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Introduction

This paper is the third part of this series of papers, which includes Chapter
9. For the outline of this paper, see "Contents” in the first part of this series of
papers [37]. Here we note that “isomorphisms™ usually mean topological ones
without explicit mention for the contrary. For References we refer to the lists of
references at the end of papers [37], [38] and this one.

Here I wish to express my hearty thanks to Professors H. Komatsu, A.
Kaneko and M. Morimoto and Drs. S. Nagamachi and H. Kaneta for many
valuable advices and discussions during the preparartion of this work.

Chapter 9. Cases of sheaves 0%, &%, (), and <7,

9.1. The Oka-Cartan-Kawai Theorem B

In this section we will prove the Oka-Cartan-Kawai Theorem B for the
sheaves (0* and 0,.

For a pair n=(n;,n,) of nonnegative integers with |n|=n, + n, #0, we
denote by H" the product space C™ x E™ and by D" the product space R™ x D™
and by C'"l the spacc Cm'" = C™ x C™. We denote z = (7, z")e C™ so that 2/

=(24,...,2,,) and 2" = = (Zny 41502 Z)n))-

Definition 9.1.1(The sheaf 0" of germs of partially slowly increasing holomorphic
functions). We define 0" 10 be the sheafification of the presheaf {0(Q); Q = H"
open}, where the section module O%(Q) on an open set Q in H" is the space of all
holomorphic functions f(z) on Q0 C™ such that, for any positie number ¢ and for any
compact set K in Q, the estimate sup{|f(z)|e(— ¢|z|); zeKnCM} < oo holds.

Definition 9.1.2(The sheaf ©, of germs of partially rapidly decreasing
holomorphic functions). We define 0, to be the sheafification of the presheaf
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{0(Q); 2 = H" open}, where the section module 0.(€2) on an open set Q in H" is the
space of all holomorphic functions f(z) on QnNC"™ such that, for any compact

set K in Q, there exists some positive constant & so that the estimate
sup{|f(z)|e(d]z]);ze KNC"} < oo holds.

Difinition 9.1.3. An open set V in H" is said to be an (O*-pseudoconvex open set
if it satisfies the conditions: '

(1) sup{[Imz’| — |Rez"|:z = (7, 2)e VnC"} < 0.

(2) There exists a C®-plurisubharmonic function @(z) on VnC™" having the
following two properties:

(i) The closure of V, = {zeVnC"; ¢(z) < t} in H" is a compact subset of V
for any real t.

(i) @(z) is bounded on LNC™ for any compact subset L of V.

Then we can prove the Oka-Cartan-Kawai Theorem B by a similar way to
that in section 1.1.

Theorem 9.1.4(The Oka-Cartan-Kawai Theorem B). For every O*-pseudoconvex
open set V in H", we have HY(V, 0*?) =0, (p =20 and s = 1).

Proor. Since V is paracompact, H*(V,0*?) coincides with the Cech
cohomology group. So we have only to prove limH*Y, 0*?)=0, where U
U

={V};21 is a locally finite open covering of V so that U;=V,nC" is
pseudoconvex.
Now we definie C5(Z{53({U,})) to be the set of all cochains ¢ = {c;;J = (jo,

(p.9)
Jis--sjs)€N*T1} of forms of type (p, g) satisfying the three conditions:

(i) The coefficients of ¢, are locally square integrable functions on U,
= U_Ion Ull ﬂ ves n Ujs'

@) 0c;=01in U,.

(iii) For every positive ¢ and every finite subset M of N**!  the estimate

> j lc;|2e( — g||z||)dA <
Uy

JeM

holds, where d/ is the Lebesgue measure on C'"! and ||z| denote the modification
[n]
of ) |z so as to become C* and convex.
j=1
Here we need the following

Lemma 9.1.5. If ce CN(Z 55 ({U;})) satisfies the condition éc = 0, then we can

(p,9)

find some ¢’ € C*~H(Z {55 ({U}})) such that 6¢' = c. Here o means the coboundary

operator.

Pc;stponing the proof of Lemma 9.1.5 at the end of the proof of this theorem,
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the conclusion will follow from Lemma 9.1.5 as the special case where g =0

because we can use Cauchy’s integral formula to change the L,-norm to the sup-

norm for holomorphic functions. This completes the proof of the theorem.
Q.E.D.

