We put Z,=/(D) and Z,=27(D,) where Dy=[0, c0]. Here &7
denotes the restriction to D of the sheaf ¢ associated with the presheaf {¢(Q);
QcC.

We denote by 2, (E)=L(#,, E) the space of continuous linear mappings of 2,
into E with the topology of uniform convergence on each bounded set in £,, whose
elements are said to be Fourier hyperfunctions valued in E or E-valued Fourier
hyperfunctions. We define 24(E)=L(%,, E) analogously. £((E) is the subspace
of 2#,(E) formed by E-valued Fourier hyperfunctions with support in D,,.

Further results for vector valued Fourier hyperfunctions can be found in the
articles cited above.

§2. Fourier hyperfunction semi-groups and exponential Fourier hyperfunction
semi-groups

In this section we introduce the notions of Fourier hyperfunction semi-groups
and exponential Fourier hyperfunction semi-groups.

Let E, F be two complex Banach spaces. Then L(E, F) denotes the space of
continuous linear mappings of E into F which is a Banach space with the operator
norm. We put L(E)=L(E, E).

We consider an L(E)-valued Fourier hyperfunction G with support in D, namely
Ge Py(L(E)). For xeE, we define Gx € Z((E) by the formula

Gx(d)=G(d)x, ¢ € Z,

where G(¢)x is the image of x € E by the continuous linear mapping G(¢) of E into
itself.

Definition 2.1. We call a Fourier hyperfunction semi-group (in E) (FHSG
for short) an L(E)-valued Fourier hyperfunction G with the following properties:

(1) Ge2y(L(E)).

(2) Glpx)=G(P)GW)  for all ¢ and Y in 2,.

3) if e Py and xe€E, and if y=G(P)x, the Fourier hyperfunction Gy is
almost everywhere equal to a function u(t) which is continuous for t=0 and u(0)=y,
and u(0)=0 for t<0 and satisfies the estimate

lu(®)| < C exp (et) for t=0 and for any &>0,

where | - || denotes the norm in E.

(4) the set of elements G(¢)x, where ¢ runs through 2, and x runs through
E, is dense in E.

(5) if a given x € E satisfies G(¢p)x=0 for all ¢ € #,, then x=0.

Definition 2.2. We call G an exponential Fourier hyperfunction semi-group
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(in E) (EFHSG for short) if there exists &, =0 such that, for any £>&,, exp (—<NG
becomes FHSG.

We define the space &, by the formula

Pry= U_exp(=E0Z,

&>&o
whose topology is defined as the finest locally convex topology such that the multi-
plication mapping exp (—&t) of &, into &, is continuous for any £>¢,. Then we
define the space 2% (E) by the formula

PeE)= [\ exp(EOPYE).

G e 2 (E) is a continuous linear mapping from £, into E.

Then an EFHSG G is an element of 2% (L(E)) for some £, =0 such that exp-
(—&1)G is an FHSG for any > ¢&,.

For G e 2 (L(E)) and ¢ € Z;,, we define

G(¢) = (exp (—&NG) (exp (ED)¢)
for some £> &, such that exp (¢0)¢ € 2.

§3. Infinitesimal generator of Fourier hyperfunction semi-groups

In this section we will introduce the notion of the infinitesimal generator of
Fourier hyperfunction semi-groups.

In order to do this we need to define the operator G(S) for an FHSG G and
a hyperfunction S with compact support in [0, c0).

We will go as follows. We will call a regularizing sequence a sequence p, of
2, such that p, converges to the Dirac measure 0 at the origin in the space of
measures with compact support endowed with the weak topology. For example we
have a regularizing sequence

Pu(x)=(n]/7) exp (—n2x?).

In fact p,(x) € #, =P, and p,—9.

Let S be a hyperfunction with compact support in [0, c0). Then for any p e #,
we have Sxp € Z,.

Then we consider an element x in E for which there exists a regularizing sequence
p, having the following two properties:

(i) G(p)x—x when p,—9,

(i) G(S=p,)x converges, say, to y in the space E.

