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Introduction

This paper is the second part of this series of papers, which includes Chapters 5
to 8. For the outline of this paper, see “Contents’’ in the first part of this series of
papers [37]. For References we refer to the lists of references at the ends of the
paper [37] and this paper.

Chapter 5. Cases of sheaves 0%, o7* 0, and <7,

5.1. The Oka-Cartan-Kawai Theorem B

In this section we will prove the Oka-Cartan-Kawai Theorem B for the sheaves
0* and 0,.

For a 2-tuple n=(n,, n,) of nonnegative integers with |n|=n, +n, %0, we denote
by F" the product space Cri x E™ and by D" the product space D™ x D" and
by CInl the space Cri*m=Cmx C™. We denote z=(z',z")eCl"l so that

' =(Zggees Zy)s 2" =(Zny 415205 Z|m))-

Definition 5.1.1 (The sheaf ¢* of germs of slowly increasing holomorphic
functions). We define 0% to be the sheafification of the presheaf {0*(Q); Q< F"
open}, where the section module 0*(Q2) on an open set Q in F" is the space of all
holomorphic functions f(z) on Qn C'"! such that, for any positive number &
and for any compact set K in Q, the estimate sup {|f(z)le(—¢lz]); ze K n CI"l}
< o0 holds.

Definition 5.1.2 (The sheaf ¢, of germs of rapidly decreasing holomorphic
functions). We define 0, to be the sheafification of the presheaf {0,(Q2); Q< F"
open}, where the section module 04(Q) on an open set Q in F" is the space of all
holomorphic functions f(z) on Q n C'*! such that, for any compact set K in Q, there
exists some positive constant d so that the estimate sup {| f(2)|e(d|z]); ze K n C!"1}
< oo holds.
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Definition 5.1.3. An open set V in F" is said to be an OF-pseudoconvex open
set if it satisfies the conditions:

(1) sup{|Imz’|, Imz"|—|Rez"[; z=(z’, ") eV n Cl"l} < 0.

(2) There exists a C*-plurisubharmonic function ¢(z) on V n C!"l having
the following two properties:

(i) The closure of V,={zeV n CI"l; p(z)<c} in F" is a compact subset of
V for any real c.

(i) @(z) is bounded on L n CI*! for any compact subset L of V.

Then we can prove the Oka-Cartan-Kawai Theorem B by a similar method
to that in section 1.1.

Theorem 5.1.4 (The Oka-Cartan-Kawai Theorem B). For any 0*-pseudo-
convex open set Vin F", we have H5(V, (0%)?)=0, (p=0, s=1).

Proof. Since V is paracompact, H¥(V, (0%)?) coincides with the Cech cohomo-
logy group. So we have only to prove lim HS(U, (¢0%)?)=0, where U={U};,, is
a locally finite open covering of V so tl?at V;=U;n Cl"l is pseudoconvex. We
can choose such a covering of V because V is an @*-pseudoconvex open set.

Now we define C5(Z{e%:5({V,})) to be the set of all cochains c={c;; J=(j,,
J1se--» Jjs) € N5*1} of forms of type (p, q) satisfying the two conditions:

(i) Oc;=0in V,=V, nV; n---nV,.

(i) For any positive ¢ and any finite subset M of Ns*1 the estimate

5 |, lePe—alzdi<oo

JeM

holds, where d/ is the Lebesgue measure on C!"l and |z|| denotes the modification of
|n]

|z;| so as to become C* and convex.
=1

" Now we will prove the following

Lemma 5.1.5. If ce C(Z{s5}({V;})) satisfies the conditions dc¢=0, then we

(p,q)
can find some ¢ e CsNZISS3({V;}) such that 6c¢’=c. Here & means the

(p,q)
coboundary operator.

If this Lemma is proved, the theorem will follow from this Lemma as the special
case where ¢ =0 because we can use Cauchy’s integral formula to change the L2-
norm to the sup-norm for holomorphic functions.

Proof of Lemma 5.1.5. We denote by {y;} the partition of unity subordinate
to {V;} and define b;= 3 y;c;; for € N*. Since dc=0, we have éb=c. So db=0

because dc=0. Since Fi x;=1and y;=0, we have

J,, 1bie(=elzDdz< 2 plealel—clzl)d2
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for any positive number ¢ by virtue of Cauchy-Schwarz’ inequality.

By the assumption of the existence of C* plurisubharmonic function ¢(z) in
Definition 5.1.3, we can find some plurisubharmonic function y(z) on W=V n Cinl
which satisfies the following two conditions:

() Tl eW(2),

(2) sup{Y(z); ze Kn CI"l} <Cx forany K€ W.

Thus it follows from the condition on ¢ that

5 [, 1@bie(=ellz] ~y(e)dz<co

IeN

for any positive number ¢ and any finite subset N of N®.

Now we consider the case s=1. By the fact that §(0b)=0, Jb defines a global
section f on W=V n CI"l, Then, by Hérmander [4], Theorem 4.4.2, p. 94, we can
prove the existence of u such that du=f and the estimate

| ale(—elzl) (1412 i< oo
Knctn!

holds for any positive number ¢ and any K € V.

If we define c¢;=b;—u|V,, then dc;=0 and dc'=d0b=c. Clearly ¢'eCs!.
(Z55EVi).

Now we go on to the case s>1. In this case we use the induction on s. By
the induction hypotheses there exists b’ e Cs"%(Z!3%% ,({V;})) such that db’=0b.
By virtue of Hormander [4], Theorem 4.4.2, p. 94, we can also find b”"={b%}ycys-1
such that by, =0b} and the estimate

> | lope(—elz] —p(@) (1-+ 202 2di<en

HeL

holds for any positive number ¢ and any finite subset L of Ns~!. Therefore ¢'=
b—0db" satisfies all the required conditions. Q.E.D.

This completes the proof of the theorem. Q.E.D.

Now we will prove the Malgrange theorem for the sheaf .«&z# of germs of slowly
increasing real analytic functions. Here we define the sheaf /¥ to be the restriction
of 0% to D": &/*=0*|D". Then we have the following

Theorem 5.1.6 (Malgrange). For an arbitrary set Q in D", we have H(Q,
(2%)P)=0, (p=0, s21).

Proof. We know, by virtue of Ito [11], Theorem 2.1.13, that Q has a funda-
mental system {3} of ¢*-pseudoconvex open neighborhoods. Then, it follows
from the Oka-Cartan-Kawai Theorem B and Schapira [34], Theorem B 42, that, for
p=0 and s>0, we have
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HY(Q, (%)) =_ lim HYG, (0%))=0. Q.E.D.
f2npr=n

Next we will prove the Oka-Cartan-Kawai Theorem B for the sheaf ¢,. This
can be proved by a similar method to Theorem 5.1.4. Thus we have the following

Theorem 5.1.7 (The Oka-Cartan-Kawai Theorem B). For any 0% pseudo-
convex open set Vin F", we have H5(V, 0%)=0 for p=0 and s=1.

Proof. Since Vis paracompact, H5(V, ¢%) coincides with the Cech cohomology
group. So we have only to prove lim H*(M, ¢0%)=0, where U={U,};5, is a locally
T 2

finite open covering of V' so that V;=U;n CI"l is pseudoconvex. We can choose
such a covering of V because Vis an ¢0*-pseudoconvex open set.

Here we use the notations in the proof of Theorem 5.1.4.

For any cocycle d={d,} representing an element in Hs(U, ¢%), we can define
an element ¢ = {c,} in CS(Z{5°3({V;})) such as dc=0 by putting c,=d; - h(z), h(z)=

(Jlnjl cosh (ez;)) - cosh (&y/(z")?/2) for some positive &, where & denotes the coboundary

operator. Then we can find some ¢’ € C71(Z{5°6)({V;})) such that oc'=c. If we
put d;=c}-(h(z))"!, then d'={d}} is a cochain with values in @, such that éd'=d.
Thus the element in HQ, ¢%) represented by d is zero. Since a class [d] with a
representative d is an arbitrary element in HSQU, ¢§), we have HsQU, ¢§)=0.
This completes the proof. Q.E.D.

At last we will prove the Malgrange theorem for the sheaf o7, of germs of rapidly
decreasing real analytic functions. Here we define the sheaf .oz, to be the restriction
of 0, to D": &7, =0,|D". Then we have the following

Theorem 5.1.8 (Malgrange). For an arbitrary set Q in D", we have H(Q,
ZE)=0 for p=20 and s=1.

Proof. We can prove this by a method similar to that of Theorem 5.1.6.
Q.E.D.

5.2. The Dolbeault-Grothendieck resolutions of ¢* and ¢,

In this section we will construct soft resolutions of ¢* and ¢, and prove some
of their consequences.

At first we will recall the definition of the sheaf L#=Lj | . of germs of slowly
increasing locally L,-functions over F”.

Definition 5.2.1. We define the sheaf L¥ to be the sheafification of the presheaf
{L*(Q); Q< F" open}, where, for an open set Q in F", the section module L*(Q)
is the space of all f€ L, 1,.(2 n C'") such as, for any >0 and any relatively compact
open subset w of Q, e(—¢|z|))f(2)|w belongs to Ly(wn C'™). Here e(—é¢|z|)f(2)|w
denotes the restriction of e(—¢|z||)f(z) to w and |z| denotes the modification of
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|n

2. |z;l so as to become C* and convex.
Jj=1

Then it is easy to see that L* is a soft FS* sheaf. Then we give

Definition 5.2.2. We define the sheaf (£*)P-4= (%3 ,.)"*% to be the sheafi-
fication of the presheaf {£*?4Q); Q< F" open}, where, for an open set Q in
F», the section module #*:7-9(Q) is the space of all fe L*P9Q)=L51;4(Q) such
that 0f e L7 4" (Q)=L52. 1% (Q). We put L¥#=(L*)°°.