Now we will prove Lemma 9.1.5.
Proor oF LEmMaA 9.1.5. We denote by {x;} the partition of unity subordinate
to {U;} such that sup(sup{|dy;|;z€U,}) < oo holds, and define b, = Y x;c; for
j j

IeN*. Since dc =0, we have éb=c. So §0b =0 because dc = 0. Since Yy;
=1 and y; 2 0, we have

J |brl?e(— el z])dA < ZJ xjleirPe(— el|z|[)dA
U, I Juy
for any positive number ¢ by virtue of Cauchy-Schwarz’ inequality.

By the assumption of the existence of a C ®-plurisubharmonic function ¢(z) in
Definition 9.1.3, we can find some plurisubharmonic function y(z) on U = VnC!"!
which satisfies the following three conditions:

(1) Y5zl < ew).

(2) The closure of V, = {ze VnC™;y(z) < t} in H" is a compact subset of V
for every real t.

(3) sup{Y(z);ze KnC™"} < Cy for every K € V.

Thus it follows from the condition on ¢ that

D, f 10by]%e(— &l 2] — W(2))dA < oo
IeN U,
for every positive number ¢ and every finite subset N of N-.

Now we consider the case s = 1. By the fact that §(0b) = 0, Jb defines a
global section f on U = VnC"™. Then, by Hormander[4], Theorem 4.4.2, p. 94,
we can prove the existence of u such that du = f and the estimate

f ul?e(— 2]z +|2[*)7?dA < 0
Knc™

holds for every positive number ¢ and every K € V.

If we define ¢;=b,~ulU, then dc;=0 and ¢’ =3b=-c. Clearly
¢ eC*HZE U ).

Now we go on to the case s > 1. In this case we use the induction on s. By
the induction hypotheses there exists b'e C*~2(Z{%% ) ({U;})) such that &b’
= 0b. By virtue of Hérmander [4], Theorem 4.4.2, p.94, we can also find b”
= {b}}gens—1 such that by = db}; and the estimate
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;EJ |bigle(— ellz | — (@)1 + [2*)72dA < 0

holds for every positive number ¢ and every finite subset Lof N*~'. Therefore ¢’
= b — Sb" satisfies all the required conditions. Q.ED.

Now we will prove the Malgrange theorem for the sheaf /* of germs of
partially slowly increasing real analytic functions. Here we define the sheaf o7* to
be the restriction of ¢° to D" .o/* = ¢*|D". Then we have the following

Theorem 9.1.6 (Malgrange). For an arbitrary set Q in D", we have H¥Q,
Z5P) =0, (p=0 and s = 1).

Proor. We know, by virtue of Ito[11], Theorem 2.1.13, that £ has a
fundamental system {Q} of (*-pseudoconvex open neighborhoods. Then, it
follows from the Oka-Cartan-Kawai Theorem B and Schapira [34], Theorem B42,
that, for p =0 and s = 1, we have

HYQ, «*?) = ind lim HY@Q, 0*?) = 0.
( ) Bnbn=0 ( ) Q.ED.

Next we will prove the Oka-Cartan-Kawai Theorem B for the sheaf @,. This
can be proved by a similar way to Theorem 9.1.4. Thus we have the following

Theorem 9.1.7(The Oka-Cartan-Kawai Theorem B). For some 5, (0<d<)
and A > 0, put X = int{z = (7, Z)e C;|Im z"|? < 62|Re 2"|* + A%}* in H". For
every (O°-pseudoconvex open set V in X, we have HV, 0") =0 for p=2 0 and s 2 L.

PrROOF. Since V is paracompact, H¥(V, ¢0F) coincides with the Cech
cohomology group. So we have only to prove ind lim H*M, 07) =0, where U
= {V}};z; is a locally finite open covering of ¥ so that U;=V;nC" is
pseudoconvex.

Here we use the notations in the proof of Theorem 9.1.4.

For any cocycle d = {d,} representing an element in H S(U, O0F), we can define
an element ¢ = {c;} in C(Z % ({U;})) such as dc = 0 by putting ¢; = d; h(z) with
h(z) = cosh(e/(z")?*/2) for some positive ¢, where & denotes the coboundary
operator. Then we can find some ¢ € C*~*(Z %) ({U,})), such that oc" =c. If
we put d; = ¢;-(h(z)) ", then d’ = {d}} is a cochain with values in @, such that éd’
— d. Thus the element in H, O7) represented by d is zero. Since a class [d]
with a representative d is an arbitrary element in H U, ), we have HQU, OF)
= 0. This completes the proof. Q.E.D.

