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Introduction

In Schapira [20] and Ito [8], [9], we defined a (vector valued) Sato hyper-
functions as a residue class of analytic functionals (or analytic linear mappings).
In this paper, we will realize these (vector valued) Sato hyperfunctions as “boundary
values’ of (vector valued) holomorphic functions. Thus we will prove the main
theorems (Theorems 1.6.1 and 2.6.1).

The proof of Theorem 1.6.1 goes as follows. At first we will prove the
Dolbeault-Grothendieck resolution of the sheaf ¢ using the sheaves .#7:¢ of germs
of differential forms of type (p, q) with locally square integrable functions as coeffi-
cients over C”. Then, using the above resolution of ¢, we will prove the Oka-
Cartan Theorem B, Malgrange’s Theorem and Serre’s duality theorem. Then,
using these results, we will prove Martineau-Harvey’s Theorem and, as a result,
Sato’s Theorem. Here, in order to prove Martineau-Harvey’s Theorem, we need
the Dolbeault-Grothendieck resolution of the above type, the Oka-Cartan
Theorem B, Malgrange’s Theorem and Serre’s duality theorem. But, in order
to prove Sato’s Theorem, we have only to make a direct use of the general theory of
cohomology groups and Martineau-Harvey’s Theorem. This method of proof
is essentially new and simplified in the point that we use the Dolbeault-Grothendieck
resolution of the above type. The merit of this method is that the duality argument
of complexes are simplified and confined within the classical analysis.

Here we found the following fact. In the proof of Martineau-Harvey’s
Theorem, we used the long exact sequence of (relative) cohomology groups. But,
because of using canonical flabby resolutions to prove this long exact sequence,
we can only say that the isomorphisms HQ, O)=H" Y (Q\K, 0)=0O(K)' in this
theorem are algebraic. But, because Sato’s Theorem is independent of the topology,
it is sufficient, for this theory, to have these algebraic isomorphisms.

By virtue of Sato’s Theorem, we can see that Sato hyperfunctions can be realized
as “boundary values’’ of holomorphic functions.
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As for vector valued Sato hyperfunctions, similar assertions can be made.

Therefrom we can see that the mathematical substance named (vector valued)
Sato hyperfunctions has the duplexity of having two realizations as dual objects of
functions and as “boundary values” of (vector valued) holomorphic functions.

In chapter 1, we will treat the scalar valued case, and in chapter 2, we will
treat the vector valued case.

Chapter 1. Case of Sato Hyperfunctions

1.1. The Dolbeault-Grothendieck Resolutions of ¢

In this section we will recall the soft resolutions of the sheaf ¢ of germs of
holomorphic functions over the n-dimensional complex Euclidean space C”.

If # is a sheaf over C", we will define the sheaf %7+ to be the sheaf of germs
of differential forms of type (p, g) with coefficients in # and denote the Cauchy-
Riemann operator by J, where p and g are nonnegative integers. We will denote
FP=%70 Then we have the following

Theorem 1.1.1 (The Dolbeault-Grothendieck resolution).  The sequence of
sheaves over C*

0 op EP0 9, ol _0 ... _3, gp.n ;0

is exact, where & denote the soft nuclear Fréchet sheaf of germs of C®-functions
over C" and p is a nonnegative integer.

Proof. Since the assertion is locally, this easily follows from Hérmander
[4], Theorem 2.3.3. Q.E.D.

Corollary. For an open set Q in C", we have the following isomorphism:
HiQ, 07)={fe &P (Q); 0f=0}/{dg; ge 674 Y(Q)} (p=0, g=1).

Proof. It follows from Theorem 1.1.1 and Komatsu [14], Theorems I1.2.9
and 11.2.19. Q.E.D.

Next we will prove one another soft resolution of 6.