Then (#*)P4 is a soft FS* sheaf. Then we have the following

Theorem 5.2.3 (The Dolbeault-Grothendieck resolution). For some d>0,
put U=int {ze C'"l; |Im z"|—|Re z"| <d}?, where int{ }* denotes the interior of
the closure in F" of a set { }. Then the sequence of sheaves over U

0 — 0%P|U — #%pO|U 2, 4rl|U T, ... 2, ghrinl|lU 0
is exact.
Proof. The exactness of the sequence
0 — OFP|U —s $H20\U 2, 521U

is evident. In fact, let Q be a relatively compact open set in U. Let ue £#29%Q)
such that ou=0. Then, if we write u in the form

u= Y updz,

|I|=p
we have
ou,/0z;=0, j=1,2,...,1|n],

from which we obtain

4 u1=0.

J

nl 5 0
=1 0z. 0zZ;

J J

Since the operator (on Q n R2I*l)

[n] 0
ng 0z. 0Z;

J J

D

is elliptic, it follows from Weyl’s Lemma that u,’s are analytic on Q. So that we can
conclude that u,’s are holomorphic. The fact that u;e ¢0*(Q) follows from the
exchangeability of L,-norm and sup-norm for holomorphic functions. Thus the
exactness of the above sequence was proved.

Next we have to prove the exactness of the sequence

FEpO|U 7, g*pl|U g, ... _0 LHeinl|U s 0.
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For this purpose, we have only to prove the exactness of the sequence of stalks
gﬁ,p,o 7 gg,p,l i, ..._0 gﬁ,p,lnl 0
for every ze U. But this is an easy consequence of Hormander [4], Theorem 4.4.2

because every ze U has a fundamental system of ¢*-pseudoconvex open neigh-
borhoods. Q.E.D.

Corollary 1. Let U be as in Theorem 5.2.3. For an open set Q in U, we have
the following isomorphism:

HY(Q, 0*P)={fe £51:4Q); 0f=0}/{dg; ge £50.37Y(Q)}, (p=0,q=1).

Corollary 2. Let Q be an O%-pseudoconvex open set in F*. Then the equation
du=f has a solution ue ¥%5.4Q) for every fe L3057 (Q) such that 0f=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 5.1.4 and Corollary 1 to Theorem 5.2.3.
Q.E.D.

We will now define the sheaf L,=L,,,. of germs of rapidly decreasing
locally L,-functions.

Definition 5.2.4. We define the sheaf L, to be the sheafification of the presheaf
{Ly(Q); Q<= F" open}, where, for an open set Q in F", the section module Ly(Q)
is the space of all fe Ly 5 ,,.(2 n C"!) such as, for any relatively compact open subset
w of Q, there exists some positive § such that e(d]z|)f(z)lwn C'"l e Ly(wn CI*).

Then it is easy to see that L, is a soft FS* sheaf.

Definition 5.2.5 (The sheaf .%-%). We define the sheaf £%9=%%14,,. to be
the sheafification of the presheaf { L4 UQ); Q< F" open}, where, for an open set
Q in F", the section module %% %Q) is the space of all fe Lp4(Q)=L%4,,(Q)
such that 0fe Ly (Q)=LE: 571 (Q). We put £,=£2°.

Then #%-1is a soft FS* sheaf. Then we have the following

Theorem 5.2.6 (The Dolbeault-Grothendieck resolution). For some d>0, put
U=int{ze C!"l; [Im z"| —|Re z"|<d}?. Then the sequence of sheaves over U

0 — OFU — £2O\U 2 23U -2 ... 2, 221U —, 0
is exact.

Proof. The exactness of the sequence

0 — O}U — 250U, 251U
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can be proved by asimilar way to that of Theorem 5.2.3.
Next we have to prove the exactness of the sequence

20U 2 251U -2 ... L 23U — 0.

Let z=(z', z")e U and Q an open neighborhood of z of the form Q' x Q”, where Q’
is an open neighborhood of z’ in €™ and ©” is an open neighborhood of z” in E™
of the form V; , in Lemma 3.2.7 for some 6 and 4 such as 0<d<1 and 4>0.
Let f be an element in £%-9*1(Q) such that 0f=0. Then, for some ¢>0, we have

f-h(z)e £*P.at1(Q), where we put h(z)=( ﬁ cosh (ez;))- cosh (e,/(z")?/2). Since
=1

o(f-h(z))=0, we can find some ve 3‘*"13’{1((0) for some open neighborhood

w=0'xo" of z with z e’ Q' and z" e w" = Q" such that dv=f-h(z). Here we

may assume that h(z)=0 on wn C'"l. Then u=v/h(z) belongs to £% Y w) and
ou=fholds. This completes the proof. : Q.E.D.

Corollary 1. Let U be as in Theorem 5.2.6. For an open set Q in U, we have
the following isomorphism:

HY(Q, 05) = {fe L5 1,.(2); 0f=0}/{0g; ge £5:37.(Q)}, (p=0,q=1).

Corollary 2. Let Q be an O*-pseudoconvex open set in F". Then the equation
Ou=f has a solution ue L% 4 . (Q) for every fe L5571 (Q) such that 0f=0. Here
p and q are nonnegative integers.

Proof. It follows from Theorem 5.1.7 and Corollary 1 to Theorem 5.2.6.
Q.E.D.

Now, for later applications, we will construct another soft resolutions of ¢*
and 0,.

At first, we will give some preliminary facts.

For an integer s=0 and for an open set Q in F", we put

WHQ)={fe W,1,(2 n CI*); for any positive ¢ and for every relatively
compact open subset @ of Q and for every ae N2I"l such that |a|<s,

(e(—elz)f @(@)lw n Cl"te Ly(w n CI") holds},

and denote by W#.9(Q) the space of all differential forms of type (p, g) whose
coefficients in W¥#(Q). Then we have the following

Theorem 5.2.7. Let Q be an 0*-pseudoconvex open set in F* and s an integer
such as 0Ss< . Then, for every fe WHra*Y(Q) such as 0f=0, we can find a
solution u e W5 %Q) of the equation du=f. Every solution of the equation ou=f
has this property when q=0.

Proof. (a) First assume that g=0. We know, from Corollary 2 to Theorem
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5.2.3, that the equation du=f has a solution u=3'u,dz'e £%7,9(Q) because
fe £501(Q) and 0f=0. The equation du=f means that

OurQn CI"N[oz;=f; ;|Q n C"l e W, (2 n CI")

for all I and j. Thus, by Ho6rmander [4], Theorem 4.2.5, we have u;e
Wiy 1.10:(@ N CI*). Then, by Nagamachi [25], Lemma 4.3, we can conclude that
ur€ Wi (Q).

(b) Next we assume that ¢>0. Then, by Hérmander [4], Theorem 4.2.5, we
can find u € W24 1,.(2 n C"!) such that du=f. Then, by Nagamachi [25], Lemma
4.2, we can conclude that u e W#:%-9(Q). Q.E.D.

Now we will define the sheaf &* of germs of slowly increasing C®-functions
over F".

Definition 5.2.8. We define the sheaf &% to be the sheafification of the presheaf
{&*(Q); Qc F" open}, where, for an open set Q in F", the section module &*(Q)
is defined as follows:

EHQ)={fe&(Qn C"); for any positive ¢ and any compact set K in Q
and any ae N2I"l the estimate sup {|f@(z)e(—e¢lz]); ze Kn C'"} <o
holds}.

Then it is easy to see that &* is a soft nuclear Fréchet sheaf. Then we have
the following

Theorem 5.2.9. Let Q be an O*-pseudoconvex open set in F". Then the
equation du=f has a solution ue&*?4Q) for every fe&*r1*1(Q) such that
0f=0. Every solution of the equation ou=f has this property when q=0.

Proof. Since fe W#-».at1(Q) for every integer s=0, we can find u e W#54Q)
for every s. But, by the well-known Sobolev lemma, we have
W i () = CEma(Q),
where we put

CHQ)={fe C(Qn C\"l); for any positive ¢ and any compact set K in Q
and any o€ N?I"l such that |a|<s, the estimate sup {|f (@ (z)|e(—¢|z|);
ze K n Cl*"l} < oo holds}.

Thus we have u e &%7-1(Q). Q.E.D.
Then we have the following

Theorem 5.2.10 (The Dolbeault-Grothendieck resolution). For some d>0,
put U=int {ze C!"l; |Im z"|—|Re z"|<d}*. Then the sequence of sheaves over U

0 — 0FP|U — £520\U 2, £5:21|U T, ... T, g5p:Inl|U—0
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is exact

Proof. It follows immediately from Theorem 5.2.9. Q.E.D.

Corollary. We use notations in Theorem 5.2.10. For an open set Q in U,
we have the following isomorphism:

HY(Q, 0% P)={fe&*P4Q); df=0}/{dg; ge &7 H(Q)}, (p20,921).

Now we will define the sheaf &, of germs of rapidly decreasing C*-functions
over F".

Definition 5.2.11. We define the sheaf &, to be the sheafification of the
presheaf {6/Q); Q< F" open}, where the section module £,(8) on an open set £
in F" is the space of all C®-functions on Q n C'"l such that, for any compact set K

in Q and any ae N2"l, there exists some positive constant & so that the estimate
sup {|f((2)|e(d|z]); ze K n Cl"l} < o0 holds.

Then &, becomes a soft nuclear Fréchet sheaf. Then we have the following

Theorem 5.2.12 (The Dolbeault-Grothendieck resolution). Put U=int {zeCl"l;
|Im z”| — |Re 2| <d}® for some d>0. Then the sequence of sheaves over U

0 — 03U — 65°lU -2 651U 25 oo -2 65 I"U — 0
is exact.