At last we will prove the Malgrange theorem for the sheaf .o/, of germs of
partially rapidly decreasing real analytic functions. Here we define the sheaf ./,
to be the restriction of ¢, to D": .o/, = 0,]D". Then we have the following
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Theorem 9.1.8 (Malgrange). For an arbitrary set Q in D", we have H(Q, A7)
=0 for p=0 and s> 1.

PrOOF. We can prove this by a way similar to that of Theorem 9.1.6.
Q.ED.

9.2. The Dolbeault-Grothendieck resolution ¢* and 0,

In this section we will construct soft resolutions of ¢* and ¢, and prove some
of their consequences.

At first we will define the sheaf L= L},  of germs of partially slowly
increasing locally L,-functions over H".

Definition 9.2.1. We define the sheaf L* to be the sheafification of the presheaf
{L%();2 < H" open}, where, for an open set Q in H", the section module L*(Q) is
the space of all fe L, (20 C"™) such as, for any ¢ > 0 and any relatively compact
open subset w of Q, e(—e|zI)f(2)lw belongs to Ly(wnC™). Here (e(— e z])
f@)lw denotes the restriction of e(—¢|z|)f(z) to w and |z| denotes the

In|
modification of 'y |z;| so as to become C*® and convex.
=1

Then it is easy to see that L* is a soft FS*-sheaf. Then we give

Definition 9.2.2. We define the sheaf £*7? = L5%4 1o be the sheafification of
the presheaf {£*P%2); Q2 < H" open}, where, for an open set Q in H", the section
module £*P4Q) is the space of all fe L*PUQ) such that 0fe L*P1* Q). We put
PE = Pr0.0

Then #*77 is a soft FS*-sheaf with respct to the graph topology. Then we
have the following

Theorem 9.2.3 (The Dolbeault-Grothendieck resolution). For some d > 0, we
put X = int{ze C";|Im z"| — |Re z"| < d}*, where int{ }* denotes the interior of the
closure in H" of a set { }. Then the sequence of sheaves over X

0 — 0P| X — ZPO| X5 gortix L L guell | x 0

is exact. Here p is a nonnegative integer.

Remark. We note that, in Theorem 9.2.3, all J’s are continuous linear
operators with respect to the graph topology.

PrROOF. The exactness of the sequence

0 — 0°P|X — 70| X 5 oot x
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is evident. In fact, let 2 be a relatively compact open set in X. Let ue? =120(Q)
such that du = 0. Then, if we write u in the form

u= Yy updz,

H=p

we have
aul/az_j = 0: .] = 1’21~--9|n|’

if follows from Weyl's Lemma that u,’s are analytic on Q. So that we can
conclude that u,’s are holomorphic. The fact that u;e 0%(Q) follows from the
exchangeability of L,-norm and sup-norm for holomorphic functions. Thus the
exactness of the above sequence was proved.

Next we have to prove the exactness of the sequence

gu,p,OlX N paspl | X . N gn,z&lnl‘X —0.
For this purpose, we have only to prove the exactness of the sequence of stalks
Fup0 N gt NN RN

for every ze X. But this is an easy consequence of Hérmander [4], Theorem 442
because every ze€X has a fundamental system of (*-pseudoconvex open
neighborhoods. Q.E.D.

Corollary 1. Let X be as in Theorem 9.2.3. For an open set Q in X, we have
the following isomorphism:

HY(Q, 0°7) = { fe £*19(Q);5f = 0}/{0g;g€ £*71" (@)}, (p2 0 and ¢ 2 1).

Corollary 2. Let X be as in Theorem 9.2.3. Let Q be an (O*-pseudoconvex
open set in X. Then the equation du = f has a solution ue L*PYQ) for every
fe L*P Y Q) such that 0f = 0. Here p and q are nonnegative iniegers.

Proor. It follows from Theorem 9.1.4 and Corollary 1 to Theorem 9.2.3.
Q.E.D.

We will now define the sheaf L, = L, , . of germs of rapidly decreasing
locally L,-functions.