Suppose that there exists another regularizing sequence, say, o,, with the same
properties, i.e.
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(i) G(o,)x—x when a,,—4,
(i1)"  G(Sx0,,)x converges, say, to z in E.
We will now show that y==z. In fact, for every ¢ € #,, we have

G(P)G(S*py)x=G(Sxdxp,)x,
which gives
G(P)y=G(S*d)x
tending p, to 6. In the same way we have
G(d)z=G(S*¢p)x.
Hence
G(p)(y—2z)=0 for all ¢ in &,.

which implies y —z=0 by virtue of Definition 2.1, (5). Hence the desired result
follows.
This consideration justifies the following

Definition 3.1. We say that xeD(G(S)) —the domain of G(S)— if there
exists a regularizing sequence p, such that G(p,)x—x and G(S*p,)x converges in E.
The limit y of G(S*p,)x is denoted by G(S)x. Hence

G(p,)x — x,
G(S#p,)x — G(S)x.

If B is an unbounded operator in E with the domain D(B), we denote by D(B?)
the set of x e D(B) such that Bx e D(B), and we put B(Bx)=B2x. We can define
D(B™) and B™x analogously.

Lemma 3.1. For all xeE, and for all ¢ e P,, G(d)x belongs to D(G(S)™)
whatever m is, and

G(S)"G(¢)x =G(S*S*---xSx¢)x
o
holds.

Proof. Let p, be some regularizing sequence. We have
G(p,)G(9)x=G(p,xd)x — G(9)x,
G(S#p,)G(P)x = G(S*dxp,)x — G(S*P)x,

so that G(¢)x is in D(G(S)) and
G(S)G(P)x=G(Sxp)x.
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And so on. Q.E.D.
Corollary. D(G(S)) is dense in E.

Proof. In fact, by virtue of Lemma 3.1, D(G(S)) contains the sct of elements
G(¢)x, p € P,, xe E. But this latter set is dense in E by virtue of Definition 2.1,
(4). Hence D(G(S)) is dense in E. Q.E.D.

Lemma 3.2. If x € D(G(S)), we have
G(S*¢)x=G(S)G(P)x=G(¢)G(S)x,  for all ¢eP,.
Proof. Let p, be as
G(p)x — x,  G(Sxp,)x — G(S)x,
and put y=G(S)x. Then we have
G(P)G(S*p,)x — G(P)y.
Since
G($)G(Sxp,)x = G(Sxdpxp,)x — G(S*P)x,

we obtain the lemma. Q.E.D.

Lemma 3.3. If x; € D(G(S)), x;—0 in E, and G(S)x;—y in E, then y=0.

Proof. By virtue of Lemma 3.2, for any ¢ € #,, we have

G($)G(S)x;=G(S*P)x;.
But
G(9)G(S)x; — G(9)y,
and
G(Sx¢p)x; — 0.

Hence G(¢)y =0 for all ¢ € 2,, so that y=0 by virtue of Definition 2.1, (5).
Q.E.D.

Lemma 3.3 justifies the following
Definition 3.2. G(S) denotes the smallest closed linear extension of G(S).
We can summarize some of the obtained results in the following

Theorem 3.1. Let G be an FHSG and S a hyperfunction with compact support
in [0, ). We can define a closed linear operator G(S) with dense domain. We
have
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G(S)G(p)x=G(S)G(P)x=G(S*P)x, ¢ € #,, x € E.

Among the operators G(S), it is the operator G(—3')=A that plays the funda-
mental role in this paper, where 8’ is the derivative with respect to ¢ of the Dirac
measure ¢ at the origin.

Definition 3.3. The operator A defined above is the infinitesimal generator
of an FHSG G.

This terminology is justified by the fact that, in the case where G is a usual
semi-group, the operator A coincides with the classical infinitesimal generator.

§4. Examples
Proposition 4.1.  G(8)=I(=identity).
Proof. By Theorem 3.1 we have
G(0)G(¢)x=G(¢)x.
Hence the result follows. Q.E.D.

We now consider the function Qe 2, or &, and we denote by , the function
YQ discontinuous in general at the origin, where Y is the Heaviside function.

Considering @, as a hyperfunction with support in [0, 00), we can evidently
define G(Q,). We will show the following

Proposition 4.2.  G(2,)=G(Q), so that G(Q,) is a continuous linear operator
of E into itself.

