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Introduction

In [3], L. J. Mordell investigated a quartic equation with integral coefficients

2
(1) Y a,x"yt =dz*.
r.s=0
He noted that this quartic equation is not without interest but it scems difficult to
find the integer solutions since no general criterion for solvability exists.
In this paper, we shall show that there exists a criterion for solvability when
we restrict ourselves to the following special case

(2) (x> —=D* =D +a=2z>

We denote the set of all the real solutions of (2) by F, and the set of all the
integral solutions of (2) by S,. It is easy to show the following mappings o, 1, p;
are the permutations on F, and S,. We denote the symmetric groups on F, and
S, by Sym F, and Sym §,, respectively.

Mappings o, 1, p; are defined by putting

X 1 0 0 X X
0:<y>——><0 X l)<y>=<xy+z ),
z 0 x*—1 x/ \z (x* = 1)y + xz
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()-()

G denotes the permutation group generated by o, 7, p;, that is, G = <a, 1, p;>.
Then we have G < Sym F, and G < Sym S,. We call two solutions P, Qe F, are
G-equivalent when there exists an element ge G such that g P = Q. On the other
hand, we call P, QeF, are G-independent when g P # Q for any ge G. We shall
write P ~ Q if two solutions P, Q are G-equivalent and P ~ Q if two solutions are
G-independent. We denote the orbit containing P by O(P). If the number of the
orbits #[S,/G] is finite, we denote this number by ¢,. In the following, we shall
show ¢, is finite except the case a = 0 and shall show there exists a criterion for
S, # ¢. For a fixed integer x = n > 2, the equation (2) is a norm equation from

x X
Q(/n*—1) to Q. The permutation a(y ) = (y’ )is induced from the

!
. z Z
equation

Z+yynt—1=0z+y/n*— 1)(n+\/n77j).

§1 The structure of the group G

With the notation as above, we have the following lemma.

Lemma 1. G=<{o,1,p;>) <SymF, and < Sym S,.

Proof. From the equation (2), it is easy to show 7, p,e Sym F, and Sym §S,.

X X X
For any(y )e F,(or S,), ( y’)z a(y )satisﬁes the following equation.

z 4 z

(@) = = D) = D={( = Dy + xz}2 — (x> — D {(xy +2)? — 1}
= =D =y =)+ x*22 =2 - (x>~ 1))  — ) =a.
Since ¢ is bijective, 6eSym F, and oeSym S,, which completes the proof.
Lemma 2. o, 1, p;eG satisfy the following relations
i) pt=pi=pi=1>=1,
P1P2=P2P1> P1P3= P3P1> P2P3 = P3P2>
PLOPL=pyp30 ', py0p, =01, psops=0c ',

TPIT =P, TPT =Py, TP3T = p3,
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101 =p30 ‘to=010""p;.
(ii) For any geG, g is represented in the following form

g=ptphpstie® (t o 1) 0% (x o 1Y 0% (v o 1Y, where a,b,c,d=0 or 1
and all ey, f1,....,ep fu=0o0r all ey, fy,...,ep, [ = 0.

X y X y
Proof of (i). r(y)=<x)and az(y )z(xy +z ) Hence we have
z z z x(y? — 1)+ yz
X xy+z X
TUT(J’):( Yy ) On the other hand, we have a(y)
z x(y? — 1)+ yz z
X X Xy +z X
:(xy +z ) and w(y>=< X ) Hence a‘%o(y)
(x2 — Dy + xz z (x> — )y + xz z
1 0 0 Xy +z Xy +z
:<0 xy+z —1)()6 >=<y )
0 —(xy+z)*+1 xy+z (x* =1y + xz —x(y* = 1)—yz

Therefore we have p,o~ 'to = tot. In the same way as above, one can easily
show the other rclations.

Proof of (ii). From the relations (i), we have the following relations

Opy = p1P2p30 " (@™ 'py = p1p2p30),

op, = p0 " (6" 'p, = py0),

op3 = p30 " (67 'ps = p30),

ot = 1(107) (6™t = t(tor) ™Y,

(tot)p; = py(z00) ™" ((to1)”'py = py(t07)),
(ta0)py = p1pap3(tor)™ 1 ((x07) " 'py = p1p2p;(t0T)),
(tot)p3 = p3(tor)”! ((ta7) " 'p3 = p3(t07)),
(tot)t = 10 ((to1) 1t = 107 1).