Definition 9.2.4. We define the sheaf L, to be the sheafification of the presheaf
{L(Q); Q2 = H" open}, where, for an open set Q in H", the section module L (L) is
the space of all fe L, 5 1,.(2nC "y such as, for any relatively compact open subset @
of Q, there exists some positive & such that eS|z ) f(z)|we LywnCM).
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Then it is easy to see that L, is a soft FS*-sheaf.

Definition 9.2.5 (The sheaf #7%). We define the sheaf L% = £75 o to be the
sheafification of the presheaf {£7R);2 = H" open}, where, for an open set Q2 in
H", the section module ¥"%R) is the space of all fe L&) such that
ofeLPit Y Q). We put &, = 27"

Then #7% is a soft FS*-sheaf with respect to the graph topology. Then we
have the following

Theorem 9.2.6 (The Dolbeault-Grothendieck resolution). For some d > 0, put
X =int{ze C";|Im z"| — |Re 2| < d}*. Then the sequence of sheaves over X

0 — 07]X — 2PO|X L #pi|X Do D P |X —0

is exact.

Remark. We note that, in Theorem 9.2.6, all 0’s are continuous linear
operators witk respect to the graph topology.

Proor. The exactness of the sequence
0— 07X — 2P°1X 5 2PV X

can be proved by a similar way to that of Theorem 9.2.3.
Next we have to prove the exactness of the sequence

groix L grtix Lo L gpli X 0.

Let z = (z, z/)e X and 2 an open neighborhood in X of z of the form Q" x £"
where €' is an open neighborhood of z' in C™ and Q" is an open neighborhood of
z" in E™ of the form V; , in Lemma 3.2.7 for some ¢ and 4 such as 0 <J < 1 and
A > 0. Letfbe an element in £ +1(Q) such that 0 f=0. Then, for some ¢ > 0,
we have f-h(z)e #*P1*1Q), where we put h(z) = cosh(s\/(zT)2/2). Since
d(f - h(z)) = 0, we can find some ve Z*P4(w) for some open neighborhood w = &’
% " of z with e’ < @ and z" ew” = Q" such that dv = f-h(z). Here we may
assume that h(z) # 0 on @n C™. Then u = v/h(z) belongs to #?(w) and ou = f
holds. This completes the proof. Q.E.D.

Corollary 1. Let X be as in Theorem 9.2.6. For an open set Q in X, we have
the following isomorphism:

HYQ, 0P)= {fe £74Q);0f = 0}/{0g;9e L7~ 1(2)}, (p2 0 and g = 1).
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Corollary 2. Let X be as in Theorem 9.2.6. Let Q be an O*-pseudoconvex
open set in X. Then the equation du=f has a solution ue L"%Q) for every
feLPTNQ) such that 0f =0. Here p and q are nonnegative integers.

Proor. It follows from Theorem 9.1.7 and Corollary 1 to Theorem 9.2.6.
Q.E.D.

Now, for later applications, we will construct another soft resolutions of ¢*
and 0O,

At first we will define the sheaf &* of germs of partially slowly increasing C *-
functions over H".

Definition 9.2.7. We define the sheaf &° to be the sheafification of the presheaf
{6(Q); 2 = H" open}, where, for an open set Q in H", the section module &*(Q) is
defined as follows:

E(Q) = {fe&QnC™); for any positive ¢ and any compact set K in Q and
any ae N3, the estimate sup{|f“(z)|-e(— ¢|z[);ze KnC"} < oo holds}.

Here f(z) means the derivative of the form
[e) = % f@ox oy - axim = by,
and N, means the set of all nonnegative integers.

Then it is easy to see that &* is a soft nuclear Fréchet sheaf. Then we have
the following

Theorem 9.2.8 (The Dolbeault-Grothendieck resolution). Put X = int{z =
(z, z)eC";|Im z’| <1+ |Re z”]/\/g}“. Then the sequence of sheaves over X

0—>(9”’p|X—>(g)“’p’°|X—i->€""P’1|X—F>---i»é“"”'"'{X—aO

is exact. Here p is a nonnegative integer.

ProOOF. It goes in a similar way to Ito[10], Corollary to Theorem 3.1 using
weight functions similar to J(z) in Kaneko [17], Theorem 8.6.6, p. 175.
Q.E.D.