Let L=L,,,, be a soft FS* sheaf of germs of locally L,-functions over C=.
Then we define the sheaf #7P-4=9%.9 to be the sheafification of the presheaf
{27 94Q); Q<= C" open}, where, for an open set Q in C*, the section module .#7-9(Q)
is the space of all fe L7 9(Q)=L%{,(Q) such that dfe LP-a"(Q)= L5+ 1(Q). We
put &£ =290 Then #£71is a soft FS* sheaf. Then we have the following

Theorem 1.1.2 (The Dolbeault-Grothendieck resolution). The sequence of
sheaves over C"
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0—»0p — #r0 0, @pl 0, ... 0, prn__
is exact.
Proof. The exactness of the sequence
0—¢r— gr0 7, grl

is evident because of the ellipticity of the operator 0.
Next we have to prove the exactness of the sequence

P00, prt _0,... 3, gpn__ (),
We will reason as in Hérmander [4], p. 32. Thus it follows from the following

Lemma. Let D be an open polydisc in C" and let fe ¥7-9*1(D) (p, ¢=0)
satisfy the condition 0 f=0. If D' is a relatively compact open polydisc in D, we
can find u e £?4D’) such that ou=fin D’.

This completes the proof. Q.E.D.

Corollary. For an open set Q in C", we have the following isomorphism:

HYQ, 07)={fe £51.(Q); 0f=0}/{0g; g L5{N(QD}, (P20, q21).

1.2. The Oka-Cartan Theorem B

In this section we will prove the Oka-Cartan Theorem B for the sheaf ¢ by
using the soft resolution of Theorem 1.1.2. Thus we have the following

Theorem 1.2.1 (The Oka-Cartan Theorem B). For any pseudoconvex open set
Vin C", we have H(V, 0P)=0 (p=0, s=1).

Proof. This is an immediate consequence of Theorem 1.1.2 and Hérmander
[4], Theorem 4.2.2. Q.E.D.

Corollary. For any pseudoconvex open set Q in C", the equation du=f has a
solution ue £r-4Q) for every fe#?471(Q) such that 0f=0. Here p and q are
nonnegative integers.

Proof. This is an immediate consequences of Corollary to Theorems 1.1.1
and 1.2.1. Q.E.D.

Let o7 be the sheaf of germs of real analytic functions over R" defined by .« =
O|R*. Then we have the following :

Theorem 1.2.2 (Malgrange). For any subset Q of R", we have H(Q, «/?)=0
(p=20,521).

Proof. See Komatsu [14], Corollary V.2.6 and Schapira [20], Lemma 411.
Q.E.D.
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1.3. Malgrange’s Theorem

In this section we will prove the following
Theorem 1.3.1. Let Q be an open set in C*. Then we have HY(Q, 0)=0.

Proof. By virtue of Corollary to Theorem 1.1.2, we have only to prove the
exactness of the sequence

LOr1(Q) 2, O0n(Q) — 0
or equivalently that of the sequence
Lo 1(Q) — Lo%"(Q2) — 0.
This can be proved by a similar method to Komatsu [14]. Q.E.D.
1.4. Serre’s duality theorem
In this section we will prove Serre’s duality theorem.

Theorem 1.4.1. Let Q be an open set in C" such that dim H?(Q, 0)< oo
holds (p=1). Then we have the isomorphism [HP(Q, 0)] =H: ?(Q, 0) (0=p=n).

Proof. By virtue of Corollary to Theorem 1.1.2, cohomology groups H?(, 0)
and H" P(Q, 0) are cohomology groups respectively of the complexes

0 £%9(Q) 7, ¥%1(Q) -2,... 2, 2%(Q) —0
1 1
N
0 £o7(Q) <=2 Lo 1(Q) =2 ... =2 £90(Q) 0.
Here the upper complex is composed of FS* spaces and the lower complex is
composed of DFS* spaces. Since the ranges of operators 0 in the upper complex
are all closed by virtue of Schwartz’ Lemma (cf. Komatsu [13]), the ranges of oper-

ators —0=(d)' in the lower complex are also all closed. Hence we have the iso-
morphism

[HP(Q, 0)]'=HI™(L, 0)
by virtue of Serre’s Lemma (cf. Komatsu [13]). Q.E.D.

1.5. Martineau-Harvey’s Theorem
In this section we will prove Martineau-Harvey’s Theorem.
Theorem 1.5.1. Let K be a compact set in C" such that H?(K, 0)=0 (p=1)

holds. Then, for an open neighborhood V of K, we have H}(V, 0)=0 (p#n)
and algebraic isomorphisms Hy(V, 0)=H""{(V\K, 0)=0(K)'.
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Remark. If a compact set K in C" has a fundamental system of pseudoconvex
open neighborhoods, it satisfies the assumptions in Theorem 1.5.1.