Moreover we have o~ *(t01) = p3to, o(tot)” ! = pyto™ ', (t01) ‘o = pit(to7),
(tot)o ! = pyt(tot)”!. Combining these, one can easily show that any element
ge G is represented in the following form

p% ph p5 1 0% (tot) - 6°(tot)/" for some n, where all e, f,,...,f, =0 or

e fr1,.0fn =0.

Lemma 3. Any element ge G is expressed in the following forms.
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(i) g = p5 p5 p5 6 (tot)t - 6 (rat)y,  for some n,

where a, b,c,d =0 or 1 and e, f,,....f, =0 and n=1 or p;.

(i1) g = p5 ph p5 ¢ o (tot)t - 6% (tot) " €, for some n,

where a, b, c,d=0 or 1 and e, f,,....f,20 and ¢ =1 or p,o~! or p;10~ 1.

Proof. First we shall show the fact (i). From Lemma 2 (i), we note here
that p;tp; =t and p;0~ 'p; = 0. Using Lemma 2 (ii), we can express any ¢ in
the form (i).

On the other hand, we have gp; = p307 ! = p,p5(p,0~ 1) and (ta7)ps = (p,p3)
(p170™'7). Moreover we have a(p,03) = (p2p3)0, 0(p1p3) = (p1p2)0, d(p1ps) =

(p1p3)o, and 1(pyp3) = (p1p3) T, T(p1p3) = (P203) T, T(P1p2) = (p1p2) 7. Now, from
the result of (i), one can easily show the fact (ii).

For a while, we shall restrict ourselves to the case a = 1. C, denotes the
curve which is the intersection of the surface F, and a plane x = n. The curves
C, varies in the following way.

(i) In the case n > /a + 1, C, is a hyperbola
/o) = (z/a)* = 1,

where o, = \/(nz —a—1)/(n*—1) and a, = /n* —a—1.
(1) In the case n=./a+ 1, C, degenerates to two lines z = + \/Ey.
(1) In the case 1 <n <. /a+ 1, C, is a hyperbola

/B — (/) = — 1,
where 8, :\/(a+ 1 —n?)/n*—1),p,=Ja+1—n%

(iv) In the case n =1, C, degenerates to two lines z = =+ \/;z.
(v) In the case 0 <n <1, C, is an ellipse

/7% + (/)% = 1,

where 7y, =\/(a—|- L —=n?)/(1—=n?,y,=Ja+1—n?.

n n
We note here the mapping o(y)z(y’) induces a bijection of the points on C,.

’

~

n
Z z
In the case (i), one sees that for any PeC,, there exists only one point P, —(yo)

Z9
€ C, such that — /(n® —a —1)/2(n — 1) < y, £ /(" — a— 1)/2(n — 1) and ¢' P,
= P for some ieZ. In the case (ii), one sees that for any PeC, and ¢ > 0, there
n

exists a point P, :(y()) € C, such that —¢ <y, < ¢ and ¢'P, = P for some ieZ.
Zo
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In the cases (iii), (iv) and (v), one sees for any P e C,, there exists only one point P,

n
=(y0>eC,, such that — \/(a+ 1—n?)2(n+1) < y, < \/(a+ 1 —n?)/2(n+1) and
Zy n n

a'Py, = P for some ieZ. We note here that the action a(y) =(y’>induces 72z

!

z z
for any y > 0 for the case (i). Similary, one can verify the action ¢ induces a

permutation of the points C,. Let H be the permutation group {a, py, p,, p3». We

X
denote the set {(y)eFa[0§x<4/a+ 1, O§y§\/(a+1—x2)/2(x+1), 0=z}

Ja+1 z X
U{( y )eFa|0§y<s, O§Z}U{<y>eFa|«/a+1 < X, \/(xz—a—l)/(xz—l)

<y —a—1)/2x-1),0 <7z} by E,(e). Then, from the action of ¢ on

X
C,, one can easily show for any P =<y)e F, and ¢> 0, there exists a point P,

Z

4

X0
—(yo)eEa(e) such that hPy, = P for some heH.