Corollary 1. Let X be as in Theorem 9.2.8. For an open set Q in X, we have
the following isomorphism:

HYQ, 07) = { fe&°74(R);0f = 0}/{0g;g€ 671 H(Q)}, (p2 0 and ¢ = 1),

Corollary 2. Let X be as in Theorem 9.2.8 and Q an (°-pseudoconvex open set
in X. Then the equation du = f has a solution ue &*>%Q) for every fe&*P171(Q)
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such that 0f=0. Every solution of the equation 0u =f has this property when
qg=0.

Now we will define the sheaf &, of germs of partially rapidly decreasing C -
functions over H".

Definition 9.2.9. We define the sheaf &, to be the sheafification of the presheaf
{£.(2); 2 < H" open}, where the section module &.(2) on an open set 2 in H" is the
space of all C®-functions on 20 C™ such that, for any compact set K in Q and any
aeN2",  there exists some positive constant & so that the estimate
sup{| fP(2)|e(5|z]);ze KnC™} < oo holds.

Then &, becomes a soft nuclear Fréchet sheaf. Then we have the following

Theorem 9.2.10 (The Dolbeault-Grothendieck resolution). Put X =int{z =
(z,z)eC™;|Im z’| — |Rez’| < d, |Imz"| <1+ |Re Z”I/\/g}“ for some d > 0.
Then the sequence of sheaves over X

0— 07X — 670X SHertx 5. Logrilix —0

is exact.

PrOOF. Let z=(Z, z’)eX and 2 an open neighborhood of z in X of the
form @ x Q”, where Q' is an open neighborhood of z' in C™ and Q" is an open
neighborhood of z” in E™ of the form V; , in Lemma 3.2.7 for some 6 and 4 such
as 0<d<1 and 4>0. Let f be an element in &74"'(Q) such that of=0.
Then, for some &¢>0, we have f-h(z)e&*™"1(Q), where we put hy2)
= cosh(e/(z")?/2). Since o(f-h(z)) =0, we can find some ve&*P4w) for some
open neighborhood w = @' x " of z with z’ew’ = Q' and z"ew” = Q" such that
ov = f-h(z). Here we may assume that h(z) # 0 on wnC". Then u = v/h(z)
belongs to &7%w) and ou = f holds. This completes the proof. Q.E.D.

Corollary 1. Let X be as in Theorem 9.2.10 and £ an open set in X. Then we
have the following isomorphism:

HYQ, 07) = {fe6%Q);0f = 0}/{0g:9€ 67~ 1(Q)}, (p 20 and q 2 1).

Corollary 2. Put X =int{z = (Z, Z)eC";|Imz”"| < 1 + |Re z”l/\/g, |Im z” |2
< 8%|Rez"|* + A%} for some S, (0<d<1) and A>0. Let Q be an O
pseudoconvex open set in X. Then the equation du = f has a solution ue &EPU(Q) for
every fe &P Q) such that df =0. Here p and q are nonnegative integers.

9.3. The Malgrange Theorem

In this section we will prove the following
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Theorem 9.3.1(The Malgrange Theorem). For some constants d >0,0<d < 1
and A >0, put X = int{z = (7, z")e C"";]Im z"| — |Re 2’| < d, |Im z"|> £ §*|Re z"|?
+ A%}% in H". Let Q be an open set in X. Then we have H"™(Q, 0% = 0.

Proor. By virtue of Corollary 1 to Theorem 9.2.3, we have only to prove the
exactness of the sequence

gh,0,|n|—1 (Q) _5) gh.0,|n| (Q) —0
in the notations of Theorem 9.2.3. Here we- consider its dual sequence
LOH Q)= L2002 (Q) — 0.

Then, by virtue of the Serre-Komatsu duality theorem for FS*-spaces, it suffices to
show the injectiveness and closedrangeness of — 0% = (0%). Since 0%is elliptic, its
injectivity is an immediate consequence of the unique continuation
property. Now we will prove its closedrangeness. This is surely true if Q is
replaced by a large ¢"- pseudoconvex open set 2 in X containing Q because H?(Q,
0) =0 for p=1. Then we consider the commutative diagram:

LOH@)E L0 (Q) — 0

Lo (@)E 200 (@) — 0,

where the map i is the natural injection. By the above remark, — 8%is of closed
range. Then Im(— 09) =i~ !(Im(— 09)) is closed. Therefore — d%is of closed
range. This completes the proof. Q.ED.

