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Abstract

This note deals with the isospectral deformations of metrics on nilmanifolds from
the view point of Hamiltonian dynamical systems. It is shown in some examples
that the associated Hamiltonian system (the system of geodesic flow) is left invariant
under such deformations without a nowhere dense subset of the phase space.
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1. Introduction

Given a Riemannian manifold (M, g). Then we have the natural Hamiltonian dynamical
system, the system of geodesic flow, % = (T*M,w, H), where T* M is the cotangent bundle
over M, w the natural symplectic two form on it, and H = H, is the Hamiltonian defined
from the metric g as

H(z,6) = sa.(c,6%)

for (z,€) € T"M, &* being the tangent vector at z € M satisfying &(v) = g,(€#,v) for
every v € T M. On the other hand, the metric g defines the natural elliptic self-adjoint
differential operator, the Laplace-Beltrami operator, A = A, acting on functions on M,
which is regarded in a sense as a quantum system corresponding to H. It is interesting
to consider relationships between geometric or dynamical properties of the Hamiltonian
system H and analytic properties, especially the spectrum (denoted by Spec(A)), of the
operator A,

Two compact Riemannian manifolds are said to be isospectral when their associated
Laplace-Beltrami operators have the same spectra. In 1984 C.S. Gordon and E. Wilson
[8] exhibited for the first time non-trivial isospectral deformations, i.e., continuous one-
parameter families of metrics on a compact manifold which are isospectral but not isomet-
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ric. Their examples are constructed on solvmanifolds or nilmanifolds, i.e., manifolds whose
universal Riemannian coverings are solvable or nilpotent Lie groups with left-invariant met-
rics, on the basis of the new concept called almost-inner automorphisms of a Lie group.
It is worthwhile to analyze their isospectral deformations from the viewpoint of (classical)
Hamiltonian systems ar systems of geodesic flows.

Now let g;(—e < t < ¢) be a one parameter family of Riemannian metrics (which we
call a deformation of go) on a smooth manifold M. We introduce the following definitions.

Definitions. (0) A deformation g; of gy is said to be trivialif there is a one parameter
family ¢, of diffeomorphisms of M such that g; = ¢} go.

(1) We denote by Specr,(M, g) the collection of lengths of closed geodesics with the mul-
tiplicity of A €Specr(M, g) defined to be the total number of closed geodesics of length A. A

deformation g; of go is called an L-isospectral deformation if Specy,(M, g¢) = Specr (M, go)
for every t.

(2) A deformation g, of gy is called a symplectic deformation (abbreviated by Symp-
deformation) if (T*M,w, H,) & (T*M,w, Hy) holds for every ¢, 1i.e., there is a one parameter
smooth family x; of homogeneous symplectic diffeomorphisms on 7*M = T*M \ 0 such
that '

(1.1) xi Ho = Hi(= Hy,).

Here a homogeneous symplectic diffeomorphism x; means a diffeomorphism of T* M which
satisfies

(1.2) Xew = W,
and the homogeneity condition
13 xi(2,€) = (y,n) <= xe(z,¢6) = (y,en) (¢ >0).

~ The symplectic diffeomorphism x; maps each integral curve of the Hamiltonian system -
(T*M,w, H,) to that of (I™M,w, Hy). Let Z; be the infinitesimal generator of xi, i.e.,
dx:/dt = Z; o xi. Then, Z, is a smooth vector field on T*M, and satisfies

(1.4) Lzw =0,

(£ being the Lie derivative), the homogeneity condition

(15) (jc)*Zt - Zt (C > O)!
(j being the dilation map (z,£) — (z,c€)), and

d

These three conditions are lead from (1.2), (1.3) and (1.1), respectively.
(3) A deformation g; of g is called a Hamiltoniun deformation (abbr. Ham-deformation)
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if g. is a Symp-deformation and 7, (defined above) is a Hamiltonian vector field, that is,
there exists a one parameter family of smooth functions F, on T*M such that 1 zw = dF,,
where iz, is the interior product with respect to Z;. Note that in this case the conditions
(1.4) and (1.6) are equivalent to the unified condition:

(17) {Ft)Ht}: f1;> i

where {, } is the Poisson bracket.

Notice the following diagram about the definitions above, where A — B means that
A implies B:

trivial deform.