Zg

Lemma 4. With the notation as above, we have HE, () = F,. Here HE,(e)
denotes the set consisting of all the points hP, where he H and P e E,(¢).

From the action of g, p;(1 <i < 3), it is easy to verify the following lemma.

z z

X X'
Lemma 5. Let P =<y) 0 =( y’) be points of E, () such that x # /a + 1,

X #.Ja+ 1. If hP = Q for some he H, then we have P = Q.

X
R, denote the set {(y)eFa|O <x<y< \/(a +1—x%)/2(x+1),0<z}. From
z
the fact that x = /(x> —a — 1)/2(x — 1) when x = ./a+ 1 and Lemma 3, we
have GR, = F,. R} denotes the set R,nS,. Then we have GR} = §, in the same
way. We denote the number of integer points #[R¥] by r,. Then we have the
following proposition.

Proposition 1. With the notation as above, we have

GR¥ =S, and 0 <t,=#[S,/G] <r,=#[R}] when a = 1.
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X
In the case a < —2, we denote the set {(y)eFall <x<y, \/(xz —a—1)/(x*—1)
z
<y<J(x?—a—1)/2(x —1),0 < z} by R, and R,nS, by R*. In the same way
as above, we get the following proposition.

Proposition 2. For the case a < — 1, we have GR¥ = S, and 0 < t, = #[S,/G]
=r, = #[R7].

0
Remark. In the case a= — 1, we have t_, =r_,=1and S_, = {(0)}

1 0
In the case a = 0, we denote the set {(n)JO <n,neZ} by R¥. Then, in the
0

same way as above, we have R§ — S, and GR} = S,. We shall show that any

Iy /1
(n),(m)e R§ are G-independent when n # m. Without loss of generality, we may
0/ \0

X 1 X
assume m <n. First we treat the case m=0. If (y)~(0), we have <y>
z 0

+ 1 0 0 1
= < O) or (i 1> or ( O> (mod /) for any positive integer . Hence <n>
0 0 + 1 0

z

1 1 1
~(0 implies | n |=| 0 | (mod I) for any positive integer I, which contradicts the
0 0

71y /1 X\ /1 Xy /E1
assumption n>0. Hence (n)m(O). If (y) ~ ( n>, then we have (y)z ( O)
0 0 z 0 z 0
0 0 1 1 1 1
or <i 1) or < 0) mod n. Hence <m>~< > implies(m)E(n) mod n. Hence
0 +1 0 0 0 0

1 1
n|m, which contradicts the assumption 0 <m < n. Hence (n) ~( m).
0 0

Proposition 3. With the notation as above, we have the following orbit decom-
position

So = X O(P), where P runs all the elements of R¥.
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n
Remark 1. One can replace the set of representatives RE by {( n )iO

2
<n nel}. n®—1

Remark 2. The methods of the following §2 shall give another proof of
Proposition 3.

§2. Proof of Main Theorem

In this section, we shall show t, =7, for a =1 and a £ — 2. First we shall
X

consider the case a = 1. We denote the set {(y)e SJ0<x, 05y, x* +y*<a
Z

+1) by T,. R* denotes the set S,nR,. Since \/(a+1—x%)/2x+2) <

Ja+1—x? for any x =20, we have R*UTR} c T,.

X
Lemma 6. Let P :( y)be a point of S, such that x, y, z > 0. We denote the
z

X X
points oP = (y’), tot P =<y”> by P',P". Then P', P"¢ R¥UTR¥ and X', y', Z,

’ ”
z

z
X”, yu’ P )

Proof. It is obvious that x', y', z/, x”, y”, z” > 0. On the other hand, we
have (X2 + (Y =x2+(xy+ 2 =x2(*+ D2 =) (> —D+2xyz+a>a+ 1.
Hence P'¢ T,. Similarly we have P"¢T,. Hence P', P"¢ R¥ UtR}.

Proposition 4. Let a be an integer a= 1. If P ~ Q, where P, Qe R¥, then P
= Q.