Proof. Let z=(z', z")e U and Q an open neighborhood of z of the form
Q' xQ", where Q' is an open neighborhood of z’ in Cm and Q' is an open neigh-
borhood of z” in E"2 of the form V; , in Lemma 3.2.7 for some & and A such as
0<d<1 and A>0. Let f be an element in &%-9*1(Q) such that 0f=0. Then, for

some ¢>0, we have f-h(z)e &% ?41(Q), where we put h(z)= (H (cosh (ez;))-

cosh (8\/(2”)2/2) Since o(f-h,(z))=0, we can find some ves* . q(co) for some
open neighborhood w=w’xw” of z with z’ew’' =Q’ and z"ew"=Q" such that
dv=f-h(z). Here we may assume that h(z)=x0 on wn CI"l. Then u=v/h(z)
belongs to &2:%w) and du=f holds. This completes the proof. Q.E.D.

Corollary 1. Let U be as in Theorem 5.2.12. For an open set Q in U, we
have the following isomorphism:

HYQ, 09)={fe &4:9Q); 0f=0}/{0g; g 637 (Q)}, (p20,q21).
Corollary 2. Let Q be an 0*-pseudoconvex open set in Fr. Then the equation

du=f has a solution ue &5-4Q) for every fe 447 Y(Q) such that df=0. Here p
and q are nonnegative integers.
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Proof. It follows from Theorem 5.1.7 and Corollary 1 to Theorem 5.2.12.
Q.E.D.

5.3. The Serre duality theorem

In this section we will prove the Serre duality theorem.

Theorem 5.3.1. Let Q be such an open set as in Theorem 5.3.1 and assume
that dim H?(Q, 0*)<oo holds for p=1. Then we have the isomorphism
[HP(Q,0%)] =H""(Q, 0,), (0= p=|nl).

Proof. By virtue of Corollary 1 to Theorem 5.2.3 and Corollary 1 to Theorem
5.2.6, cohomology groups H?(Q, 0*) and H!"\-»(Q, 0,) are cohomology groups
respectively of the complexes

0 — L#00(Q) T, P#01(Q) 2, ... T, Pr0.InI(Q) 0
1 T 1
! - " - o
0 — 23" (Q) =L FeIr-1(Q) 7 ... T £92(Q2) «——0.
Here the upper complex is composed of FS* spaces and the lower complex is com-
posed of DFS* spaces. Since the ranges of operators ¢ in the upper complex are
all closed by virtue of Schwartz’ Lemma (cf. Komatsu [20]), the ranges of operators
—0=(0) in the lower complex are also all closed. Hence we have the isomorphism

[HP(Q, 0] =HI""n(Q, 0,)

by virtue of Serre’s Lemma (cf. Komatsu [20]). Q.E.D.

5.4. The Martineau-Harvey Theorem

In this section we will prove the Martineau-Harvey Theorem.

Theorem 5.4.1. Let K be a compact set in F* such that it has an 0% pseudo-
convex open neighborhood Q and satisfies the conditions HP(K, 0,)=0 (p=1).
Then we have HY(Q, 0*)=0 for px|n| and isomorphisms H\(Q, o)~ HI"-1(Q\K,
0%) > 04(K)'.

Remark. If a compact set K in F" has a fundamental system of ©*-
pseudoconvex open neighborhoods, it satisfies the assumptions in Theorem 5.4.1.

Proof. It goes in a similar way to that of Theorem 1.5.1. Q.E.D.

5.5. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
0*. Then we will realize mixed Fourier hyperfunctions as “boundary values”
of slowly increasing holomorphic functions or as (relative) cohomology classes of
slowly increasing holomorphic functions, S :
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Theorem 5.5.1 (The Sato Theorem). Let Q be an open set in D" and V an
open set in F" which contains Q as its closed subsets. Then we have the following

(1) The relative cohomology groups HE(V, 0%) are zero for p=|n|.

(2) The presheaf over D"

Q — HR\(V, 0)

is a sheaf.
(3) This sheaf (2) is isomorphic to the sheaf 2 of mixed Fourier hyperfunctions.

Proof. (1) It goes in a similar way to that of Kawai [19], p. 482.
(2) By (1) and by the theorem 11.3.18 of Komatsu [21], we have the conclusion.
(3) Consider the following exact sequence of relative cohomology groups

0 — H(V, 0%) — HY.(V, 0%) — HY(V, 0%)
— Hio(V, 0%) — — H"}(V, 0%)
— Hl(V, 0%) — HEN(V, 0%) — HJI(V, 0%)
— H* (Y, 0%) — .-,

Then, by (1) and by the Martineau-Harvey Theorem, we have H!"I=Y(V, ¢0%)=0,
H*1(V, 0¥)=0. Thus we have the exact sequence

0 — HW(V, 0)— HEI(V, 09) — HEY(V, 0%) — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
HM(V, 0%) =, (0Q), HE(V, 0%) 2oz ,(27),
we obtain the isomorphism
H\(V, 0%) 2 ,(Q°)'|£,(0Q) = 2(Q).

Thus the sheaf Q— HYI(V, 0%) is isomorphic to the sheaf 2 of mixed Fourier hyper-
functions over D". Q.E.D.

Let Q be an open set in D". Then there exists an ¢*-pseudoconvex open
neighborhood V of Q such that V' n D"=Q (cf. Ito [11], Theorem 8.1.9). We put
Vo=V and V,=V\{zeV;Imz;=0}, j=1,2,...,|n| Then U={V,, Vi,..., V},)}
and W'={V,,..., ¥}, } cover Vand V\Q respectively. Since V; and their intersections
are also ¢*-pseudoconvex open sets, the covering (U, ') satisfies the conditions
of Leray’s Theorem (cf. Komatsu [21]). Thus, by Leray’s Theorem, we obtain
the isomorphism HI!(V, 0¥)=H!"IQU, W, 0%). Since the covering U is composed
of only |n|+1 open sets V; (j=0, 1,..., |n]), we easily obtain the isomorphisms

ZIM@, W, 0% 204N, V),
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|nl
C"I=1QU W, 09 = @ 0*( N V).
=1 idej
Hence we have

APV V.

1=

[n]
SCHI=IQL W, 0%) = Y 0%(
i=1

Thus we have the isomorphisms
Hy\(V, 0*)=H!"I(U, W, 0%)
=ZI"IQL W, 0%)[5CI-1(U, W, 0F)

n]
=0 (N; V) X 0N V).
ji=1 idj

Thus we have the following

Theorem 5.5.2. We use notations as above. Then we have the isomorphisms
[n]
HY(V, 0%)=HI"l (U, 0, O =0 (N ; V)] X 0¥ Q V).
j=1 i j

At last we will realize mixed Fourier analytic functionals with certain compact
carrier as (relative) cohomology classes with coefficients in ¢%.

Let K be a compact set in F” of the from K=K, x - x K, with compact
sets K;in C for j=1, 2,...,n; and in E for j=n,+1,..., |n|. Assume that K admits
a fundamental system of @*-pseudoconvex open neighborhoods. Then we have

HP(K, 0,)=0 for p>0.
By virtue of the Martineau-Harvey Theorem, there exists the isomorphism
0(K) =HlP(Q, 0%).

Here Q denotes an open neighborhood of K. Further assume that there exists an
O%-pseudoconvex open neighborhood Q of K such that

Q;=0\{zeCl"l; z;e K; n C}¢

is also an ¢*pseudoconvex open set for j=1,2,..., [n]. Put Q,=Q. Then U=
{Qo, Q4,..., Q),)} and W={Q,, Q,,..., Q,} form acyclic coverings of Q and Q\K.
Set

) |nl
QfK=N Q;,, Q= Q.

Jj=1 i)

Ln]
Let 2.0%(€/) be the image in 0*(Q#K) of [] 0%(Q’) by the mapping
J j=1
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(f D

where f; denotes the restriction of f; to Q#K.
Then, by a similar method to that of Theorem 5.5.2, we have the following

Theorem 5.5.3. We use the notations as above. Then we have the isomor-
phisms

0Ky = HW(Q, 09)= HI"QL W, 0%) = 0%(Q#K)] T, 04().

Chapter 6. Case of the sheaf £¢*

6.1. The Dolbeault-Grothendieck resolution of £0*

In this section we will construct a soft resolution of £¢*. 1In this chapter we
always assume that E is a Fréchet space whose topology is defined by a family o =77
of continuous seminorms of E.

At first we will define sheaves £0* and E&%.

Definition 6.1.1 (The sheaf £¢0* of germs of slowly increasing E-valued holomor-
phic functions over F"). We define the sheaf E0* to be the sheafification of the
presheaf {0%(Q; E)}, where, for an open set Q in F", the module 0%Q; E) is
defined as follows:

0¥ (Q; E)y={fe0(2n C'"l; E); for any positive ¢ and any compact set K
in Q and any qe 7, sup {q(f(2))e(—¢lz]); ze K n CI"l} < oo holds}.

We call this sheaf E0% the sheaf of germs of slowly increasing E-valued holomor-
phic functions.

Definition 6.1.2 (The sheaf £&# of germs of slowly increasing E-valued C*-
functions). We define E&* to be the sheafification of the presheaf {&%Q; E)},
where, for an open set Q in F", the module £*(Q; E) is defined as follows:

&HQ; E)y={fe &*Q n CI"'; E); for any positive ¢ and any compact set K
in Q and any acN?"l and any qeJ, sup {q(f®(2))e(—¢elz]); z€
K n Cl"'} <o holds}.

Then the sheaf E€* is a soft Fréchet sheaf and we have the following

Theorem 6.1.3 (The Dolbeault-Grothendieck resolution of £¢#:7). The sequence
of sheaves

0 — EQ#2|U — EE#PO|U 2, Eg¥p 1 UL, ... 2, EghorInl |[U— 0
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is exact, where U=int {z€ C-"l; |Im z"| —|Re z"| < d}4 for some d>0.

Proof. The exactness of the sequence

0 E@#,plU Eéa#,p,OIU 7 Eéo#,p,liU

is evident.
Next the exactness of the sequence

Eg#p0|U L, Egtop|U 2, ... T, Eg#.pInl| ., (
follows from the following

Lemma 6.1.4. Let Q be an 0*-pseudoconvex open set in F'. Then the
equation Ou=f has a solution ue&*?9Q; E) for every fe&#:rat(Q; E)
such that f=0. Here p, ¢=0.