Proof. By the excision theorem, H¢(V, 0) is independent of an open neighbor-
hood V of K. So, we may assume that V' is a pseudoconvex open neighborhood.
Then in the long exact sequence of cohomology groups (cf. Komatsu [14],
Theorem 1II. 3.2):

0 — HR(V, 0) — H°(V, 0) — H°(V\K, 0)

- H?((Va (9) - Hn(V’ @) - Hn(V\Ka (9) > e

b

we have H?(V, 0)=0for p=1 and HYV, 0)=0 by the unique continuation theorem.
Hence we have isomorphisms

H(V, o)=o(V\K)|o(V),
HY(V, 0)=HP"'(V\K, 0), pz2.

We also have the long exact sequence of cohomology groups with compact
support (cf. Komatsu [14], Theorem I1.3.15):

— HY(V\K, 0) — HL(V, 0) — H'(K, 0)
— HYUV\K, 0) — HY(V, 0) — H*(K, O) — ---.

Here H?(K, 0)=0 (p=1) by the assumption on K. We also have HZ(V, ¢)=0 by
Theorem 1.4.1 (p#n). Therefore we obtain the isomorphisms:

O(K)=H (V\K, 0),
HZV\K, O)=H{(V, 0)=0, p+#1,n,
H:(V\K, O)=Hy(V, O)=0(V)'.

Now we consider the following dual complexes:

0 — LOOV\K) 2oy @O (V\K) 2Ly oo Fn=2, @On=1(J/\K) Dzt
0 —— LIUV\K) &t @On- 1 (P\K) 2222 oo Z0 @OUP\K) ST0 ss
* — LON(V\K) —> 0

xx —— FOO(V\K) 0.
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Then, since HX(V\K, 0)=0 (p#1, n), the range of —J,;=(0,—;-) is closed except
for j=0,n—1. However J,_, is of closed range by Malgrange’s Theorem. Hence,
by the closed range theorem, — 0, is of closed range (cf. Komatsu [13], Theorem 19,
p. 381).

In order to prove the closedness of the range of —d,_, we consider the following
diagram: :

—_FV\K
an 1

0« LL(V\K) «—==L L% 1(V\K)

| !

0 LUNV) L L2YD),

where the map i is the natural injection. However, in the dual complexes for V,
0% is of closed range since HY(V, ©®)=0. Thus, by the closed range theorem,
Im (—05%)=i"'(Im (—0}_,)) is closed. Hence all —0%'K are of closed range.
Hence by the Serre-Komatsu duality theorem, we have the isomorphisms [H?(V\K,
O))Y=H"P(V\K, 0) for O0=<p<n. Thus we have OWV\K)=H*V\K, 0)=
H*V, O)=0(V)'. Here O(V\K) and 0(V) are both FS spaces, a posteriori,
reflexive. Hence we have the isomorphism O(V)x0(V\K). Thus HK(V, 0)=
O(V\K)/0(V)=0. Hence, for p=2, p#n, we have 0=[H??+*(V, 0)]' =~ [H»~P*1.
(V\K, 0)] =H~Y(V\K, O)=HE(V, 0). Thus HYV, 0®)=0. In the case p=n,
we have the isomorphisms HY(V, 0)= H" Y(V\K, O)~[HYV\K, 0]) =[H*K,
0)]'=20(K)'. Here all the isomorphisms except for the first are topological and
the first one is only algebraic. Hence we have the algebraic isomorphism HZ(V, 0)=
O(K)'. Here we use the topological isomorphisms HL(V\K, 0)=~H°(K, ¢) and
HEV, O)~HYV\K, 0) (p=2). These isomorphisms can be proved by a similar
method to Nagamachi [16], Proposition 5.4. Q.E.D.

1.6. Sato’s Theorem

In this section we will prove the pure-codimensionality of R* with respect to @.
Then we will realize Sato hyperfunctions as “boundary values’’ of holomorphic
functions or as (relative) cohomology classes of holomorphic functions.

Theorem 1.6.1 (Sato’s Theorem). Let Q be an open set in R" and V an open
set in C" which contains Q as its closed subset. Then we have the following

(1) R is purely n-codimensional with respect to 0.

(2) The presheaf over R", Q— H}(V, 0), is a sheaf.

(3) This sheaf (2) is isomorphic to the sheaf # of Sato hyperfunctions.