Proof. Let ¢ €2, xe E. We will show that
G(2.)G(d)x=G(DG()x, (4.1)

which asserts the proposition. Put G(¢)x=y. By virtue of Definition 2.1, 3),
we see that Gy=u is an E-valued function which is null for ¢ <0, continuous for >0
with u(0)=y, and satisfies the estimate

lu(®)|| = C exp (et) for any &>0 and =0.

Hence
GY(Q)=G(Q)y =u(Q)= Sw w(Ot)dt. (4.2)
0
On the other hand, if p, is a regularizing sequence, we have

G(P)G(2,)y = G(2. 1)y =G @ 1) = u() (@, 5p, (1)
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(we have here used Lemma 3.2). When p,—4, we have

G(p,)G(Q,)y — G(Q.L)y

and

[ u(t)(@,2p, (00t — [ uewa,
0 0

which shows (4.1) comparing with (4.2).

§5. The properties of the infinitesimal generator of an FHSG

39

Q.E.D.

We will consider the domain D(A) of the infinitesimal generator 4 of an FHSG

G as a complex Banach space with the graph norm.
We denote the Fourier hyperfunction valued in L(D(A4), E)

—0®RA+0'®I (I =the identity)

by
—A-+ddt.
We will show the following
Theorem 5.1. Let G be an FHSG with the infinitesimal generator A.
we have

(1) Ge2yLE, D(A))).
(2) (—A+(d/dt)*G=0®1g, (Ig=the identity in E).
(3) Gx(—A+(d/dt)=0®Ip4y, (Ips=the identity in D(A)).

Proof. Let Qe P, and Q. =YQ. We have
6'#Q , =) +(0)0.
If ¢ €2, x € E, then we have
G(6'%Q . xp)x = G(6)G(Q , *p)x = G(Q,)G(6'*)x
=G(Q#¢p + Q0)p)x.
Hence we have
—AG(Q *+P)x = G(Qxd)x + A0)G(¢)x
and
G(2,)G(8' #¢)x = G(Qx¢)x + (0)G(P)x.

But by virtue of Proposition 4.2, we have

Then

(5.1)

(5.2)



40 Yoshifumi ITo
G(2,)=G6(Q), G(Q})=G(Q).
By virtue of Lemma 3.1, we have
G(2,+9)=G(2,)G(P)x, G(Q2ix¢)=G(Q,)G(P)x,
s0 that (5.1) and (5.2) can be written in the forms
— AG(Q)G(¢)x = G(Q)G(d)x + 0)G(¢)x (5.3)
— G(Q)AG(¢)x = G(Q)G()x + Q0)G(¢h)x. (5.4)

Now, take any y in E. By virtue of Definition 2.1, (4), G(¢)x’s are dense in E, so
that there exist a sequence ¢,€ %,, and a sequence x, € E such that G(¢,)x,—y.
Then

G(Q)G(¢,)x, — G(Q)y, (5.5)
and by (5.3) (with ¢, and x,)
— A(G(Q)G(,)x,) — G(Q)y +Q(0)y. (5.6)
Since A is closed, it follows from (5.5) and (5.6) that
G(Q)y € D(A) (5.7)
and
—AG(2)y=G(2)y+0)y. (5.8)

Hence we see that G(Q2) maps E into D(A) linearly.

On the othe hand, if y—0 in E, then G(Q)y—0 in E, and (5.8) shows that
AG(Q)y—0 in E. Hence G(Q)e L(E, D(4)). If Q-0 in £, G(2)-0 in L(E) and
by (5.8) AG(2)—0 in L(E). Hence G(2)—0 in L(E, D(A)), which proves (1).

We can write (5.8) in the form

—AG(Q)+((d/d1)G) (2) = Q0)] g,

which proves (2).
We are now going to prove (3). We use (5.4). Take x in D(G(—4')). Then
there exists ¢,—¢é with G(¢,)x—x and G(—0d"+¢,)—Ax, so that (5.4) with ¢=¢,

gives
— G(2)Ax=G(Q")x + Q(0)x. (5.9

If now x is in D(A), there exists x, in D(G(—9")) with x,—x, Ax,—Ax, so that
(5.9) (written for x=x,) gives in the limit the same relation (5.9) valid for all x in
D(A). This proves (3). The theorem is proved. Q.E.D.