Corollary. Flabby dim O < |n|.
9.4. The Serre Duality Theorem

In this section we will prove the Serre Duality Theorem.

Theorem 9.4.1. Let X be as in Theorem 9.3.1. Let Q be an open set in X and
assume that dim H?(Q, 0°) < oo holds for each p=1. Then we have the
isomorphism [H?(R, 0%)] =~ H""?(Q, 0,), 0= p < |n|).

PROOF. By virtue of Corollary 1 to Theorem 9.2.3 and Corollary 1 to
Theorem 9.2.6, cohomology groups HP(Q, ¢") and H" ?(Q, ¢,) are cohomology
groups respectively of the dual complexes
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Oﬁgu,o,o(g)_i,gn,o,l(g)_i _E_,g:,O,InI(Q) —0

0— Lo(Q) L Lon-1(@) L. L 200(Q) — 0.

Here the upper complex is composed of FS*-spaces and the lower complex is
composed of DFS*-spaces. Since the ranges of operators d in the upper complex
are all closed by virtue of Schwartz’ Lemma (cf. Komatsu [20]), the ranges of
operators — @ = (0) in the lower complex are also closed. Hence we have the
isomorphism

[HXQ, 0] =H!"™?(®, 0,)
by virtue of Serre’s Lemma (cf. Komatsu [20]). Q.E.D.

Remark. The above Theorem is also true for such an open set £ as, in the
above dual complexes, each 0 is of closed range.

9.5. The Martineau-Harvey Theorem
In this section we will prove the Martineau-Harvey Theorem.

Theorem 9.5.1. Let X be as in Theorem 9.3.1. Let K be a compact set in X
such that it has an O°-pseudoconvex open neighborhood 2 < X and satisfies the
condition H¥ (K, 0,) = 0 for each p =2 1. Then we have H%(£2, 0%) =0 for p # |n|,
and algebraic isomorphisms HENQ, 0% = H"Y(Q\K, 0% = 0K), (|n| = 2), and
Hy(Q, 0°) = O/(Q\K)/0*(Q), (In] = 1).

Remark. If a compact set K in X has a fundamental system of (-
pseudoconvex open neighborhoods in X, it satisfies the assumptions in Theorem
9.5.1. '

ProOF. At first assume |n| = 2. By the excision theorem, H%(Q, ¢F) is
independent of an open neighborhood 2 of K. So, we may assume that Q is the
(*-pseudoconvex open neighborhood in the assumptions in this theorem. Then in
the long exact sequence of cohomology groups (cf. Komatsu [10], Theorem II. 3.2):

0 — HY(Q, 0") — H°(Q, 0°) — H°(Q\K, 0%
— HL(Q, 0) — -
— HNQ, 0°) — H"(Q, 0*) — H"(Q\K, 0%) — -,

we have HP(Q, 0")=0 for each p=1, and HY(2, 0°)=0 by the unique
continuation theorem. Hence we have algebraic isomorphisms
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Hy(Q, 0%) = 0"(Q\K)/0"(Q)
HZ(Q, 0~ HP"H(Q\K, 07, p = 2.

We also have the long exact sequence of cohomology groups with compact
support (cf. Komatsu [10], Theorem II. 3.15):

0— HY@\K, 0) — H(Q, 0) — H°(K, 0)
— HYQ\K, 0) — -
— HIQ\K, 0) —HI(Q, 0) — H'(K, 0) — -

Here H?(K, (,) =0 for each p =1 by the assumption on K. By the theorem
9.4.1, we also have HZ(Q, 0,)=0 for each p # |n|. Therefore we obtain the
isomorphisms

H: (Q\K, 0,) = 0(K),
HP(\K, 0,) =~ H?(2, 0,) =0, for each p # 1, |n|,
HIMQ\K, 0,) = H'NQ, 0,) = 04(Q).

Now we consider the following dual complexes:

0__)gh,O,O(Q\K)_gg_)gh,o,l(g\K)_El).__ dnt —2 f"’o’“‘l_l(Q\K)—»(*)

l { !
0 — LOII(Q\K) <L g0l =1(Q\K) 2=z L CB 0 1(Q\K) e (xx)

(%) “-'"'_“, 50, n] (Q\K) — 0
!