Proof. (1) We have to prove the vanishing of the derived sheaf # %.(0) for
p#n. This is local in nature. Thus, it is sufficient to prove HA(V, ¢)=0 (p#n)
for a relatively compact open set Qin R*. But this can be shown by using Martineau-
Harvey’s Theorem.
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(2) By (1) and Komatsu [14], Theorem II.3.18, we have the conclusion.

(3) We have only to prove this isomorphism stalkswise. This is local in
nature. Consider the following exact sequence of relative cohomology groups for
a relatively compact open set 2 in R”

0 —— HS(V, O) — H%a(V, 0) — HY{(V, 0)
—— Hig(V, 0) — - — H5\(V, 0)
— Hio(V, 0) — H{o(V, 0) — HH(V, 0)
— HIE(V, 0) — -

(Here Q¢ denotes the closure of Q). Then, by (1) and by Martineau-Harvey’s
Theorem, we have HA YV, 0)=0 and H%"'(V, ¥)=0. Thus we have the exact
sequence

0 — Hio(V, 0) —> Hb(V, 0) — Hy(V, 0) — 0.
Since, by Martineau-Harvey’s Theorem, we have isomorphisms
H3o(V, 0)=2(0Q), Hpa(V, O)=2(Q°),
we obtain the isomorphism
oV, O)=2(Q%) [£(0Q) = Z(Q).
Thus the sheaf Q— H%(V, 0) is isomorphic to the sheaf # of Sato hyperfunctions

over R" (cf. Ito [9]). Q.E.D.

Let Q be an open set in R”. Then there exists a pseudoconvex open neighbor-
hood V of Q such that ¥'n R"=Q (cf. Grauert [2]). We put Vy=Vand V,={zeV;
Imz;#0}, j=1, 2,...,n. Then U={V,, V,,..., V,} and W={V,..., V;} cover V and
V\Q respectively. Since V; and their intersections are also pseudoconvex open sets,
the covering (M, ') satisfies the conditions of Leray’s Theorem (cf. Komatsu [14]).
Thus, by Leray’s Theorem, we obtain the isomorphism HJ(V, ¢)=H"U, W', 0).
Since the covering U is composed of only n+1 open sets V; (j=0, 1,..., n), we
easily obtain the isomorphisms

QL W, O)=0(N V),
J

CrIL W, 0)= @ 0 (N ).

TR

Hence we have

SCIL W, )= S (A V)| Vin-nV,.
JF1 i
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Thus we have the isomorphisms
HyV, o)xH"U, U, 0)
=7, W, o)/6C* (U, W, 0)

20N V)I 3 0T

Thus we have the following

Theorem 1.6.2. We use notations as above. Then we have the isomorphisms

Hy(V, O)= H"U, W, 0)=0(N\V)\ _il oAV,
J J= =g

Chapter 2. Case of Vector Valued Sato Hyperfunctions

2.1. The Dolbeault-Grothendieck Resolution of 20

In this chapter we will recall Ion-Kawai’s Theory of vector valued Sato hyper-
functions for unification. But, at some points of view, our theory is different from
Ion-Kawai’s one. Namely, our vector valued hyperfunctions are defined first as
residue classes of analytic linear mappings and then realized as “boundary values’
of vector valued holomorphic functions, while vector valued hyperfunctions in the
sense of Ion-Kawai are nothing else but “boundary values” of vector valued holo-
morphic functions.

In this section, E denotes a quasi-complete locally convex topological vector
space (LCTVS) (always assumed to be Hausdorff) and 9 =9 ; denotes the family
of continuous seminorms of E defining a locally convex topology on E.

We define the sheaf £0 of germs of E-valued holomorphic functions over C”
by the sheafification of the presheaf {¢(Q; E)}, where, for an open set Q in C”, the
section module ¢(R2; E) is the space of all E-valued holomorphic functions on €.

We also define the sheaf £& of germs of E-valued C*-functions over C” by the
sheafification of the presheaf {£(Q2; E)}, where, for an open set Q in C*, the section
module &(Q2; E) is the space of all E-valued C*-functions on Q.

Then we have the following
Proposition 2.1.1. The sheaf £& is soft.

Proof. Since £& is obviously an ca@-modulc and &£=¢¢ is a soft sheaf, we have
the conclusion by virtue of Bredon [1], Chapter II, Theorem 9.12, p. 50. Q.E.D.