Proof of Lemma 6.14. If we put Z#»¢*(Q)={fe &*r-47Y(Q); df=0} and
Z#pa*Y(Q; Ey={fe &*P-971(Q; E); 0f=0}, then Z*74*1(Q) is a nuclear Fréchet
space and

Z#pat(Q; Eyx 2% " Q)R E
holds. By virtue of Theorem 5.2.9, we have an exact sequence
EHPUQ) T, ZF P at(Q) ., 0
for the ¢*-pseudoconvex open set Q. Then, since we have also
§4r9(Q; E)= 6+ r1(Q)QE,
we have an exact sequence
e3P (Q; E) -2 Z8P 9t (Q E) — 5 ()
by virtue of Treves [36], Proposition 4.3.9. Q.E.D.
This completes the proof of Theorem 6.1.3. Q.E.D.

Corollary. We use notations in Theorem 6.1.3. For an open set Q in U, we
have the following isomorphism:

HYQ, Fo*P)={fe &% 4Q; E); 0f=0}/{dg; g € £%P4~YQ; E)}, (p=0, g=1).

Proof. It follows from Theorem 6.1.3 and Komatsu [21], Theorems I1.2.9
and I1.2.19. Q.E.D.

6.2. The Oka-Cartan-Kawai Theorem B

We will prove the Oka-Cartan-Kawai Theorem B for the sheaf E¢*,
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Theorem 6.2.1 (The Oka-Cartan-Kawai Theorem B). For any O*-pseudoconvex
open set Q in F", we have H4(Q, E0*?)=0 for p20and g2 1.

Proof. Since we have, by the Oka-Cartan-Kawai Theorem B for 0%,
H4Q, 0*")=0  (pz0and q21),
the complex obtained from Theorem 5.2.10:
P O(Q) 2, £%P1(Q) —Ts ... L, 80N (Q) — 0

is exact. Since &*7-4(Q)’s are nuclear Fréchet spaces and E is a Fréchet space,
the complex

&#r0(Q; E) -5 640 1(Q; E) &5 o -2 650 IM(Q5 E) — 0
is also exact by virtue of the isomorphism
4P 9(Q; E)= &% Q)RE
and Ion and Kawai [5], Theorem 1.10. Hence we obtain
Hi@, For =0, (p20,421).
This completes the proof. Q.E.D.

Corollary. Let Q be an ¢*-pseudoconvex open set in F". Then the equation
Su=f has a solution ue &*?4Q; E) for every fe &%r-4*1(Q; E) such that f=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 6.2.1 and Corollary to Theorem 6.1.3.
Q.E.D.

6.3. The Serre duality theorem

Theorem 6.3.1. Let Q be an open set in F" such that, for any ze Qn Cl"l,
|Im z"| —|Re 2| <d holds for some constant d>0 independent of zeQn Ci"l and
such that dim H#(Q, 0¥)<oo holds (p=1). Then we have the isomorphism
H»(Q, Fo*) = L(H\"-7(Q, 0,); E), 0= p=|n|.

Proof. By a similar method to Junker [15], Lemma 3.5, we can obtain the
isomorphism H?(Q, E¢0*)~ HP(Q, 0¥)&® ,E. Then, by Theorem 5.3.1, we have the
following isomorphisms

HP(Q, E0*) = HP(Q, 0)Q E=[HI"7(Q, 0,)]' ®,.E
~L(H!"-7(Q, 0,); E). Q.E.D.

6.4. The Martineau-Harvey Theorem
Theorem 6.4.1. Let K be a compact set in F" such that it has an 0%
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pseudoconvex open neighborhood Q and satisfies the conditions HP(K, 0,)=0
(p=1). Then we have HE(Q, E09)=0 for p=|n| and isomorphisms H\(Q,
EoH )~ HI""Y(Q\K,E0*) > L(0.(K); E).

Proof. We can assume that Q is an ¢*-pseudoconvex open neighborhood of
K. Then, in the long exact sequence of cohomology groups (cf. Komatsu [21],
Theorem 11.3.2):

0— HY(Q, F0%) — HYQ, £0%) — HY(Q\K, *0°)
- HI%(Q’ E0#) - Hl(Qa E(O#) - HI(Q\Kv Eﬁ#)
L H(Q, E07) —— HM(Q, F0%) — HIN(Q\K, E0%) —— -,

we have HP(Q, E0*)=0 for p=1 and HYQ, E0¥)=0 by the unique continuation
theorem. Hence we have isomorphisms

Hi(Q, E07) = 0%(Q\K; E)[0%(Q; E),

Hi(Q, FO* )= HP"Y(Q\K, E0%),  pz2.
But, by a similar method to Junker [15], Lemma 3.5, we have isomorphisms
HY(V, E0*)= H?(V, 0%)® .E, 0<p<|n|, where V is an open set in F" such that,

for any zeV n Cl*l, |Imz"|—|Rez"|<d holds for some constant d>0. So that,
by Theorem 5.5.1, we have isomorphisms

HE(Q, B0y~ HY(Q, 0¥)® ., E=0 for px|n|,
and
HY(Q, For) > HIM-1(Q\K, E0*)= H"-1(Q\K, 09)& E
~ HP(Q, 0, E=0,(K)' ® Ex~L(0,(K); E). Q.E.D.

6.5. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
E¢*. Then we will realize E-valued mixed Fourier hyperfunctions as “boundary
values’ of E-valued slowly increasing holomorphic functions or as (relative) coho-
mology classes of E-valued slowly increasing holomorphic functions.

Theorem 6.5.1(The Sato Theorem). Let Q be an open set in D" and V an
open set in F" which contains Q as its closed subset. Then we have the following

(1)  The relative cohomology groups HY(V, E0%) are zero for p=x|n|.

(2) The presheaf over D"

Q

N H})n’(V’ Iz@#)
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is a sheaf.
(3) This sheaf (2) is isomorphic to the sheaf 2 of E-valued mixed Fourier
hyperfunctions.

Proof. (1) By the excision theorem, we may assume that V' is an ¢*-pseudo-
convex open set in F". Consider the following exact sequence of relative coho-
mology groups

0—— Ho(V, E0%) — HQo(V, EO*) — HY(V,F0?)
— Hl(V, EO?) —> - H!\an-l( Vv, E0%)
— HU(V, E0*) — HRI(V, F0%) — Hy'(V, £0%)
— Hg* ' (V, F07) — -

By Theorems 5.1.8 and 6.4.1, we may conclude that H5o(V, E0%)=H%(V, F0*)=0
for pa|n|. So that, we have H5(V, 20%)=0 for px|n|—1, |n|. On the other hand,
by Theorems 5.1.8 and 6.4.1, we also have the exact sequence

0 — HII-1(V, E0%) — L(#4(09Q); E) - L(4(Q°%); E).

Since j is injective, we have HY!=1(V, E¢*)=0.
(2) By (1) and by the theorem I1.3.18 of Komatsu [21], we have the conclusion.
(3) By the proof of (1), we have the exact sequence

0 — Hil (V, E0%) — H Pt (V, E0*) — HJ(V, E0%) — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
H(V, F0*) = L (£,(09); E),
HEl(V, F0*) = L(o ,(2%); E),
we obtain the isomorphism
HEW(V, Eo¥) = (2 (Q%); E)[ (£ (09Q); E)=2(Q; E).

Thus the sheaf Q—HW(V, E¢¥) is isomorphic to the sheaf £2 of E-valued mixed
Fourier hyperfunctions over D". Q.E.D.

In the same notations as in Theorem 5.5.2, we have the following
|n]
Theorem 6.5.2. Hl\(V, Eo¥) = HI"IQL, W, EoH)= 0% (N ; V;; E) X 0% Q Vi
Jj=1 i=j
E) hold.

At last we will realize mixed Fourier analytic linear mappings with certain
compact carrier as (relative) cohomology classes with coefficients in Eg*.
Let K be a compact set in F” of the form K=K, x --- x K,; with compact sets
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K; in C for j=1,2,...,ny and in E for j=n,+1,...,|n|. Assume that K admits a
fundamental system of ¢*-pseudoconvex open neighborhoods. Then we have

H?(K, 0,)=0 for p>0.
By virtue of the Martineau-Harvey Theorem, there exists the isomorphism
0.(K; EyY~H(Q, E0%).

Here 2 denotes an open neighborhood of K. Further assume that there exists an
O*-pseudoconvex open neighborhood Q of K such that

Q;=Q\{ze CI"l; z;eK;n C}°

is also an ¢*-pseudoconvex open set for j=1,2,..., |n|. Put Qy=Q. Then U=
{Qo, Q... Q) and W={Q,, Q,,..., Q,,} form acyclic coverings of Q and Q\K.
Set

Inl
Jj=1
Qi=N Q,
i%j

|n)
Let 3 ; 0%(Q/; E) be the image in 0*(Q#K; E) of [] ¢0*(Q/; E) by the mapping
Jj=1

D — & (=1,

where f'; denotes the restriction of f; to Q#K.
Then, by a similar method to that of Theorem 6.6.2, we have the following

Theorem 6.5.3. We use the notations as above. Then we have the isomor-
phisms

0x(K; Ey=H\(Q, Eo*)= HI"|(U, W', E0%)
~ONQ4K; E)| Y ; 0%(Q; E).

Chapter 7. Cases of sheaves ¢’, «/°, ¢, anc &,

7.1. The Oka-Cartan-Kawai Theorem B

In this section we will prove the Oka-Cartan-Kawai Theorem B for the sheaves
0° and 0,.