Corollary. If G is an FHSG with the infinitesimal generator A, the equation
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—Au+(djdtyu=T

for a given Te 2y(E) admits a unique solution u=G=T in 2(D(A)).
If =0 is the lower bound of the support of T, u is null for t<a.

§6. The inverse theorem

Definition 6.1. Let A be a closed linear operator with the domain D(A) dense
in E. If there exists a G € Z(L(E, D(A))) which satisfies the equations

(—A+(d]d)xG=50®1I;, G*(—A+(d[dt))=0®Ip ),

then we call G a fundamental solution of the abstract Cauchy problem (4. C. P.
for short)

—Au+(dldu=T, ue2yD(A)), (6.1)

for a given Te P(E).
In this case A is said to be well-posed.

Corollary. If A is well-posed, then the fundamental solution G of A.C.P. is
unique.

Proof. See Ito [4].

Proposition 6.1. If A is well-posed and G is a fundamental solution of A. C. P.,
then A. C. P. has a unique solution u=GxT for a given Te P(E).
If 0=0 is the lower bound of the support of T, u is null for t<a.

In the last section we have shown in Theorem 5.1 that the infinitesimal generator
A of an FHSG G is well-posed.

In this section we will show the inverse theorem. That is, if a closed linear
operator with the dense domain D(A) is well-posed, then it is an infinitesimal gene-
rator of a certain FHSG.

Namely we have the following

Theorem 6.1. Assume that a closed linear operator A with the dense domain
D(A) is well-posed. Let G be the unique fundamental solution of A.C.P. (6.1).
Then G is an FHSG and A is the infinitesimal generator of G.

Proof. We have to show that G satisfies the conditions (1)—(5) of Definition 2.1.
(1) is evident from the definition.
(2), (3). LetpeP, and xcE.
Put y=G(¢)x. Then u(f)=Y(t)G{P(s—1))x has the properties of u(z) of Definition
2.1, (3). Further u(t) satisfies the equation
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—Au(t)+u'(H)=0®y.
Hence, by virtue of Proposition 6.1, we have
u(t)=G6*(0®y)=Gy.
Let y € 2,. Then

Gwy=| w6y di={" pouw di=" ()0 G5~ )x di

= {(Y)=(Gx$)"} (O)x = {(Y)+G xp} (0)x = {G( Y )} (O)x
={Gx((Y¥)#¢)"} (0)x = G(Y=)x.

Here we denote ¢(t)=¢(— 1) and G(¢) = G(e).
(5) Suppose G(¢)x=0 for all € P,. Then Gx=0. Then u=Gx=G*(ERx)
satisfies the equation

—Au+u =0®x.

Since u =0 we can conclude x=0.

(4) We denote by E” and D(A)’ the duals of E and D(A) respectively. Since
D(A) is dense, we can consider E’ to be a subspace of D(A)'.

For any ¢ € £, we put

H(¢)="(G(¢)): D(A) —E".

Then we have He 24(I(D(A), E')). If A’ denotes the transpose of A4, A’ is in
L(E’, D(A)'). We take the transpose of the equations

—AG(P)=G(P)=dO g,  —G(P)A—G(¢) =Py
Then we have the equations
—H(@A' —H(P)=¢O) .,  —A'H(P)—H(P)=¢O0) 4y
Hence we have
Hx(—A"+(d]dt))=0®1, (—A"+(d]d)xH=56@1Ip 4.

Now we can show that the set of elements G(¢)x, ¢ € #,, x € E is dense. In fact, if
x" € D(A) and

{G(P)x, x'>=0 forall ¢e, x€kE,
then we have
H(¢)x'=0 for all ¢e2,.

Then by the above proved fact we can conclude x'=0.
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At last we will show that A4 is the infinitesimal generator of the FHSG G.