Then we have the following
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Theorem 2.1.2 (The Dolbeault-Grothendieck resolution of £¢7). Let E be a
quasi-complete LCTVS. Then the sequence of sheaves C”

0__)E@p___>Eéap,0 o ,Epp,d _8 ... _0 Egp,n __, ()

is exact.
Proof. The exactness of the sequence
0— Egp __, Egp.0 7, Egp.1

is evident.
Next we have to prove the exactness of the sequence

Egp0 3, Egp.t 0, ... 0, Egpn__, 0,
We will reason as in Hérmander [4], p. 32. Thus it follows from the following

Lemma. Let D be an open polydisc in C" and let fe &7-4*Y(D; E) (p, =0)
satisfy the condition 8f=0. If D' is a relatively compact open polydisc in D, we
can find ue &7%D’; E) such that du=fin D’.

This completes the proof. Q.E.D.
Corollary. For an open set Q in C", we have the following isomorphism:
H«Q, Eo)={fe &74Q; E); 0f=0}/{0g; ge &7 (Q; E)}, (p20,421).

Proof. It follows from Theorem 2.1.2 and Komatsu [14], Theorems I1.2.9
and I1.2.19. Q.E.D.

2.2. The Oka-Cartan Theorem B

We will recall the Oka-Cartan Theorem B for the sheaf £¢0. In the sequel of
this chapter, we will always assume that E is a Fréchet space.

Theorem 2.2.1 (The Oka-Cartan Theorem B). Let E be a Fréchet space. For
any pseudoconvex open set Q in C", we have Hi(Q, E0P)=0 for p20 and q= 1.

Proof. By virtue of the Oka-Cartan Theorem B for the sheaf ¢, we have
H9(Q, 0¢)=0, p=0 and g=1.
Thus the complex obtained from Theorem 1.1.1
EPO(Q) 2, P 1(Q) -5 .o D, EP(Q) — 0

is exact. Since #7-94(Q)’s are nuclear Fréchet spaces and E is a Fréchet space, the
complex \

Er(Q; E) 2, &91(Q; E) -2 - 2, gP(Q; E) — 0
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is also exact by virtue of the isomorphism
E7YQ; E)~ 67 9(QKQE
and Ion and Kawai [5], Theorem 1.10, p. 9. Hence we obtain
HYQ, E0or)=0 (p=0and g=1).
This completes the proof. Q.E.D.

Corollary. We use notations in Theorem 2.2.1. Then the equation du=f has
a solution u € £7-%Q; E) for every fe &7-9*1(Q; E) such that 0f=0. Here pand q
are nonnegative integers.

Proof. It follows from Theorem 2.2.1 and Corollary to Theorem 2.1.2.
Q.E.D.

2.3. Malgrange Theorem
In this section we will prove the Malgrange Theorem.
Theorem 2.3.1. Let Q be an open set in C". Then we have H"(Q, £0)=0.
Proof. By virtué of Theorems 1.1.1 and 1.3.1, we have an exact sequence
E%n1(Q) 2 £9(Q) —, 0.
Thus, by Tréves [21], Proposition 43.9, we have the exact sequence

EOMYNRE -2 £9"(QRE — 0

or
EO"1Y(Q; E) -2 £97(Q; E) — 0.
Hence we obtain the conclusion. Q.E.D.
Corollary. Flabby dim £0 <n.
2.4. Serre Duality Theorem
In this section we will prove the Serre Duality Theorem.

Theorem 2.4.1. Let Q be an open set in C* such that dim H»(Q, 0)< oo holds
(p21). Then we have the isomorphism H¥(Q, EQ)~L(H""?(Q, 0); E), 0<p=<n.

Proof. Since we can easily obtain the isomorphism H?(Q, E0)~ H?(Q, 0)®,E,
we have the following isomorphisms by Theorem 1.4.1,

H?(Q, 20) =~ H?(Q, 0)® ,Ex[H"7(Q, 0)]' ® E
~ L(H" (R, 0); E). Q.E.D.
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2.5. Martincau-Harvey Theorem

In this section we will prove the Martineau-Harvey Theorem.

Theorem 2.5.1. Let K be a compact set in C" such that H(K, 0)=0 (p=1)
holds. Then we have HYQ, £0)=0 for p#n and algebraic isomorphisms H%((Q,
EO)y~ HY(Q\K, E0)~ L(0(K); E).