For a 2-tuple n=(n,, n,) of nonnegative integers with |n|=n, +n, %0, we denote
by G" the product space C": x €™ and by D" the product space R" x D" and
by CI*l the space C"1t72=Cm x Cr2,
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We denote by z=(z', z") e CI"l so that z'=(zq,..., 2,,), 2" =(Zp, 4 15--+> Z}u])-

Definition 7.1.1 (The sheaf ¢’ of germs of partially slowly increasing holomorphic
functions). We define 0" to be the sheafification of the presheaf {0°(Q); Q< G"
open}, where the section module 0°(Q) on an open set Q in G" is the space of all
holomorphic functions f(z) on Qn C'*l such that, for any positive number ¢ and
for any compact set K in Q, the estimate sup {|f(z)le(—¢lz|); ze Kn CI"l} <0
holds.

Definition 7.1.2 (The sheaf ¢, of germs of partially rapidly decreasing holo-
morphic functions). We define 0, to be the sheafification of the presheaf {0,(Q);
Qc G" open}, where the section module 0 ,(Q) on an open set Q in G" is the space
of all holomorphic functions f(z) on Qn C'"! such that, for any compact set K in
Q, there exists some positive constant 0 so that the estimate sup {|f(z)|e(d|z]);
ze Kn C'"l} < oo holds.

Definition 7.1.3. An open set V in G" is said to be an 0°-pseudoconvex open
set if it satisfies the conditions:

() sup{|Imz"|; z=(z, z")eV n CI"} < 0.

(2) There exists a C®-plurisubharmonic function ¢(z) on V n C!"l having
the following two properties:

(1) The closure of V,={zeV n C!"!; p(z)<c} in G" is a compact subset of
V for any real c.

(i1) @(z) is bounded on L n C!"! for any compact subset L of V.

Then we can prove the Oka-Cartan-Kawai Theorem B by a similar method to
that in section 1.1.

Theorem 7.1.4 (The Oka-Cartan-Kawai Theorem B). For any ¢°-pseudo-
convex open set Vin G", we have H5(V, 0"-?)=0, (p=0, s=1).

Proof. Since V is paracompact, H5(V, ¢0P) coincides with the Cech cohomo-
logy group. So we have only to prove lim H5U, @"?)=0, where W={U};,; is a
u

locally finite open covering of V so that V;=U;n C!"l is pseudoconvex. We can
choose such a covering of V because V' is an ¢°-pseudoconvex open set.

Now we define CS(Z{s%5({V,})) to be the set of all cochains c={c,; J=
(Jos J1s--+» Js) € N1} of forms of type (p, q) satisfying the two conditions:

(i) de;=0in V,=V, nV; n---nV,.

(i1) For any positive ¢ and any finite subset M of Ns*1, the estimate

> S le,|2e( —e|z|)dA< oo
M JVy,

€

holds, where dJ is the Lebesgue measure on C!"! and ||z| denotes the modification
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|n}
of > |z;| so as to become C” and convex.
=1

Now we will prove the following

Lemma 7.1.5. If ceCS(Z{3%5({V,})) satisfies the conditions 6c=0, then

(p,q)

we can find some ¢’ e Cs"YZIse({V;})) such that dc'=c. Here & means the

coboundary operator.

If this Lemma is proved, the theprem will follow from this Lemma as the special
case where g=0 because we can use Cauchy’s integral formula to change the L2-
norm to the sup-norm for holomorphic functions.

Proof of Lemma 7.1.5. We denote by {y;} the partition of unity subordinate
to {V;} and define b;=3_; y;c;; for I € N5. Since dc=0, we have db=c. So 60b=0
because dc=0. Since Y x;=1 and x;20, we have

[, Ibie(=elzdis 3 gleqle(—elzidz

for any positive number ¢ by virtue of Cauchy-Schwarz’ inequality.

By the assumption of the existence of C® plurisubharmonic function ¢(z) in
Definition 7.1.3, we can find some plurisubharmonic function y(z) on W=V n C!r!
which satisfies the following two conditions

(D) Zlogl=e(d(z)),

(2) sup{Y(z); ze Kn CI"} <Cy forany KeW.

Thus it follows from the condition on ¢ that
5 { 18bie—sllz) —y(pdi< oo
IeN Jv;

for any positive number ¢ and any finite subset N of Vs,

Now we consider the case s=1. By the fact that 5(db)=0, db defines a global
section f on W=V n CI"l.  Then, by Hérmander [4], Theorem 4.4.2, p. 94, we can
prove the existence of u such that du=f and the estimate

[, lule(=elzD)(1+ 1219 2dA< oo
Knclini

holds for any positive number ¢ and any K € V.

If we define ¢;=b;—ul|V}, then dc;=0 and dc'=d6b=c. Clearly ¢'eCs 1.
(ZHs5EV).

Now we go on to the case s>1. In this case we use the induction on s. By
the induction hypotheses there exists b’ e Cs=2(Z{s%,% ,({V;})) such that §b’=0b.
By virtue of Hérmander [4], Theorem 4.4.2, p. 94, we can also find b"={b}} yens-1
such that by =0bj and the estimate

> | bple(—elz] —9() 1+ |2)2di< o0
HeL JVg
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holds for any positive number ¢ and any finite subset L of N*~1. Therefore ¢'=
b—6b" satisfies all the required conditions. Q.E.D.

This completes the proof of the theorem. Q.E.D.

Now we will prove the Malgrange theorem for the sheaf 7" of germs of partially
slowly increasing real analytic functions. Here we define the sheaf &/’ to be the
restriction of ¢° to D": &/*=@?|D". Then we have the following

Theorem 7.1.6 (Malgrange). For an arbitrary set Q in D", we have H¥Q,
"7)=0, (p20, s21). '

Proof. We know, by virtue of Ito[11], Theorem 2.1.13, that Q has a
fundamental system {Q} of ¢*-pseudoconvex open neighborhoods. Then, it follows
from the Oka-Cartan-Kawai Theorem B and Schapira [36], Theorem B 42, that, for
p=0and s>0, we have

HYQ, o2 7)= 5 lm Hs(8, 0°7)=0. Q.E.D.

Next we will prove the Oka-Cartan-Kawai Theorem B for the sheaf ¢,. This
can be proved by a similar method to Theorem 7.1.4. Thus we have the following

Theorem 7.1.7 (The Oka-Cartan-Kawai Theorem B). For any ©°-pseudo-
convex open set Vin G", we have H(V, 0%)=0 for p=0 and s=1.

Proof Since Vis paracompact, HS(V, ¢0%) coincides with the Cech cohomology
group. So we have only to prove lim HS(U, 05)=0, where U={U,},,, is a locally
. z

finite open covering of V so that V,=U;n C!"l is pseudoconvex. We can choose
such a covering of V because Vis an ¢°-pseudoconvex open set.

Here we use the notation in the proof of Theorem 7.1.4.

For any cocycle d={d;} representing an element in HSQI, ¢}), we can define
an element c={c,} in C(Z{5%}({V;})) such as dc=0 by putting c¢;=d,;-h(z2),

[n
h(z)= T[] cosh(ez;) for some positive &, where 6 denotes the coboundary operator.
j=n;+1
Then wje can find some ¢’ € Cs71(Z{3%5({V;})) such that éc’=c. If we put dj=c;-
(h(2))7', then d’'={d}} is a cochain with values in ¢, such that éd'=d. Thus the
element in Hs(U, 0%) represented by d is zero. Since a class [d] with a repre-
sentative d is an arbitrary element in HSQU, ¢}), we have HsQU, ¢9)=0. This

completes the proof. Q.E.D.

At last we will prove the Malgrange theorem for the sheaf «7, of germs of
partially rapidly decreasing real analytic functions. Here we define the sheaf «7,
to be the restriction of ¢, to D": «7,=0,|D". Then we have the following

Theorem 7.1.8 (Malgrange). For an arbitrary set Q in D", we have HXQ,
#8)=0 for p=0 and s=1.
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Proof. We can prove this by a similar method to that of Theorem 7.1.6.
Q.E.D.
7.2. The Dolbeault-Grothendieck resolution of ¢° and ¢,

In this section we will construct soft resolutions of ¢” and @, and prove some

of their consequences.
At first we will define the sheaf & of germs of partially slowly increasing C*-

functions over G".

Definition 7.2.1. We define the sheaf &° to be the sheafification of the phesheaf
{£°(Q); Q<= G" open}, where, for an open set Q in G", the module &°(Q) is defined
as follows:

E(Q)={fe &(Qn C'"l); for any positive ¢ and any compact set K in Q
and any o€ N21"! the estimate sup {|f(®}(z)|e(—e|z]); ze Kn CI"l} <00
holds}.

Then it is easy to see that &° is a soft nuclear Fréchet sheaf. Then we have
the following

Theorem 7.2.2 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over G"

00— @»p — &00 2, gropl T, ... 0, gbrslnl 0
is exact.
Proof. It goes in a similar way to that of Ito [10], Theorem 3.1. Q.E.D.
Corollary 1. For an open set Q in G", we have the following isomorphism:
H4Q, 0vr)={fe &P 4Q); 0f=0}/{0g; g€ £"P " (@)}, (p20,921).
Proof. It follws from Theorem 7.2.2 and Komatsu [21], Theorems II.2.9 and
11.2.19. Q.E.D.

Corollary 2. Let Q be an 0"-pseudoconvex open set. Then the equation
du=f has a solution ue&®?4Q) for every fe&"?1*YQ) such that df=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 7.1.4 and Corollary 1 to Theorem 7.2.2.
Q.E.D.

Now we will define the sheaf &, of germs of partially rapidly decreasing C*®-
functions over G™.

Definition 7.2.3. We define the sheaf &, to be the sheafification of the presheaf

{&£,(Q); Q<= G" open}, where the section module &,(2) on an open set Q in G" is
the space of all C*-functions on Q0 C'* such that, for any compact set K in Q
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and any o€ N?Inl, there exists some positive constant d so that the estimate
sup {|f(2)|e(d]z]); ze K n Cl"l} < o0
holds.