7 N\
Ham-deform. 1sospectral deform.
! .
Symp-deform.
!

L-isospectral deform.

We have the following results concerning these deformations of a metric.

(1) The Zoll deformations constructed by odd functions on the sphere are Ham-deform-
ations (cf. [2, pp. 121-123], [11]) but not 1sospectral. The non-isospectrality of the Zoll
deformations follows from the result of Tanno [15] claiming the non-existence of non-trivial
1sospectral deformations of the canonical metric on the sphere.

(2) Colin de Verditre [3] showed that if the metric g on the compact manifold M satisfies
a certain generic property, then Spec(A,) determines Specy (M, g), and accordingly, an
isospectral deformation is an L-isospectral deformation.

(8) If the associated geodesic flow is Anosov, Livcic’s theorem [13] asserts that an
L-isospectral deformation is a Ham-deformation with Fi to be a C* function.

(4) Moreover, Guillemin and Kazhdan [9], [10] proved for the metrics of negative cur-
vature with a pinching property that any Ham-deformation is trivial , and consequently
the non-existence of non-trivial isospectral deformations.

(5) Known examples of non-trivial isospectral deformations are those which are con-
structed by Gordon and Wilson [8] using almost-inner automorphisms of nilpotent or solv-
able Lie groups. In [6] Gordon proved that these isospectral deformations are L-isospectral
deformations.

(6) Gordon [7] showed that a particular isospectral deformation on a nilmanifold M is
not a Symp-deformation, more precisely, 't'he geodesic flows are not conjugate under any
continuous family of homeomorphisms of 7*M.

(7) A Hamiltonian system is decomposed into a family of reduced systems by the
reduction procedure formulated by Marsden and Weinstein [14] if the system has a “sym-
metry”. The previous paper [12] showed that a certain class of isospeciral deformations
on nilmanifolds induce the trivial deformnations on each reduced systems.
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In contrast to Gordon’s result (5) above we here in this note show in some examples
that the isospectral deformation g; on M by an almost-inner automorphism derives an
isomorphism (U, w, Ho) & (U, w, H;) for an pen and dense subset U of T*M.

2. Dynamical systems on Lie groups

Let G be a Lie group endowed with a left invariant Riemannian metric. Consider
the Hamiltonian dynamical system on the cotangent bundle 7*G with the Hamiltonian
function defined by the Riemannian metric.

For each element g of G, let L,(R,) denote the left (right) translation on G by g, and
set I, = Ly 0 Ry~ (the inner automorphism of G). As the differentials (and their dual
operators) of these diffeomorphisms we define the following linear isomorphisms of the
tangent (and cotangent) spaces for each h € G:

Lg* . ThG -_— TghG, Rg* . ThG i Tth,
L% TG — TG, R Ty,G — TG,
Ad(g) = (I)e g — g, Ad*(g):=(I}).: g — &,

where g = T,G is the Lie algebra of G and g* is the dual space of g.
We consider the cotangent bundle 7*G. Using the left translations we get a bundle
isomorphism
A:T*G—> G xg*as
TrG3¢&— (hL}E) € Gx g

Then,
(2.1) AoLto A" (h,u)= (g7 h,pu), Ao RoA'(hu)=(hg™!,Ad* (g7 ")n),

holds for (h, 1) € G x g*, and we denote these mappings on G x g* by the same notations
L; and R;. Let 0 be the canonical one form on the cotangent bundle T*G, and set
wy = —dfy. The two form wy is the natural symplectic structure on T*G. By virtue of the
isomorphism A we obtain the forms § = (A™')*6y and w = (A7!)*w; on G x g*. Thus we
have the symplectic manifold (G x g*, w).

Proposition 2.1(cf. [1, p.315)). Let (g, 1) € Gxg*, and (v, p), (w,0) € T(x(Gxg") =
T,G x g*. Then,

(1) 8(g, 1) (v, p) = #(Lg—uv)-
(i) w(g, L)((v, p), (w,0)) = =p(Lg-1,w) + 0 (Lg-1,0) + p([Lg-1,v, Lg-1,w)).