Proof. From Lemma 3 (ii), there exists an element ge G such that Q = gP
and g = p% pb p§ 0 -~ (tot)/" ¢ Here a, b, ¢,d=0or 1 and e,,...,f, = 0 and

x xl x//
E=1 or p,6~! or p,ro~'t. We put P=(y>, P’=£P=<y’>and Q=<y”).

Z/ Z//

d
Z

First, we treat the case x > 0. Then the assumption x > 0 and PeR} implies

x',y,z >0 for any & Therefore, from Lemma 6, we have e, =+ =f,

=0. Hence Q = p4pip5t°P. Since x”,y",z" 20 and x', y'z' > 0, we have a
X

=b=c=0. If E=p,07, (pyo )P =<z — Xy > and the assumption
xz + (1 — x?)y
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PeR} implies z — xy > x> 0. Hence y’ = x' >0 for £ =1 or p,6~!. Hence d
=0and (P =Q. If ¢ =p,07 7, the relation EP = Q contradicts.

Lemma 5. Hence ¢ # p,0™'. If & = p 1o~ '1, we can substitute x for y and
o for tot and p, for p,, then this case reduces to the case & = p,0~'. Therefore
E=1and P=0Q.

We now consider the case x =0. From the case x >0, we can restrict

0 0
ourselves to the case P =< y), 0 =( y”) and Q = gP. Without loss of generality,

14

VA z
we may assume y, z > 0. From Lemma 3 (i), g = p§ p505 t*0* -+ (ta7)/"n, where

n=1 or p;. First, we consider the casc # = 1. Then we have

0 0 0 0\
P0=P=<y>—”—>P1=( z)LP2:<—y>L>P3:<—Z>—"—>P.
z —y —z y

Xo X1 X2
We put rto1P, =< y0> and p,p;107TP, =<y1> and p,p,t0otP, :< Vs ) and

29 Z Z;

X3
P2P3T0TP5 =<y3). Then it is easily verified all the integers x,, y,,..., V3, z3 are
Z3
positive. From Lemma 2 (i), we have a(p,p;) = (p2p3)0, a(p1p3) = (p1p2)0,
o(p1p2) = (p1ps)o, and T(p,03) = (p103)T, T(P1p3) = (P2p3)T, T(P1p2) = (p1p2)T.
Hence, from Lemma 5, we have f,,....f, =0. Then Q = p{ p5p5t*P;(0 <i < 3).
Hence we have P = Q.
Finally, we consider the case n = p;. Then we have

0 0 0 0
—Z -y Z y

In the same way as the above case # = 1, we have P = Q.

X
Next, we shall show the case a £ — 2. R¥ denotes the set {<y)e S, < x
z
<y, \/(xz —a-1/x* -y J*—a—1)/2(x—1),0=<z}. In the same

way as the case a = 1, we have the following lemma.
X

Lemma 7. Let P =< y)be a point of S, such that x, y, z > 0. We denote the
z

’ ”

X X
points aP =< y’), 10TP :<y”>by P, P'. Then P', P"¢R*UtR}and x', y', z', x",

Z/

Z/l
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y', 2" > 0.

Proposition 5. Let a be an integer a < — 2. If P ~ Q, where P, Qe R}, then
we have P = Q.

Proof. From Lemma 3 (i), we have Q = gP and g = pj p5 p5 t*6°*---(tot)/ "1,
where n =1 or p;. If n =1, using Lemma 7, we have e, = --- =f, = 0. Hence
0 = p%php5t?P. Hence we have P = Q.

X1 X2
If n =p;, we put P, = op3P =<y1) and P, = totp,P = (y2>. ‘Then we
Z, z,/
have x,, y;, 2y, X2, V2,2, >0 and P, P,¢R¥UTR¥. Therefore e, =--- =f,
=0. Hence Q = p%p5p5t°P. Hence we have P = Q. Summarizing Propo-
sition 2, 3, 4, 5, we have obtained the following theorem.

