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Introduction

This paper is the fourth part of this series of papers, which includes Chapter
10. For the outline of this paper, see “Contents” in the first part of this series of
papers [37]. Here we note that “isomorphisms” usually mean topological ones
without explicit mention for the contrary. For References we refer to the lists of
references at the end of papers [37], [38], [40] and this one.

Chapter 10. Case of the sheaf E(*
10.1. The Dolbeault-Grothendieck resolution of E¢*

In this section we will construct a soft resolution of £0°. In this chapter we
always assume that E is a Fréchet space whose topology is defined by a family 7
= J of continuous seminorms of E.

At first we will define sheaves 20° and *&".

Definition 10.1.1 (The sheaf (" of germs of partially slowly increasing E-
valued holomorphic functions). We define the sheaf E0* 1o be the sheafification of
the presheaf {0°(Q; E)}, where, for an open set Q in H", the module O°(Q; E) is
defined as follows:

0(Q; E) = {fe0(QnC™; E); for any positive ¢ and any compact set K
in Q and any qe T, sup {q(f(2))e(—¢|z|); ze KnC™} < o0 holds}.

We call this sheaf EO° the sheaf of germs of partially slowly increasing E-valued
holomorphic functions.

Definition 10.1.2 (The sheaf £&* of germs of partially increasing E-valued C*-
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functions). We define *&" to be the sheafification of the presheaf {6*(Q; E)},
where, for an open set  in H", the module §*(Q2; E) is defined as follows:

E°(Q; E)={fe&RnC™; E); for any positive & and any compact set K
in Q and any o.e N*™ and any qe 7, sup {q(f@(2)) e(— ¢|z]); ze Kn C'"}
< 0 holds}.

Then the sheaf £&* is a soft Fréchet sheaf and we have the following.

Theorem 10.1.3 (The Dolbeault-Grothendieck resolution of E("P), The
sequence of sheaves

0 — EQP|X — Egp0|x S, Egrnt|x 0, . Egarbilx ()
is exact, where X = int {zeC'"'; [Imz"| — |Rez"| <d, |[Imz"| <1+ |Rez”|/\/§}“
for some d > 0.

Proof. The exactness of the sequence
0 —s E(gr,pIX N E@@q,p.olXi Egup.1 |X

is evident.
Next the exactness of the sequence

o E i é
E(g’ﬂ.,p,OIX LN b(o@ﬂ.p,l IX S,... 92 Eé@b,P,lnle —0

follows from the following Lemma 10.1.4. This completes the proof of Theorem
10.1.3. (Q.E.D))

Lemma 10.1.4. We use the notations in Theorem 10.1.3. Let Q be an O*-
pseudoconvex open set in X. Then the equation ou=f has a solution
ue&*"IQ; E) for every fe& "1+ (Q; E) such that of =0. Here p, q = 0.

Proof. 1If we put
ZErat Q) = {fe &Pt (Q); of = 0}
and
Z2rt Y Q5 E) = { fe &Pt (Q; E); 3 = 0},
then Z*7471(Q) is a nuclear Fréchet space and
22PN QL E) = Z5P T Q)R E

holds. By virtue of Corollary 2 of Theorem 9.2.8, we have an exact sequence
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&=Pi(Q) 5 29 Q) — 0

for the (¢*-pseudoconvex open set 2 in X. Then, since we have also
&°PQ; E) = £*7(Q) ® E,

we have an exact sequence
&%9(Q; E) -5 2214 1(Q; E) — 0

by virtue of Tréves [36], Proposition 43.9. (Q.E.D.)

Corollary. We use the notations in Theorem 10.1.3.  For an open set 2 in X,
we have the following isomorphism :

HYQ, B0y ~ { fe &*PU(Q; E); of = 0}/{dg; ge 6717 1(Q; E)},
(P20 and g2 1).

Proof. It follows from Theorem 10.1.3 and Komatsu [21], Theorems I1.2.9
and 11.2.19. (Q.E.D.)

10.2. The Oka-Cartan-Kawai Theorem B
We will prove the Oka-Cartan-Kawai Theorem B for the sheaf FO*.

Theorem 10.2.1 (The Oka-Cartan-Kawai Theorem B). Ler X be as in
Theorem 10.1.3.  For every (*-pseudoconvex open set Q in X, we have H%(Q, E0*?)
=0 for p=0 and q = 1.

Proof. Since we have, by the Oka-Cartan-Kawai Theorem B for ",
HYQ, 0"?) =0, pz0andqgzl,

the complex obtained from Theorem 9.2.8:
&7r0(Q) L5 £r1(Q) L5 .. L £HrI(Q) — 0

is exact. Since &*P4(Q)’s are all nuclear Fréchet spaces and E is a Fréchet space,
the complex

&r0Q; E) L gr1(Q; E) L o L £rI Q5 E) — 0

is also exact by virtue of the isomorphism

E“PIQ; E)x £7PI(Q)® E
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and Ton-Kawai [5], Theorem 1.10. Hence we obtain
HYQ,E0"?)=0, p=0and q=1.
This completes the proof. (Q.E.D.)