Then it is easy to see that &, is a soft nuclear Fréchet sheaf. Then we have
the following

Theorem 7.2.4 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over G"

0 @I; , g{;,o 0 (9@1;,1 0y .. 0 éalb’,lnl s 0

is exact.
Proof. It follows in a similar way to Ito [10], Theorem 3.1. Q.E.D.
Corollary 1. For an open set Q in G", we have the following isomorphism:
Ho(Q, %)= (fe 67-4(Q); 0f=0}/idg; g€ 6297 1(@), (p20, 421).

Corollary 2. Let Q be an 0’-pseudoconvex open set. Then the equation
Su=f has a solution ue &L-YQ) for every fe&P4*(Q) such that 0f=0. Here
p and q are nonnegative integers.

Proof. It follows from Theorem 7.1.7 and Corollary 1 to Theorem 7.2.4.
Q.E.D.

Now, for later applications, we will construct another soft resolutions of o’
and 0,.

We will define the sheaf L*= L} .. of germs of partially slowly increasing locally
L,-functions.

Definition 7.2.5. We define the sheaf L’ to be the sheafification of the presheaf
{L*(Q); Q= G" open}, where, for an open set Q in G", the section module L(Q)
is the space of all fe L, 1,(Qn C'") such as, for any >0 and any relatively compact
open subset w of Q, e(—e||z])f(2)|lw belongs to Ly(wn C'").  Here e(—¢|zl)f(z)|w
denotes the restriction of e(—¢|z|)f(z) to w and |z| denotes the modification of

]
Y. |z,| so as to become C* and convex.
j=1

" Then it is easy to see that L' is a soft FS* sheaf

Definition 7.2.6 (The sheaf .#"7-9). We define the sheaf "7 i1=L51:¢ to
be the sheafification of the presheaf {£"*?:4(Q); Q< G" open}, where, for an open
set Q in G", the section module #"?74Q) is the space of all feL"?P Q)=
L5:2:9(Q) such that 0fe L?»-a*1(Q)= L5531 1(Q).  We put £°= 2729

Then #*-7-4is a soft FS* sheaf. Then we have the following
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Theorem 7.2.7 (The Dolbeault-Grothendieck resolution). The sequence of sheaves
over G"

0— 0P — Prp0_ 2, propl 2, ... 0, grpdnl __,(
is exact.
Proof. It goes in a similar way to that of Theorem 1.2.7. Q.E.D.
Corollary 1. For an open set Q in G", we have the following isomorphism:
HYQ, ") ={fe 2514 Q); 0f=0}/{dg; ge £50E(Q)}, (p20,921).

Corollary 2. Let Q be an 0°-pseudoconvex open set in G". Then the equation
du=f has a solution ue L5:4Q) for every fe £3P:4*1(Q) such that 3f=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 7.1.4 and Corollary 1 to Theorem 7.2.7.
Q.E.D.

We will now define the sheaf L, =L, , ,,. of germs of partially rapidly decreasing
locally L,-functions.

Definition 7.2.8. We define the sheaf L, to be the sheafification of the presheaf
{Ly(Q2); Q<= G open}, where, for an open set Q in G", the section module L,(Q) is
the space of all fe L, ,(2n C\"l) such as, for any relatively compact open subset
w of Q, there exists some positive  such that e(d|z|)f(z)|w e Ly(w n C'h.

Then it is easy to see that L, is a soft FS* sheaf.

Definition 7.2.9 (The sheaf £4-9). We define the sheaf £%:%= %4 .. to be the
sheafification of the presheaf {¥£%-%(Q); Q= G" open}, where, for an open set Q
in G", the section module £%-%(Q) is the space of all fe Ly Q)=L54 ,(Q)
such that 0fe L (Q)=L}: 4L (Q). We put &, = 9.

Then #74-4 is a soft FS* sheaf. Then we have the following

Theorem 7.2.10 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over G"

0— 0 — PL0 2, pbot T, ... &, ghinl __,(
is exact.
Proof. It goes in a similar way to that of Theorem 1.2.7. Q.E.D.
Corollary 1. For an open set Q in G", we have the following isomorphism:

HY(Q, 05)={fe £5:4,,.(2); 0 f=0}/{0g; ge L%:51.(2)}, (p=0,q=1).
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Corollary 2. Let Q be an 0°-pseudoconvex open set in G". Then the equation
du=f has a solution ue £54 ,.(Q) for every fe 04 () such that Jf=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 7.1.7 and Corollary 1 to Theorem 7.2.10.
Q.E.D.

7.3. The Serre duality theorem

In this section we will prove the Serre duality theorem.

Theorem 7.3.1. Let Q be an open set in G" such that dim HP(Q, 0°)< oo
holds (p=1). Then we have the isomorphism [HXQ, 0")]'=H!"-7(Q,0,),
(O=p=in)).

Proof. By virtue of Corollary 1 to Theorem 7.2.7 and Corollary 1 to Theorem
7.2.10, cohomology groups H?(Q, ¢°) and H!"-»(Q, ¢,) are cohomology groups
respectively of the complexes

0 — £7:9:9(Q) v £7:0:1(Q) _5,.._30, gb,o,lnl(g) —0

1 1 1
! l l

0 Lp(;:]cnl(g) Pt g(gzlcnl—l(g) Pt Bt I ,?822(9)(———0

Here the upper complex is composed of FS* spaces and the lower complex is com-
posed of DFS* spaces. Since the ranges of operators 0 in the upper complex are all
closed by virtue of Schwartz’ Lemma (cf. Komatsu [20]), the ranges of operators
—J=(0)' in the lower complex are also all closed. Hence we have the isomorphism

[HP(Q’ @b)], = HLnl—p(Q, 0}7)

by virtue of Serre’s Lemma (cf. Komatsu [20]). Q.E.D.

7.4. The Martineau-Harvey Theorem

In this section we will prove the Martineau-Harvey Theorem.

Theorem 7.4.1. Let K be a compact set in G" such that it has an 0°-pseudo-
convex open neighborhood Q and satisfies the conditions H?(K, ¢,)=0 (p=1).
Then we have H%(Q, 0*)=0 for p=:|n| and isomorphisms HYP(Q, 0" =HI"I"(Q\K,
0")~0,(K)'.

Remark. If a compact set K in G” has a fundamental system of ¢°-pseudo-

convex open neighborhoods, it satisfies the assumptions in Theorem 7.4.1.

Proof. By the excision theorem, H%(Q, ¢0*) is independent of an open neigh-
borhood @ of K. So, we may assume that Q is an ¢’-pseudoconvex open neigh-
borhood in the assumptions in this theorem. Then in the long exact sequence of
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cohomology groups (cf. Komatsu [21], Theorem 11.3.2):
0 — Hi(Q, 0°") — H%(Q, 0") — H(Q\K, 0°)
— H{(Q, 0°) — HY(Q, 0") — H'(Q\K, 0°)
— HEW(Q, 0") — HI"(Q, 0°) — HI"(Q\K, 0°) — -+,

we have HP(Q, 0°)=0 for p=1 and HYQ, 0°)=0 by the unique continuation
theorem. Hence we have isomorphisms

Hi (2, 0")=0°(Q\K)/0°(Q),

HY(Q, 0° )= HP"Y(Q\K, 0°), p=2.

We also have the long exact sequence of cohomology groups with compact
support (cf. Komatsu [21], Theorem 11.3.15):

0 — HYQ\K, 0,) — H%Q,0,) — HK, 0,)
— HY(Q\K, 0,) — H{(2,0,) — H'(K, 0,)
— HY(Q\K, 0,) — K2, 0,) — H(K, 0,) — -~

Here H?(K, ¢#,)=0 (p=1) by the assumption on K. Therefore we obtain the
isomorphisms

0,(K)=Hi(Q\K, 0,),

H{(Q, 0,)=HYQ\K, 0,), p=2.
By the theorem 7.3.1, we have H2(Q, @,)=0 (p=|n|). Thus we have the following
isomorphisms

HYQ\K, 0,)=0, px1, |n|,

H" (Q\K, 0,)=0"(Q)".

Now we cronsider the following dual complexes:

0 —s P700Q\K) B0, @0 1(Q\K) D1,y oo, (%)
1

i !
l - l _
0 — ZRNQ\K) Shmimt @0 I-1(QVK) Simizz e ()
(%) Fini-2 gb,‘),[ﬂ—%(g\]{) Dini-1 gb,0,|n|(Q\K)__>O
T (.
! : SR

()T ZRURQIK) R ZRAR\K) 0.
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Then, since H(Q\K, ©,)=0 (p=1, |n|), the range of —0J;=(0},—;—;) is closed
except for j=0, |n|—1. However 5|n|_1 is of closed range by the Malgrange
Theorem. Hence, by the closed range theorem, —d, is of closed range (cf. Komatsu
[20], Theorem 19, p. 381).

In order to prove the closedrangeness of —d),—, we consider the following
diagram:

0 LLLI(Q\K) 25 2. 1n-1 (Q\K)

0 — ZoI(Q) S 24 1171(Q),

where the map i is the natural injection. However, in the dual complexes for
Q, 32 is of closed range since H'(Q, 0*)=0. Thus, by the closed range theorem,
Im (— 00K )=i"'(Im(—0f,;-,)) is closed. Therefore all —09'K are of closed
range. Hence, by the Serre-Komatsu duality theorem, we have the isomorphisms
[HY(Q\K, 0°)] ~H!"-(Q\K, 0,), for 0<p<|n|. Hence we have 0"(Q\K) =
HI"W(Q\K, 0,)= H"(Q, 0,)=0%Q). Here 0°(Q\K) and 0°(Q2) are both FS
spaces, a posteriori, reflexive. Hence we have the isomorphism ¢"(€2)= 0" (Q\K).
Thus HYQ, 0")=0"(Q\K)/0*(Q)=0. Hence, for p=2, px|n|, we have 0=
Hlal=rt1(Q, 0,) = HI*-p*1(Q\K, 0,) 2 [H"1(Q\K, 0°)] = [H(Q, 0")]'.  Thus
HY(Q, 0")=0. In the cace p=|n|, we have the isomorphisms [H(Q, 0")] =
[HI"-1(Q\K, 0")]'2HL{Q\K, 0,) = H(K, 0,) = 0,(K). Since 0,(K) is a DFS
space, it follows from the Serre-Komatsu duality theorem that the above isomor-
phisms are topological isomorphisms. Hence we have the isomorphism H(Q,
0°)~0,(K)'. Q.E.D.