Now assume that A, is the infinitesimal generator of the FHSG G. By the
assumption that 4 is well-posed, the mapping T—Gx*T is an isomorphism of Zy(E)
onto 2,(D(A)). On the other hand, by virtue of Corollary to Theorem 5.1, the
mapping T—G+T is an isomorphism of 2((E) onto #y(D(4,)). Hence we have
D(A)=D(A,).

Since the relations

—AG+(d/dt)G=0Q1p, —A,G+(d]d)G=0R 1
hold, we have
AG=A,G.
Hence
AG(P)x=A,G(¢)x forall ¢e?,, xeE.

Since the set of elements G(¢)x, ¢ € Py, x€ E is dense in D(A)=D(A4,), we have
A=A,. This completes the proof. Q.E.D.

We have just proved that a closed linear operator A with the dense domain D(A)
in E is the infinitesimal generator of a certain FHSG if and only if 4 is well-posed.
Thus by Theorem 2.3 of Ito [2] we have the following

Theorem 6.2. A closed linear operator A with the dense domain D(A) in a
Banach space E is the infinitesimal generator of a certain FHSG is if and only
if the following conditions hold:

(i) For any complex number A such as Re 1>0, (A—A)~! exists and it is an

L(E)-valued holomorphic function in the half plane Re 1> 0.
(ii) For any ¢>0 and any 6>0 there exists C, ;>0 such that

[(2—A) M =C, s exp (¢l A])
holds for A€ Y 5, where Y5 is the set
>s;={1eC; Re =6}

§7. Infinitesimal generator of an EFHSG

In this section we characterize the infinitesimal generator of an EFHSG G.

G is an element of 2 (L(E)). In analogy with FHSG we define G(S) as a closed
linear operator with the dense domain in E for a hyperfunction S with compact
support in [0, 00).

At first we say that xe D(G(S)) if there exists a regularizing sequence p, in
P, such that G(p,)x—x and G(Sxp,)x converges in E. Here we can easily see that
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G(S*p,) has a sense. Since the relation

G(dp*yY)=G(P)G(Y) forall ¢,y e,

holds, we can verify that the limit of G(S*p,) does not depend on the choice of
regularizing sequence in Z,. Let G(S)x be this limit.
For every ¢ in 2; and every x in E, G(¢)x is in D(G(S)) and

G(S)G(¢)x = G(Sx¢)x.

We define G(S) to be the smallest closed linear extension of G(S).

in Definition 3.2.

Proof. G(p,)x=(exp (—<{0G)(exp (¢Np,)x—x

and
G(S*py)x=(exp (—E)G) ((exp (£N)S)x(exp (E1)p,))x
— (exp (= <0G) (exp (E1)S)x.
Hence
G(S)x =(exp (—{1)G) (exp (£1)S)x.
Taking the smallest closed linear extension we have the proposition. Q.E.D.

Proposition 7.2.  G(Q,)=G(Q) for Qe P,,, where Q, = YQ.

Proof. G(Q,)=(exp (—£0)G) (exp (EDQ,)=(exp (— ENG) ((exp (¢0)Q),)
=(exp (—<1)G) (exp (£1)Q) = G(Q). Q.E.D.

Definition 7.1.  The closed linear operator A=G(—9") with the dense domain
in E is said to be the infinitesimal generator of an EFHSG G.

We will show the following

Theorem 7.1. Let G be an EFHSG with the infinitesimal generator A. Then
we have

(1) Ge 2 (L(E, D(A))).
(2) (—A+d]d)xG=56®1I}.
(3) Gx(—A+(d]dt))=6@1p4).

Proof. H=exp(—¢1)G is an FHSG and the infinitesimal generator B is
H(—0")=(exp (—&1)G)(—0') = G(—exp (—&08) = G(—E5—8")= A— ¢l Then, by
Theorem 5.1, we have
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Using the relations H=exp (—¢t)G and B=A—¢I we can rewrite the above two
equations into the equation of G, so that we can obtain the conclsuion. Q.E.D.

Corollary. If Ge 2. (L(E)) is an EFHSG with the infinitesimal generator
A, the equation

— Au+(d/dtu="T

for a given Te 2 (E) admits a unique solution u=Gx*T in 2, (D(A)).
If «=0 is the lower bound of the support of T, u is null for t<a.