Corollary. We use the notations in the theorem 10.2.1. Let Q be an (-
pseudoconvex open set in X. Then the equation ou=f has a solution
ue&PUQ; E) for every fe&P1 Y (Q; E) such that 0f =0. Here p and q are
nonnegative integers.

Proof. It follows from Theorem 10.2.1 and Corollary to Theorem 10.1.3.
(Q.E.D.)

10.3. The Malgrange Theorem
We will prove the Malgrange Theorem for the sheaf 0"

Theorem 10.3.1. Let X be as in Theorem 10.1.3. Let Q be an open set in
X. Then we have H™(Q, £0%) = 0. :

Proof. By virtue of Theorems 9.2.8 and 9.3.1, we have an exact sequence
g+on=1(Q) L, g=0In(Q) 0,
Thus, by Tréves [36], Proposition 43.9, we have the exact sequence
oM HQ) G E L £ OMQ)® E 0
or
g=0n-1(Q: E) 25 £200(Q; E) — 0.

Hence we obtain the conclusion. (Q.E.D.)

Corollary. Flabby dimf0* < |n|.

10.4. The Serre Duality Theorem

In this section we will prove the Serre Duality Theorem for the sheaves £0°
and 0,.

Theorem 10.4.1. Let X be as in Theorem 9.4.1 and 2 an open set in X such
that dim H?(Q, OF) < oo holds for each p ='1. Then we have the isomorphism
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HY(@, 50°) = L(H"~?(@, 0,); E) for 0< p < n].

Proof. By a similar method to Junker [15], Lemma 3.5, we can obtain the
isomorphism H?(2, E0") ~ H?(Q, 0")® E. Then, by Theorem 9.4.1, we have the
following isomorphisms

HP(Q, 509 =~ HY(Q, 0)® E ~ [H"~7(Q, 0,)] ® E = L(H!"~7(Q, 0,); E).
(Q.E.D.)

Here we note that the Remark at the end of Section 9.4 also works in this
case.

10.5. The Martineau-Harvey Theorem

In this section we will prove the Martineau-Harvey Theorem for the sheaves
Eo* and 0,.

Theorem 10.5.1. Let X, K and Q be as in Theorem 9.5.1. Then
(1) HE(Q, 20" =0, (p # |n]).
(2) If |n| = 2, we have algebraic isomorphisms
HMNQ, E0*) ~ H"~ Y (Q\K, £0°) ~ L(0,(K); E).
(3) If |nl =1, we have the algebraic isomorphism
HA(Q, B0 = 0*(Q\K; E)/0°(Q; E).

Proof. At first assume |n|=2. By virtue of the excision theorem,
HE(Q, 0% is independent of an open neighborhood 2 of K. So, we may assume
that Q is the (*-pseudoconvex open neighborhood in the assumptions in this
theorem. Then, in the long exact sequence of cohomology groups (cf. Komatsu
[21], Theorem I1.3.2):

0 — H2(Q, 0" — HO(Q, £0") — H°(Q\K, 20"
— HHQ, 0% — -
— HPI(@, 50°) — H"™(2, £0%) — HI(@\K, £0°) — --

b

we have HP(Q,E0°)=0 for each p>1, and HQ(Q, ¥0) =0 by the unique
continuation theorem. Hence we have algebraic isomorphisms

Hg(Q, 507 = 0"(Q\K; E)/0"(Q; E),
HR(Q,P07) = HP"H(Q\K, P07), pz2.

But, by a similar method to Junker [15], Lemma 3.5, we have isomorphisms
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H?(V, 0% ~ H?(V, ") ® E, (0 < p < |n|), where Vis an open set in X. Since we
have isomorphisms

O(Q\K; E)~ 0" (Q\K)RE ~ 0"(Q) ® E ~ 0*(Q; E),

we have Hg(2, 0" = 0. For each p =2, p # |n|, we have, by the Martineau-
Harvey Theorem for ¢*,

HR (R, B0 =~ HP"Y(Q\K, P0") ~ H" " 1{(Q\K, 0)® E = 0.
Now, by Proposition 9.5.2, we have the topological isomorphism
0, (K)~ H}Q\K, 0,).
Thus, by Theorem 10.4.1, we have algebraic isomorphisms
HPNQ, E0") =~ H" Y (Q\ K, 209
~ L(H}Q\K, 0,); E) =~ L(0,(K); E).

At last we will prove the case |n| = 1. In this case, we have the conclusion
by virtue of the long excat sequence of relative cohomology groups, the Oka-
Cartan-Kawai Theorem B and the Malgrange Theorem. (Q.E.D.)

10.6. The Sato Theorem

In this section we will prove the pure-codimensionality of D" with respect to
E@*. Then we will realize E-valued partial modified Fourier hyperfunctions as
“boundary values” of E-valued partially slowly increasing holomorphic functions
or as (relative) cohomology classes of E-valued partially slowly increasing
holomorphic functions. Thereby two realizations of E-valued partial modified
Fourier hyperfunctions are identified (cf. Theorem 10.6.1, (3) below).