7.5. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
0°. Then we will realize partial Fourier hyperfunctions as ‘“boundary values’
of partially slowly increasing holomorphic functions or as (relative) cohomology
classes of partially slowly increasing holomorphic functions.

Theorem 7.5.1 (The Sato Theorem). Let Q be an open set in D" and V an
open set in G" which contains Q as its closed subsets. Then we have the following

(1) D is purely |n|-codimensional with respect to 0°.
(2) The presheaf over Dr
Q — Hi\(V, ")

is a sheaf.
(3) This sheaf (2) is isomor phic to the sheaf #% of partial Fourier hyper-
functions.
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Proof. (1) Itis sufficient to prove H)(V, 0*) =0 (p = |n|) for a relatively compact
open set Q. Thus, it goes in a similar way to Kawai [19], p. 482.

(2) By (1) and the theorem II.3.18 of Komatsu [21], we have the conclusion.

(3) Consider the following exact sequence of relative cohomology groups
for a relatively compact open set Q

0 — H(V, 0") — HYu(V, 0°) — HY(V, 0")
— Hio(V, 0") — - — Hg"(V,0")
— H(V, 0°) — HRI(V, 0°) — HY\(V, 0")
— HE* (¥, 0°) — -

Then, by (1) and by the Martineau-Harvey Theorem, we have H'-1(V, ¢*)=0,
H4*1(V, ©*)=0. Thus we have the exact sequence

0 — HL(V, 0°) — HYN(V, 0°) — HY\(V, 0*) — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
H (V, 0°)2o2,(0Q), HR(V, 0°) = o,(Q7),
we obtain the isomorphism
HYY(V, 0°)=o2,(2%) |4,(0Q) = BR(Q).

Thus the sheaf Q—H[!(V, 0°) is isomorphic to the sheaf #%# of partial Fourier
hyperfunctions over D", Q.E.D.

Let Q be an open set in D”. Then there exists an O’-pseudoconvex open
neighborhood V of Q such that ¥ n D"=Q (cf. Tto [11], Theorem 10.1.10). We put
Vo=V and V;=V\{zeV;Imz;=0}¢, j=1,2,.,[n. Then B={V,, V,,..., Vi}
and B'={V,,..., V},} cover V and V\Q respectively. Since V, and their inter-
sections are also @”-pseudoconvex open sets, the covering (B, B') satisfies the
conditions of Leray’s Theorem (cf. Komatsu [23]). Thus, by Leray’s Theorem,
we obtain the isomorphism H(V, 0")~HI"I(B, B', ¢*). Since the covering B
is composed of only [n|+1 open sets V; (j=0, 1,..., |n|), we easily obtain the isomor-
phisms

ZI"(B, B', 0") 20N (N, V),

Inl

Clnl=1 (B, B', 0" @ 07(
i=1

j=

V).
iy

1=J

Hence we have

[n]
OCIIH(B, B, 07 3 OO\ V)IVin V.
=]

Jj=1



Theory of (Vector Valued) Fourier Hyperfunctions 53
Thus we have the isomorphisms
HYW(V, 0*)= H!"I(B, B', 0%)

~ ZInl(B, B', 07)/5CIN-1(B, B, 07)

=0, V)l 3 00 V.

1=<Jj

Thus we have the following

Theorem 7.5.2. We use notations as above. Then we have the isomorphisms
|n]
H(V, 0")= HI"(B, B', 0°)=0"(N; V)] 2 0°( Q V).
=1 i

At last we will realize partial Fourier analytic functionals with certain compact
carrier as (relative) cohomology classes with coefficients in o>,

Let K be a compact set in G" of the form K=K, x --- x K|, with compact sets
K;in C for j=1,..., ny and in C for j=n,;+1,...,|n]. Assume that K admits a
fundamental system of ¢"-pseudoconvex open neighborhoods. Then we have

Hr(K, 0,)=0 for p>0.
By virtue of the Martineau-Harvey Theorem, there exists the isomorphism
0,(K) = HR'I(G", 0°).

Further assume that there exists an @,-pseudoconvex open neighborhood K such
that

QJ-:Q\{ZECIHI; ZjEKj n C}a
is also an ¢'-pseudoconvex open set for j=1,2,...,|n[. Put Q,=0Q. Then V=

{Qo, Qy,.... Q) and V'={Q,, 2,,..., Q,} form acyclic coverings of Q and Q\K.
Set

[nl
QK= N Q;,
j=1
Q‘I—_- /\ Qi‘
i
In] ; .
Let 3 0°(QY) be the image in 0°(Q4K) of [ ¢°(€2/) by the mapping
J j=1
[ , ,
(D — 2 (=175

where f; denotes the restriction of f; to Q#K.
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Then, by a similar method to that of Theorem 7.6.2, we have the following
Theorem 7.5.3. We use the notations as above. Then we have the isomorphisms
0,(K)' =HRW(G", 0") =~ HI"(B, B', 0")=0°(Q4K)| 3. 0°(Q).
By the above theorem, we can define the canonical mappingj;

b: 0"(Q4K) — 0,(KY

whose kernel is 3 ; 0°(Q).
Then we have the following

Theorem 7.5.4. We use the above notations.
(1) Letue0,(K) and put

i1(z)= Qi) "u(E—2)"" exp (= ("~ 2")?),

where we put

n {n]
E-071= 1 €=z and @ =2= 3 (22

Jj=ni+

Then il € 0°(Q4K) and b(ii)=u hold.

(i) Let fe0’(Q4K) and ge0,(K). Let w=w;X - Xw, <Q with open
neighborhoods w; of K; in C or C and g€ 0,(w) where & is an open neighborhood
of w with ®<=Q. Let I'; (j=1,2,..., |n|]) be regular contours in w;n C enclosing
once K; n C and oriented in the usual way. Then we have .

bN@=(=Dm |l p@gEz, - dzy
1 1nl
Proof. The integral
(=) | fgEdz, - dzy
Iy IR P
does not depend on the chosen contours and defines a linear mapping
b': 0°(Q%4K) — 0,(K),
which is zero on 3 ; 0°(Q7). Hence, in order to prove (ii), it is sufficient to prove
that, if u € 0,(K)’, we have
b'(i)=u.
But
b'(it) (9)
=(—DI"Q2im)=Inl S S ud(E=2)"" exp (—(&" —2")2))g(2)dz
I'y I'inl

= u (i) "] gr

=u(g).

1

@ E- e (- d2)
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This proves (i) and completes the proof. Q.E.D.

Chapter 8. Case of the sheaf ¢’

8.1. The Dolbeault-Grothendieck resolution of £¢0°

In this section we will construct a soft resolution of £0°. Here E denotes a
quasi-complete LCTVS (always assumed to be Hausdorff) unless the contrary is
explicitly mentioned and " = 77 denotes the family of continuous seminorms of E
defining a locally convex topology on E.

At first we will define sheaves E¢° and £&°.

Definition 8.1.1 (The sheaf £0° of germs of partially slowly increasing E-valued
holomorphic functions over G”). We define the sheaf F0" to be the sheafification
of the presheaf {0°(Q; E)}, where, for an open set Q in G", the module 0°(Q; E)
is defined as follows:

0*(Q; E)y={fe0(Q n C\*!; E); for any positive ¢ and any compact set K
in Q and any g€ 7, sup {q(f(2))e(—elz|); ze K n C!"'} <o holds}.

We call this sheaf E0" the sheaf of germs of partially slowly increasing E-valued
holomorphic functions.

Definition 8.1.2 (The sheaf £&” of germs of partially slowly increasing E-valued
C>-functions). We define E&" to be the sheafification of the presheaf {6°(Q; E)},
where, for an open set Q in G", the module &°(Q; E) is defined as follows:

&°(Q; Ey={fe &(Qn C"; E); for any positive e and any compact set K in
Q and any oeN?"l and any qe7, sup{q(f™@(2)e(—elzl); ze€
K n C"l} < oo holds}.

Then the sheaf E&" is soft, and we have the following

Theorem 8.1.3 (The Dolbeault-Grothendiek resolution of F¢’-?). Let E be
a quasi-complete LCTVS. Then the sequence of sheaves over G"

0 Egb.p Egb.p.0 _E  Egvpl _T, ... T, Egvpilnl __, ()

is exact.

Proof. It goes in a similar way to that of Ito [10], Theorem 3.1, p. 989.
Q.E.D.

Corollary. For an open set Q in G", we have the following isomorphism:

HY(Q, E0*-P)={fe &7 4Q; E); 0f=0}/{dg; ge &"P471(Q; B)}, (p20,921).
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Proof. It follows from Theorem 8.1.3 and Komatsu [21], Theorems I1.2.9
and 11.2.19. Q.E.D.

8.2. The Oka-Cartan-Kawai Theorem B

In this section we will prove the Oka-Cartan-Kawai Theorem B for the sheaf
£0’. In the sequel of this chapter, E is always assumed to be a Fréchet space.

Theorem 8.2.1 (The Oka-Cartan-Kawai Theorem B). For any ©‘-pseudo-
convex open set Q in G", we have HYQ, £0°-?)=0 for p=0 and g=1.