Definition 7.2. Let A be a closed linear operator with the domain D(A) dense
in E. If there exists a G € 2 (L(E, D(A))) which satisfies the equations

(—A+(@d))*G=0@Ip  Gx(—A+(d]dD)=5®Ipa,

then we call G a fundamental solution in 2 (L(E, D(A))) of the abstract Cauchy
problem (A. C. P. in P (E) for short)

—Au+(djdtu=T, ue2},(D(A)), (1.1)

for a given Te 2 (E).
In this case A is said to be well-posed in 2 (E).

Corollary. If A is well-posed in 2, (E), then the fundamental solution G of
A. C. P.in 2, (E) is unique.

Proposition 7.3. If A is well-posed in 2 (E) and G is a fundamental solution
of A. C. P. in 2, (E), then A. C. P. in ?;(E) has a unique solution u=Gx=T for
a given Te 2, (E).

If =0 is the lower bound of the support of T, u is null for t<o.

We have shown in Theorem 7.1 that the infinitesimal generator 4 of an EFHSG
G is well-posed in 2% (E).
Now we will show the inverse theorem.

Theorem 7.2. Assume that a closed linear operator A with the dense domain
D(A) is well-posed in 2 (E). Let Ge 2, (I(E, D(A))) be the unique fundamental
solution of A. C. P. (7.1). Then G is an EFHSG and A is the infinitesimal gene-
rator of G.

Proof. We put exp(—<¢)G=H. Then He 2y(L(E, D(A))) and satisfies the
equations

(=B+(d/d)*H=06®I5, Hx(—B+(d/dt))=0®Ip4),
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since G=exp (ét)H is the fundamental solution of A. C. P. (7.1). Here B=A—¢I.
Then D(B)=D(A). Hence H e 2(L(E, D(B))). Thus B is well-posed for A. C. P.
(6.1) and H is a fundamental solution of A. C. P. (6.1). Then H is an FHSG by
virtue of Theorem 6.1 and B is the infinitesimal generator of H. This holds for
any ¢>¢,, so that G is an EFHSG in the sense of Definition 2.2. Let A, be the
infinitesimal generator of G. Then B, = A4, —¢I is the infinitesimal generator of H =
exp(—¢&G. Thus A—¢I=B=B{=A,—¢I. Hence A=A,. Q.E.D.

We have just proved that a closed linear operator A with the dense domain
D(A4) in E is the infinitesimal generator of a certain EFHSG if and only if A4 is
well-posed in 2% (E) for some {,=0. Thus by Theorem 3.2 of Ito [2] we have the
following

Theorem 7.3. A closed linear operator A with the dense domain D(A) in a
Banach space E is the infinitesimal generator of a certain EFHSG if and only if
the following conditions hold:

(1) There exists £, =0 such that, for any complex number A such as Re A>¢,
(A—A)"! exists and it is an L(E)-valued holomorphic function in the domain Re-
A>E&.

(i) For any e>0 and any 6>, there exists C, ;>0 such that

H(A=A)H=C, 5 exp (el 2 —Eol)
holds for e Y ;, where we put
>s=14€C; Re 1=6}.

§8. Fourier hyperfunction groups.

Definition 8.1. We call a Fourier hyperfunction group (in E) (FHG for short)
an L(E)-valued Fourier hyperfunction G such that

(1) Ge 2 (L(E)).

() G(o=Y)=G(P)GW) for all ¢, Y € Py.

(3) G=G,+G_, where G, and G_ are FHSG’s.
For a real £,=0, we define the space 2,.(&,) by the formula
2uE)= | (exp (—E0Z0) 0 (exp (E0F0)
>c0

whose topology is defined as the finest locally convex topology such that the mapping:

(b1, ¢2) € diagonal of Pox Py— (exp (—EDP,, exp (EN,) € Po(Eo)

is continuous for any £>¢&,. Here we denote
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Po={d; pePy}.

Then we define the space 2.(&,, E) to be the space of all continuous linear
mappings from £.(&,) into E.

Definition 8.2. We call an element G of Py (&, L(E)) an exponential Fourier
hyperfunction group (in E) (EFHG for short) if it satisfies the following conditions:

(1) G(@xh)=G(P)GW) for all ¢, ¥ € 2,(&o).