Theorem. With the notation as above, we have the following orbit decom-
position for any acZ

R, =2 O(P), where P runs all the elements of R¥. The number of the
representatives #[R¥] =#[S,/G] =t, is finite except the case a = 0.
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Table of G-independent solutions —150<a<150

a solutions | —55 | (3,3,3) 33 | (,3,5) 9% | (0,4,9)
—144 | (2,7,0) —48 | (3,3,4) 35 | (0,0,6) 97 8 ; 7))
4,4,9 3, 11
¢ ) —47 | (2,5,5) 36 | (0,1,6)
—143 | 2,7, 1) (1,1, 6) 99 | (0,0, 10)
(.57 -4 | @240 (1,2, 6) Eo, 6, 8))
13,6 2,4, 12
B A S pesh 39 (0 2 6) 100 | (0, 1,10
C8N i T e 0.2,6) 0.1, 10
—136 (3, 6, 12) ) 3.3, 5) 40 E[zl, ; % 8’ g, igg
-135 | (2,7,3) - - BT
@515 | 76 | G5 1w | 036 e
-8 | ey | T¥ | G4 8 1007 103 | (0,2,10)
(3,5,8) —28 (3, 3, 6) 49 ©,1,7) 05 0.5.9)
—125 | (2,8,8) _ (0,5, 5) 'y
(4 4. 10) 24 (2,3,0 (1.1.7) (3,3,13)
= 3 | @31 1,27 10 ,3,10
Z120 | (3,4,0) @31 57 5 | 0319
-20 | 2,3,2) |- 12 | (0,7,8
—119 2,7,5) 51 9,4,6) §2, 2, 1})
3.4, 1) ~15 | 2.3,3) 2 Tozn
: .2, 5 4
—116 | (3,4.2) —9 | (2,2,0) o 11 (0, 4, 10)
.2, 116 | (0,6,9
—11 | (3,4,3) 8 | @21 p 037 ¢ )
3,5,9 7 .3, 120 0,0, 11
- 22 - 6; -5 | 222 (2,3,9) 5213, 12;
- -1 (0,0,0) 60 , s, 6) 121 (, 1, 11)
~105 | (2,6,0) {1, 1, 11)
0 | (1,n, 0 63 | (0,0,8) (.2 11)
THGLY n=0 6 | (01,8 (1,3, 1)
(4, 4.11) 101, é?’ 4 8 e )
—101 | (2,6,2) 300D 03y e oz
% | @63 ¢ oLy (a8 ol
s 7 o2y | T 029 | s
o | 6.5 10 8 | (0,0,3) 1| 0566 129 | (0.3, 11)
(3,5,10) - ©. 3, 8) 0,7,9)
| @69 RO @29 M e
—8 1 649 2 | ©23) B 057 135 | (0,6, 10)
—81 4, 4, 12) s 0.0.4) 76 (2,3, 10) (2,2,12)
—80 | (2,6,5) 79 | (0,4, 8) 1361 (0,4,11)
16 | (0,1,4) (3. 4, 16)
-72 (2,5,0) (1.1,4) 80 0,0,9
(1,2, 4) E3y 3 1%) 143 (0,0, 12)
-7 | 2,51) [— :
17 | (0,3,3) 144 | (0. 1,12)
G.4.7 - T 81 ?1) igg (0,8,9)
—69 (2, 6, 6) 0,2, (1’29 8, %, g;
24 | (0,0,9) (1,3,9) 3
—68 2,5,2 (1,3,12)
2.5.2) ©. 3. 4) (1,4, 9) 02 12
~64 | (3,3,0) % | 0.L5) a loze | (1,5, 12
63 2,5, 3) (1.1, 5) ©. 6.7 (1,6,12)
3,3,1) (1,2,5) - 145 | (0,5, 11)
~a | 632 7 | 226 88 | (0.5,8) 2.3, 13)
89 | (0,3,9) 147 | (0,2, 12)
—56 | (2,54 B 1029

(3,4, 8) 3 0,4,4) 91 (2, 2, 10) 148 (0,7, 10)
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Remark. This diophantine equation for the special case a =1 is first posed

by Mr. T. Fushimi, who is a student of us. In [1], the second author considered

this

(1]

(2]
(3]
L4]

special case.
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