Proof. Since we have, by the Oka-Cartan-Kawai Theorem B for ¢°,
HYQ, 0>7)=0  (p=0, g=1),
the complex obtained from Theorem 7.2.2:
EVPO(Q) 2, ghr(Q) Ly L. T, rnInl(Q) 5 0

is exact. Since £°-7-4(Q)’s are nuclear Fréchet spaces and E is a Fréchet space,
the complex

E"POQ E) 25 8701 (Q; E) —2s . 2, g0pilnl(Q; E)—0
is also exact by virtue of the isomorphism
E"PI(Q; E)x& 0 9(Q)RE
and Ion and Kawai [5], Theorem 1.10. Hence we obtain
HY(Q, 50"7)=0  (p20,q21).
This completes the proof. Q.E.D.

Corollary. Let Q be an 0°-pseudoconvex open set in G". Then the equation
Ou=f has a solution ue &*r-4Q; E) for every fe &7 P4t Q; E) such that 0f=0.
Here p and q are nonnegative integers.

Proof. It follows from Theorem 8.2.1 and Corollary to Theorem 8.1.3.
Q.E.D.

8.3. The Serre duality theorem

Theorem 8.3.1. Let Q be an open set in G" such that dim HP(Q, 0")< oo
holds (pz1). Then we have the isomorphism HP(Q, E0*)=L(H!""»(Q, 0,); E),
0<p=in|.

Proof. By a similar method to Junker [15], Lemma 3.5, we can obtain the
isomorphism HP(Q, E0")x HP(Q, 0*)®,E. Then, by Theorem 7.3.1, we have
the following isomrophisms
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H?(Q, F0")= HY(Q, 0")® Ex[H"7(Q, 0,)]'®,E
;L(HIC"]‘P(Q, 0,); E). Q.E. D.

8.4. The Martineau-Harvey Theorem

Theorem 8.4.1. Let K be a compact set in G" such that it has an O0°-pseudo-
convex open neighborhood Q and satisfies the conditions HP(K, 0,)=0 (p=1).
Then we have HEQ, E0")=0 for p=x=|n| and isomorphisms HPN(Q, E0")x
HI"-Y(Q\K, E0*)~ L(0,(K); E).

Proof. We can assume that Q is an ¢°-pseudoconvex open neighborhood of

K. Then, in the long exact sequence of cohomology groups (cf. Komatsu [21],
Theorem 11.3.2):

0 — HYQ, E0°) — HC (Q,50°) — H(Q\K, £0°)
— HY(Q, E0%) — H\(Q, E0") — H'(Q\K, £07)

SN H}(nl(Q’ E(g‘a) N Hln[(Q’ E(ﬂb) NN H|n|(Q\K, E@b) N

k4

we have HP(Q, E0")=0 for p=1 and HYQ, £0")=0 by the unique continuation
theorem. Hence we have isomorphisms

HY(Q, F0")=0°(Q\K; E)|0°(Q; E),
HY(Q, E0") = HP"Y(Q\K, E0®), p=2.

But, by a similar way to that of Junker [15], Lemma 3.5, we have isomorphisms
HP(V, Eo®Y= HP(V, 0")®E, 0<p<|n|, for any open set V in G". So that, by
Theorem 7.4.1, we have isomorphisms

HY(Q, E0") = HY(Q, 0")®,E=0 for p=|n|,
and
HP(Q, F0*)= HI""(Q\K, E0*) = HI""{(Q\K, 0°)®,E
~HI(Q, 0)® E~0,(K)®,.EXL0,(K); E). Q.E.D.

8.5. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
Ep®. Then we realize E-valued partial Fourier hyperfunctions as “boundary values’
of E-valued partially slowly increasing holomorphic functions or as (relative) coho-
mology classes of E-valued partially slowly increasing holomorphic functions.

Theorem 8.5.1 (The Sato Theorem). Let Q beanopenset in D" and V an open
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set in G" which contains Q as its closed subset. Then we have the following
(1) D" is purely |n|-codimensional with respect to E0°.
(2) The presheaf over D"

Q_,ngnl( v, EQP)

is a sheaf.
(3) This sheaf (2) is isomorphic to the sheaf E(B#) of E-valued partial
Fourier hyperfunctions.

Proof. (1) It is sufficient to prove H(V, E0")=0 (p=|n|) for a relatively
compact open set 2. Thus, by the excision theorem, we may assume that V is an
0’-pseudoconvex open set in G". Consider the following exact sequence of relative
cohomology groups

0 — HY(V, E0") — HYo (V, E0") — HY(V, EO")
— Hio(V,50°) — o — HY(Y, ")
— Hp(V. £0%) — HRl(V, F0*) — H(V, #0)
s HY (Y, F0%) — -

By Theorems 7.1.8 and 8.4.1, we may conclude that H,(V, £0°)=H%.(V, E0")=0
for p=x|n|. So that, we have HE(V, £0*)=0 for p=|n|—1, [n]. On the other hand,
by Theorems 7.1.8 and 8.4.1, we also have the exact sequence

0 — HiP'"Y(V, E0") — L(#,(0Q); E) — L(o,(2°); E).

Since j is injective, we have Hl!=1(V, E0?)=0.
(2) By (1) and the theorem I1.3.18 of Komatsu [21], we have the conclusion.
(3) By the proof of (1), we have the exact sequence for a relatively compact
open set Q

0 — HYW(V, 0"y — HR(V, E0*) — HY(V, E0") — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
HUY(V, E0") = L(4,(09); E),
Hil (V, B0") = L(22,(Q%); E),
we obtain the isomorphism
HRI(V, F0) = L(£,(Q%); E)| L(+£,(0Q); EY= 32)Q; E).

Thus the sheaf Q— H}2!(V, £¢") is isomorphic to the sheaf E(##) of E-valued partial
Fourier hyperfunctions over Dr. Q.E.D.

In a similar notations to in Theorem 7.5.2, we have the following
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[nl
Theorem 8.5.2. H2I(V, Eo*)= HI"|(B, B, E0")= 0*(N\; V;; E) 2 0°( N\ Vi E)
ISy
hold.

At last we will realize partial Fourier analytic linear mappings with certain
compact carrier as (relative) cohomology classes with coefficients in £¢”.

Let K be a compact set in G" of the form K=K, x --- x K, with compact sets
K; in C for j=1,...,n; and in C for j=n,+1,...,|n|. Assume that K admits a
fundamental system of ¢"-pseudoconvex open neighborhoods. Then we have

H?(K, 0,)=0 for p>0.
By virtue of the Martineau-Harvey Theorem, there exists the isomorphism
0(K; Ey~HPI(G", £0").

Further assume that there exists an @°-pseudoconvex open neighborhood @ such
that

Q;=Q\{ze G"; z;€K;n C}*

is also an @’-pseudoconvex open set for j=1,2,...,[n|. Put Qy=Q. Then B=
{Qo, Q150.0s Q) and B'={Qy, Q,,..., Q,,} form acyclic coverings of Q and Q\K.
Set

Inl .
QﬂK= M ‘Qj’ QJZ/\,'%J-Qi.

Jj=1

In| . .
Let Y ; 0°(Q/; E) be the image in 0"(Q¥K; E) of [] 0°(Q/; E) by the mapping
=

|nl . ,
D — E (=177,
f=
where f’; denotes the restriction of f; to Q#K.

Then, by a similar way to that of Theorem 8.5.2, we have the following

Theorem 8.5.3. We use the notations as above. Then we have the isomor-
phisms

0K; Ey=HP(G", Fo*)= HI"|(B, B', E0°)
~0"(Q%K; E)/ Y. 0" (@ E).
j
By the above theorem, we can define the canonical mapping
b: 0"(Q%¥K; E) — 0,(K; E)

whose kernel is 3 ; 0°(2/; E).
Then we have the following
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Theorem 8.5.4. We use the above notations.
(i) Letue0y)(K; E) and put

#(z)=Q2in)""u(§ —z)~  exp (= ("~ 2")?),
Then ii € 0°(Q%K ; E) and b(@i)=u hold.

(i) Let fe0*(Q#K; E) and g€ 0,(K). Let o=w; X X, = with open
neighborhoods w; of K; in C or Candge 0,(®) where & is an open neighborhood
of w with 3<=Q. Let I'; (j=1, 2,..., |n|) be regular contours in w; n C enclosing
once K;n C and oriented in the usual way. Then we have

b @=(=M | F gz dzy,

Iy

Proof. The integral

o @z, - dzy

Iy
does not depend on the chosen contours and defines a linear mapping
b': 0°(Q#K; E)—> 0,(K; E),

which is zero on }; ¢0°(Q/; E). Hence, in order to prove (ii), it is sufficient to
prove that, if u € 0\(K; E), we have

b'(i)=u.
But
b(@)(g)
=(=)@im | =2 ep (—(E -2z
=ug@imy | el @) =0t exp (—(2"—)d2)
=u(g).
This proves (i) and completes the proof. Q.E.D.

Note. Recently, I found out that Malgrange Theorems are no longer of any
use for proving Sato Theorems which are the main theorems in each chapter.
The reason is this. At first we used the Malgrange Theorem for proving the flab-
biness of the sheaf Q— HZ!(V, 0%) in the case of Theorem 5.5.1. But the presheaf
Q- H}(V, 0%) is a sheaf only by virtue of the pure-codimensionality of D" with
respect to 0. Then this sheaf is isomorphic to the sheaf 2 of mixed Fourier
hyperfunctions which is flabby. Thus, by this isomorphism, we can conclude that
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the sheaf Q— H#/(V, 0*%)is flabby. All the other cases treated in this series of papers
are in the same situation.

Therefore we omitted the section concerning the Malgrange Theorem and re-
numbered the remaining sections.
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Added in Proof. Having submitted this paper to the editorial committee,
I again read carefully the manuscript of this paper and remembered that the
Malgrange theorems were used for proving the Martineau-Harvey theorems
though the Malgrange theorems were not used directly for proving the Sato
theorems. But fortunately the Malgrange theorems are the fairly separate ones.
Thus, in this paper, we were forced to get on without the explicit mention of the
Malgrange theorems even though the selfcontainedness was sacrificed.