(2) If we denote by G (resp. G_) the extension of G to P, (resp. 9\”/50), then
G, and G_ are EFHSG’s.

For any £> ¢,
G=exp(—¢)G, +exp(é)G_=G, +G_
is an FHG. Here we put
G, =exp(—¢NG,, G_=exp(EnG_.
Then G, and (G_)” are FHSG’s. G acts on ¢ € 2,(&,) by the formula
G(¢)=(exp (—&1)G 1) (exp (E1)$) + (exp (ENG ) (exp (— ED)¢)
for such &> ¢&, as exp (1) € 2, and exp (— &N € .

Theorem 8.1. Let G be an FHG. If A, (resp. A_) is the infinitesimal gene-
rator of the FHSG G (resp. G_), we have

Ay=—A_. (8.1

Proof. 1) Let ¢ be any one in &, and p, a regularizing sequence in Z,. We
have G.(p,)=G(p,). Hence

G (p)G()=G(pxdp)x —> G(¢)x  forany x in E,
and
G (=p)G(P)x=G(—pp)x — G(—¢)x,

which proves that G(¢)x e D(4,) and

A,G($)x=G(—¢')x  forall ¢ in 2, and x in E. (8.2)
Now we note that G_(p,)=G_(p,)=G(p,), so that, since §,—5,

G- (p)G(P)x =G(p,xd)x —> G()x,

G (= pG(d)x=G _(($,))G($)x=G(p,#¢ )x —> G(¢)x.
Hence G(¢) is in D(4_) and



48 Yoshifumi ITo
A_G(P)x=G(9")x.
Comparing with (8.2), this shows that
AL G(p)+A_G(¢)x=0 for any ¢ in £, and x in E. (8.3)

2) Let now xeD(G.(—¢’)). Then there exists a regularizing sequence p,
in &, such that

Gi(p)x —> x and G (—ppx —> A, x.
Using (8.2), this is also written
Glp)x — x, G(—p)x=A4,G(p,)x —> A, x.
And, using (8.3),
A_Glp)x=—A,G(p)x —> —A,x.
Since A _ is closed, it follows from this
if xe D(G,(—3")), then xisin D(A_)and A, x+A_x=0. (8.4)

3) If now x is in D(A4,), there exists a sequence x, in D(G.(—9")) such that
x,—~xand 4,x,—>A,x. By virtue of (8.4) each x,isin D(A_)and A_x,=—A4,x,—
— A, x, so that —A_ is an extension of 4.

We can analogously see that 4. is an extension of —A_. This completes the
proof. Q.E.D.

We put
A=A, =—A_ (8.5)

and call A the infinitesimal generator of the FHG G.
Such an operator is characterized by the following

Theorem 8.2. A closed linear operator A with the dense domain in a complex
Banach space E is the infinitesimal generator of a certain FHG if and only if the
following conditions hold:

(1) each of the equations

—Au+(d/dtyu=S, uePyD(A)), S given in Py(E), (8.6)
Av+(d/dtyw=T, vePyD(4)), T given in PHE) (8.7)

admits the unique solution depending continuously on S(resp. T).
(2) If =0 is the lower bound of the support of S(resp. T), then u(resp.v) is
null for t<a.
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Proof. The condition is necessary. In fact, by virtue of Theorem 8.1 and
(8.5), A and —A are the infinitesimal generator of FHSG’s, which proves the
necessity by virtue of Corollary of Theorem 5.1.

The condition is sufficient.

1) By virtue of Proposition 6.1 and Theorem 6.1, 4 and — A are the infinitesi-
mal generators of FHSG’s, say G, and H respectively. Put

H=G_.
Then the solution of the equation
—Au+u'=S, uePyD(A)), SePyE)
is
u=G,*S
and the solution of
—Au+u'=S, ue2)(D(A), Se2y(E)
is
u=—G_%S.
2) 1If we put
G=G,+G_,
it remains only to show that
G(dp=)=G(P)G(Y) for all ¢ and ¥ in . (8.8)

Denote by u ., (resp. u_) the solution in 2y(D(A)) (resp. u_ € Py (D(A))) of the
equation

—Au++u;=1/7®x.