Theorem 10.6.1 (The Sato Theorem). Assume |n| = 2. Then we have the
Sfollowing :

8] D is purely |n|-codimensional with respect to E0".

(2) The presheaf over D", Q — HY\(V, E0¥) is a flabby sheaf, where Q is an open
set in D* and V an open set in X which contains Q as its closed subset. Here X is
as in Theorem 10.5.1.

(3) This sheaf (2) is isomorphic to the sheaf E(#9) of E-valued partial modified
Fourier hyperfunctions.

Proof. (1) We have to prove the vanishing of the derived sheaf #%,(£0%) for
p # |n|. This is local in nature. Thus, it is sufficient to prove HE(V, £0%) = 0,
(p # |n|), for a relatively compact open set Q in D". Thus, by the excision
theorem, we may assume that Vis an ¢"-pseudoconvex open set in X. Consider
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~ the following exact sequence of relative cohomology groups
0 — H3o(V, 50°") — Hga(V, B0") — H5(V, 20"
— Hig(V, 50°) — - — HEI 7L (V, 507)
— HI(V, 0% — HEL(V, *0°) — HE'(V, *0")
— HIG (V50 — .
By Theorems 9.1.8 and 10.5.1, we may conclude that HZ(V, E0%) = HE.(V, £0")
=0 for every p # |n|. So that, we have HE(V, £0%) = 0 for every p # |n| — 1,

|n|. On the other hand, by Theorems 9.1.8 and 10.5.1, we also have the exact
sequence

0 — HEIZL(V, B0%) — L(£.(09Q); E) - L(4,(Q%); E).

Since j is injective, we have H@ ™! (V, E0%) = 0.
(2) By (1) and Komatsu [21], Theorem II.3.18, we have the conclusion.
(3) We have only to prove this isomorphism stalkswise. This is local in
nature. By the proof of (1), we have the exact sequence for a relatively compact
open set Q in D"

0 — HIL(V, B0%) — HBL(V, *0%) — HE'(V, F0°) — 0.
Since, by the Martineau-Harvey Theorem, we have algebraic isomorphisms
HIS(V, BO%) = L(o/,(09); E),
HRL(V, B0°) = L(+4,(2°); E),
we obtain the algebraic isomorphism
HE\(V, PO%) = L(£,(Q%); E)/L(s/*(0Q); E) = #2(Q; E).

Thus the sheaf Q — HZ!(V, E0*) is isomorphic to the sheaf ¥(%#2) of E-valued
partial modified Fourier hyperfunctions over D". (Q.E.D.)

Corollary. Assume |[n| = 2. We use the notations in Theorem 10.6.1. Then
we have the algebraic isomorphism HB(V, E0%) = H!"=1(V\ Q, E0%).

Next consider the case |n|=1. This case is either n=(1,0) or n
= (0, 1). The case n = (1, 0) results in the case of E-valued Sato hyperfunctions
and the case n=1(0,1) results in the case of E-valued modified Fourier
hyperfunctions. In these cases the Sato Theorem is also true except that, in the
case n = (0, 1), the assertion (3) is not yet proved.

In similar notations to Theorem 9.6.2, we have the following.
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Theorem 10.6.2. HE'(V, 0% = H"(B, B, *0°) =~ 0*((\; V;; E)/Y", 0
(Niz; Vi; E) hold algebraically.

At last we will realize partial modified Fourier analytic linear mappings with -
certain compact carrier as (relative) cohomology classes with coefficients in £0".

Assume |n|= 2. Let X be as in Theorem 10.5.1 and K a compact set in X of
the form K = K; x -+ x K}, with compact sets K; in C for j =1, 2,...,n, and in
E for j=n; +1,...,|n]. Assume that K admits a fundamental system of ("-
pseudoconvex open neighborhoods. Then we have

H?K, 0,)=0 for every p > 0.

By virtue of the Martineau-Harvey Theorem, there exists the algebraic
isomorphism

0.K; E) =~ HI'(Q, F0?).

Here £ denotes an open neighborhood of K. Further assume that there exists an
(*-pseudoconvex open neighborhood Q of K such that

Q;=0\{zeC"; z;eK;nC}*
is also an (*-pseudoconvex open set for j=1,2,....|n|. If K = D" holds, all the
assumptions imposed on K in the above are satisfied. Put Q,=. Then U
={Q, 2,,...,2,} and U = {Q,, Q,,...,2,} form acyclic coverings of © and
Q\K. Set
QHK =N, 9, Q=0
Let ) ,0°(€’; E) be the image in (0”(!2#K; E) of Hj."zll 0" (£’; E) by the mapping
Ly — 28 (=,

where f; denotes the restriction of f; to Q#K.
Then, by a similar way to Theorem 10.6.2, we have the following.

Theorem 10.6.3. We use the notations as above. Then we have the algebraic
isomorphisms

O+(K; E) = HY'(Q, F0") = HMQU, W, 0°) = 0" (Q# K ; E)/Y, 0" (2'; E).
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