Proof. We can assume that Q is a pseudoconvex open neighborhood of K.
Then, in the long exact sequence of cohomology groups (cf. Komatsu [14], Theorem
I1.3.2):.

0 — HYQ, E0) — H°(Q, E0) — H°(Q\K, E0)
— H}(Q, E0) — HY(Q, £0) — H'(Q\K, £0)
— H}(Q, 20) — H"(Q, E0) — H"(Q\K, E0) —> ---,
we have HP(Q, E0)=0 for p=>1 and HYQ, E0)=0 by the unique continuation
theorem. Hence we have isomorphisms
Hi(Q, FO)=0(Q\K; E)|0(Q; E),
HYQEO)~>HP-Y(Q\K, £0), p=2.
Since we have isomorphisms H?(V, £0)=H?(V, 0)®,E, 0<p<n, for an open set

Vin C* and isomorphisms O(Q\K; E)=0(Q\ K)RE=0(QKXE=0(Q; E), we have
HYQ, £0)=0 and we have, for p=2, p#n, by Theorem 1.5.1,

HE(Q, F0)= HP-(Q\K, E0)~ H>{(Q\K, 0)& ,E=0.

Then, by a similar method to Nagamachi [16], Proposition 5.4, we have the topo-
logical isomorphism HY(Q\K, 0)~0O(K). Thus, by virtue of Theorem 2.4.1, we
have algebraic isomorphisms :

HYQ, o)~ HY(Q\K, E0)= L(H(Q\K); E)~L(¢(K); E). Q.E.D.

2.6. Sato Theorem

In this section we will prove the pure-codimensionality of R" with respect to £0.
Then we will realize E-valued Sato hyperfunctions as “boundary values’’ of E-valued
holomorphic functions or as (relative) cohomology classes of E-valued holomorphic
functions. '

Theorem 2.6.1 (Sato Theorem). Let Q be an open set in R" and V an open set
in C* which contains Q as its closed subset. Then we have the following
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(1) Rr is purely n-codimensional with respect to £0..

(2) The presheaf over R", Q—>H%V, £0), is a sheaf.

(3) This sheaf (2) is isomorphic to the sheaf *# of E-valued Sato hyper-
functions.

Proof. (1) We have to prove the vanishing of the derived sheaf # %.(E0) for
p#n. This is local in nature. Thus, it is sufficient to prove HE(V, £0)=0 (p#n)
for a relatively compact open set Q in R*. Thus, by the excision theorem, we may
assume that ¥ is a pseudoconvex open set in C". Consider the following exact
sequence of relative cohomology groups

> HO“(V’ E@) - H?)(Va E@)

0 —— H(V, E0)
— H}o(V, 20) — --- — HEY(V, E0)
— Hio(V, E0) — Hp{a(V, E0) — HE(V, E0)
— H3GW(V, EO0) — ---.
By Theorems 1.2.2 and 2.5.1, we may conclude that HZy(V, 20)=H%.(V, E0)=0

for p#n. So that, we have Hi(V, E¢)=0 for p#n—1, n. On the other hand, by
Theorems 1.2.2 and 2.5.1, we also have the exact sequence

0 HE WV, E0) —> L(£(0Q): E) —i L(«£(Q%); E).

Since j is injective, we have H% (V, £0)=0.

(2) By (1) and Komatsu [14], Theorem I1.3.18, we have the conclusion.

(3) We have only to prove this isomorphism stalkswise. This is local in
nature. By the proof of (1), we have the exact sequence for a relatively compact
open set Q in R”

0— Hio(V, 80) —> HbHa(V, E0) — HEH(V, E0) — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
Hio(V, 20)=(22(09); E),
Hpa(V, PO)= L(2£(Q%); E),
we obtain the iéomorphism
oV, FO)= L(«£(Q%); E)/L(2£(09Q); E)=%(Q; E).

Thus the sheaf Q— H%(V, £0) is isomorphic to the sheaf £Z of E-valued Sato hyper-
functions over R". Q.E.D.

In the same notations as in Theorem 1.6.2, we have the following

Theorem 2.6.2. Hp(V, 20)= H'(W, W, E0)~0(N\ V;; E)/ il o( NVi; E) hold.
J

FET Y
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