(#%) <2 LOYQ\K) — O,

Here the upper complex is composed of FS*-spaces and the lower complex is
composed of DFS*-spaces. Then, since HXQ2\K, 0,) =0 for each p # 1, |n|, the
range of — 8 = (5|,,l -j-1) 1s closed for j # 0, |[n| — 1. However 5,,,| 1 1s of closed
range by the Malgrange Theorem. Hence, by the closed range theorem, — d, is
of closed range(cf. Komatsu [9], Theorem 19, p. 381).

In order to prove the closedness of the range of — 5|n|_1, we consider the
following diagram:

_FA\K
0 — Lo Q\K) <! g0l =1(Q\K)

1 1

0 — og)o I"'(Q) -0 I"l ’go |n|— I(Q)
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where the map i is the natural injection. However, in the dual complexes for £,
0§ is of closed range since H'(2, ¢0*) = 0. Thus, since — 0 _ is of closed range
by the closed range theorem, Im(— 0;3%) =i"'(Im(—dj5-,)) is closed.
Therefore all —02X are of closed range. Hence by the Serre-Komatsu duality
theorem, we have isomorphisms [H?(Q\K, 0*)] ~ H" "P(Q\K, 0,), for 0 < p < |n|.
Hence, we have 0*(Q\K) ~ H"(Q\K, 0,) = H"(Q,0,) ~ 0(Q). Here 0*(Q\K)
and (0%€2) are both FS-spaces, a posteriori, reflexive. Hence we have the
isomorphism O%Q\K) = 0%(2). Thus we have Hx(Q, 0% = 0"(Q\K)/0(Q2) = 0.
Hence, for each p = 2, p # |n|, we have 0 = [H" " P*1(Q, 0,)] = [H" P {(Q\K,
0)] = HP"Y(Q\K, 0% =~ H%(Q, 0%). Thus HEQ, 0%) =0 for each p # |n|. In
the case p=|n|, we have the algebraic isomorphisms HP(Q, ¢%) =
HY=1(Q\K, 0") = [HX(@\K, 0,)] = [H(K, 0)] = O,(K).

At last we will prove the case |n| = 1. In this case, we have the conclusion
by virtue of the long exact sequence of relative cohomology groups, the Oka-
Cartan-Kawai Theorem B and the Malgrange Theorem. Q.E.D.

Here we mention the important facts used in the proof of Theorem 9.5.1 in
the following

Proposition 9.5.2. Let K and Q be as in Theorem 9.5.1. Then we have
(topological) isomorphisms HY(Q\K, 0,) ~ H°(K, 0,) and H?(Q\K, 0,) =~ H?(Q, O,)
for each p = 2.

9.6. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
(. Then we will realize partial modified Fourier hyperfunctons as “boundary
values” of partially slowly increasing holomorphic functions or as (relative)
cohomology classes of partially slowly increasing holomorphic functions.

Theorem 9.6.1(The Sato Theorem). Assume |n|=2. Then we have the
following

(1) D" is purely |n|-codimensional with respect to "

(2) The presheaf over D", Q — H"(V, ¢7), is a flabby sheaf, where Q is an
open set in D" and V an open set in X which contains Q as its closed subset. Here
X is as in Theorem 9.5.1.

(2) This sheaf (2) is isomorphic to the sheaf B2 of partial modified Fourier
hyperfunctions.

Proor. (1) We have to prove the vanishing of the derived sheaf #§.(¢") for
p # |n|. This is local in nature. Thus it is sufficient to prove HH(V, 0%) =0,
(p # |n|), for a relatively compact open set 2 in D". Thus it goes in a similar way
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to Kawai [19], p. 482.
(2) By (1) and Komatsu [21], Theorem II. 3.18, we have the conclusion.
(3) We have only to prove this isomorphism stalkswise. This is local in
nature. Consider the following exact sequence of relative cohomology groups for
relatively compact open set Q in D"

0 — Ho(V; 0%) — Hpe(V, 0%) — HY(V, 07)
— HjolV, 0 — - — HEY™ (V, 0
— HIQ(V, 0 — HE(V, 0 — H (¥, )
— HUGHH(V, 0) — .