(resp.
—Au_+u_= ——J@x).
We have
u(0)=G,()x, u_(0)=G_(¥)x.
Hence

GW)x=u_(0)+u_(0).

If we denote by v, (resp.v_) the solution in 2y(D(A)) (resp. v _ € 2y(D(A))) of
the equation
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— Avy + 0, = ®(u(0)+u_(0))

(resp.
—Av_ 1= = $®(u,(0)+u_(0),
we have
v (0)=G(P)GW)x, v_(0)=C_()GY)x,
so that

 G(P)GW)x =0, (0)+v_(0). (8.9)

Now, if w,(resp.w_) is the solution in 2,(D(4)) (resp. w_ € 2{(D(A4))) of the
equation

— Aw, +W, =(¢1))®x

(resp.
— Aw_+w.=—(¢=))®x),
then
G(ps)=w.(0)+w_(0). (8.10)
But
S S S
so that

wi(0)=u.(¢), w_(0)=u_(¢)
and (8.10) gives

G(o=y)=u,(p)+u_(9). (8.11)
Now let Y be the Haeviside function and put Z(t)= Y(—1).
We have
— A(Yu )+ (Yu ) =(Y)®x+3@u. (0),
—A(Yu )+ (Yu_) = —(W)®@x+du_(0),
so that

—AYu, +Yu_ )+ (Yu,+Yu_) =@, (0)+u_(0)).
From this we deduce
(Yu,+Yu_)xp=v,.

In the same way we have
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(Zu —I—Zu_)*q§=v_.
From these last two equations, we deduce

v =u (¢ )+u_(¢4), v-(O)=u(p_)+tu_(¢-),

where ¢, =Y, ¢p_=Z¢.
We conclude from this

0:(0)+v_(0)=u () +u_(¢),

which, with (8.9) and (8.11), gives (8.8) and completes the proof of the theorem.
Q.E.D.

The following result is now immeiate.

Theorem 8.3. A closed linear operator A with the dense domain in a complex
Banach space E is the infinitesimal generator of an FHG if and only if the following
two conditions are satisfied:

(1) For any complex number A such as |[Re A|>0, (A—A)~! exists and it is
an L(E)-valued holomorphic function there.

(2) For any ¢>0 and any >0 there exists C, ;>0 such that

12— A1 =C, 5 exp (el A])
holds for L€ A, where A is the set
As={AeC; |Re 1| =}.

Now we will characterize the infinitesimal generator of an EFHG.

Let G be an EFHG. We will use the notations in Definition 8.2 and following
afterit. Let A, (resp. A_) be the infinitesimal generator of the EFHSG G, (resp. G )
and A, (resp. A_) that of the FHSG G, (resp.G_). Then A4, = —A_. Then A, =
—A_=A4 is the infinitesimal generator of the FHG G for é>¢,. Then we have

A, =A, +E[=A+¢l, A_=A_—¢I=—A—¢l.

Hence
We put
and call 4 the infinitesimal generator of the EFHG G. Then we have

A=A+¢l

Hence we have the following
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Theorem 8.4. A closed linear operator A with the dense domain in a complex
Banach space E is the infinitesimal generator of a certain EFHG if and only if the
following two conditions hold:

(1) each of the equations

—Au+(d/du=S, ueP,(D(A)), S givenin 2 (E),
Av+(dldyw=T, ve2.(D(A), T given in 2} (E)

admits the unique solution depending continuously on S (resp. T).

(2) If «=0 is the lower bound of the support of S (vesp. T), then u (resp.v)
is null for t<a.

Theorem 8.5. A closed linear operator A with the dense domain in a complex
Banach space E is the infinitesimal generator of an EFHG if and only if the
following two conditions are satisfied.

(1) There exists £, =0 such that for any complex number /. such as |Re A|>¢&,,
(A—A)"! exists and it is an L(E)-valued holomorphic function in the open set
|[Re A| > ¢&,.

(2) For any ¢>0 and any 6>¢, there exists C, >0 such that

1A= A = C, s exp {e(min (|2 &, [A+&o]))}
holds for A€ A;, where we put
As={LeC; |Re A|=6}.
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