Then, by (1) and by the Martineau-Harvey Theorem, we have H'Z~*(V, 09 =0
and HYL'1(V, 0%)=0. Thus we have the exact sequence

0 — HEW(V, 0% — Hgh(V, 0) — HY(V; ) —0.
Since, by the Martineau-Harvey Theorem, we have algebraic isomorphisms
HEWY, 09 = o/+(0Q), HEW(V, 0 = o,(Q%,
we obtain the algeraic isomorphism
HIZ(V, 0 = o (Q° | A (02) = BAR).

Thus the sheaf Q — H!/(V, 0%) is isomorphic to the sheaf #2 of partial modified
Fourier hyperfunctions over D”. Q.E.D.

Corollary. Assume |n| =2. Let Q be an open set in D" and V an ©*-
pseudoconvex open neighborhood of Q. Then we have the algebraic isomorphism

H(V, 0" =~ H" 1(\Q, 0.

Next we will consider the case |n| = 1. This case is either n = (1, 0) or n =
(0, 1). The case n = (1, 0) results in the case of Sato hyperfunctions and the case n
= (0, 1) results in the case of modified Fourier hyperfunctions. In these cases, the
Sato Theorem is also true except that, in the case n = (0, 1), the assertion (3) is not
yet proved.

Let Q be an open set in D". Then there exists an ¢"-pseudoconvex open
neighborhood V of Q such that ¥nD"= Q(cf. Ito [11], Theorem 2.1.13). We put
Vo=Vand V,=V\{zeV; Im'zj =0}%j=1,2,.,|n. Then U= {V, V,..., V,}
and W ={V,..., V,} cover V and V\Q respectively. Since V; and their
intersections are also (*-pseudoconvex open sets, the covering (M, U’') satisfies the
conditions of Leray’s Theorem (cf. Komatsu [21]). Thus, by Leray’s Theorem, we
obtain the isomorphism HZ(V, 0% =~ H"™QL, W, 0%). Since the covering U is
composed of only |n|+ 1 open sets V,(j=0,1,..., |n]), we easily obtain the
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algebraic isomorphisms
zZ", w, 0% = 0N V),
J

|n]
CHTHU, W, 0 = @ O(N W)
j=1 i#j
Hence we have the algebraic isomorphism
In|
SCH=I, W, 0= Y O(N\ V)IViN NV
j=1 i#j
Thus we have the algebraic isomorphisms
HY W, 0= H"U, W, 07
~ ZMarL W, on/sci i, W, 0%
]
= 0NV Y, O(N V).
PR ES U £

Thus we have the following

Theorem 9.6.2. We use notations as above. Then we have the algebraic
isomorphisms

HY (V. 0) = H(, 1, )= (V) . ¢\ V).
PR 5 UL
At last we will realize partial modified Fourier analytic functionals with
certain compact carrier as (relative) cohomology classes with coefficients in (",
Assume |n| = 2. Let X be as in Theorem 9.5.1 and K a compact set in X of
the form K = K; x --- x K, with compact sets K; in Cforj=1, 2,..., n; and in
E for j=n, 4+ 1,..., |[n]. Assume that K admits a fundamental system of (-
pseudoconvex open neighborhoods. Then we have

H?(K, 0,) =0 for each p > 0.

By virtue of the Martineau-Harvey Theorem, there exists the algebraic
isomorphism

0Ky = Hi\(@Q, 09).

Here 2 denotes an open neighborhood of K. Further assume that there exists an
(*-pseudoconvex open neighborhood € of K such that

Q;=Q\{zeC";z;e K;nC}*
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is also an (*-pseudoconvex open set for j=1,2,..., [n|. Put Q4 =. Then U
={Q¢, 2,,..., Qy} and W = {Q,, Q,,..., Q,} form acyclic coverings of Q and
Q\K. Set

[n]

i=1 i#j

|n| .
Let Y 0*(€2%) be the image in O*(Q#K) of || ¢*(2%) by the mapping
J

j=1

n] .
(f ), —»j;(— 1+,
where f’; denotes the restriction of f; to Q#K.
Then, by a similar way to that of Theorem 9.6.2, we have the following

Theorem 9.6.3. Assume |n| = 2. We use the notations as above. Then we
have the algebraic isomorphisms

0.(KY =~ H(Q, 0°) =~ H"(, w, ¢

= 0'(Q¥K)/Y0"(@).
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