Let G 3 g — {,)y be a left-invariant Riemannian metric on G, which is uniquely
induced from the inner product {,) = (,). in g. Let Hy be the Hamiltonian function on
T*G defined by the metric, and let H = (A™')*H; be a Hamiltonian on G x g*. It is
obvious that the function H is invariant under the left translation L7 for every g € G, and

(2:2) H(g, 1) = 5 1" 1= L (¥, %)
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by means of (2.1). Let Xy is the Hamiltonian vector field on (G X g*,w) defined by H,
i.e. ix,w= dH (ix: the interior product with respect to X'). Then,

Proposition 2.2. Let (g,p) € G x g*. Then,

Xu(g, 1) = (Lou(u¥), ad"(u*)) € T,G x g7,
where ad*(ut) is the dual operator of ad(u¥) : g — g;w — [p¥, w).
Proof. Direct calculation using Proposition 1.1 and (1.2). &

It is to be noted in the above proposition that the g*-component of Xy is independent
of g €G.

Dynamical systems on I'\G. Suppose G has a discrete subgroup I'. A left-invariant
Riemannian metric on G induces a metric on the manifold M =T'\G. Associated with the
isomorphism TG = G x g*, we have the isomorphism T*M = M x g* by left translations
by G, and the objects w, H and Xy on G x g* are identified with those on M x g* because
they are invariant under any left translation by y € T".

3. A dynamical property of isospectral deformations by Gordon-Wilson

In this section we let g be an n-dimensional nilpotent Lie algebra and G = expg the
corresponding Lie group, which is diffeomorphic to R™. Suppose G has a uniform discrete
subgroup T', that is equivalent to the existence of a basis of g relative to which the structure
constants are rational (cf. [3]). We consider the Riemannian manifold M = I'\G endowed
with the metric (,) which is induced from a left-invariant metric, also denoted by (,), on
G, and the associated Hamiltonian system H = (T*M = M x g*,w, H).

We introduce the notion of almost-inner automorphisms of G' by Gordon and Wilson.
Let Aut(G) be the group of all automorphisms of G. The map Aut(G)> @ — &, = (d,).
gives an isomorphism of Aut(G) onto the group Aut(g) of all automorphisms of the Lie
algebra g, which is a Lie subgroup of the general linear group GL(g). Let Der(g) denote
the set of all derivations of g. Then Der(g) is a Lie subalgebra of gl(g) (the Lie algebra of
GL(g)), and exp(Der(g))=Aut(g) holds good.

Definitions. (1) An automorphism @ of G is said to be almost-inner if for each
g € G there exists a = a, € G (depending on g) such that ®(g) = aga™?, or equivalently
®,(X) = Ad(a)X for X € g withexp X = g.

(2) A derivation ¢ of g is said to be almost-inner if for each X € g there exists
Y =Yx € g (depending on X) such that ¢(X) = [Y, X].

We denote the set of all almost-inner automorphisms of G by AIA(G) and the set of all
almost-inner derivations of g by AID(g). We notice the following fundamental facts (see

[8] and [6]).

Lemma 3.1. (1) The set ATA(G) is a connected nilpotent Lie subgroup of Aut(G) with
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Lie algebra AID(g).
(2) A derivation ¢ belongs to AID(g) if and only if for each u € g* there exists Y =
Y(u) € g such that

(3.1) , ¢* (1) = ad"(Y)p,
where ¢* s the dual operator of ¢.

Take a derivation ¢ of g, and let @, = exp(t¢) (¢ € R) be a one-parameter smooth
family of automorphisms of g. Then, we get a one-parameter family (, ), of inner products
in g as (X,Y); = (3n(X), ®u(Y)), which are regarded as left-invariant metrics on on G
and induce Riemannian metrics, denoted by the same notation (,);, on M = T\G.

Theorem 3.2(Gordon-Wilson [8]). If ¢ belongs to AID(g), then the family (,),(t € R)
of metrics on M induced from ¢ is an isospeciral deformation.

Remark. If ¢ is an inner derivation, then (,) is a trivial deformation. In fact, if
¢ = ad(Y) (Y € g), then (,); = ¢}{,) holds for the family of diffeomorphisms ¢, on M
which is induced from the right translations (Reyp(sv)) ™! on G.

Now we analyze the family H; = (M x g*,w, H;) of Hamiltonian systems associated
with the isospectral deformation (, ), induced from an almost-inner derivation ¢ of g.

Let U be an open subset of g* := g*\ 0, and take a smooth vector field Z on M x U
given as

(3:2) Z(lg ) = (LY (u), —¢"(w)) € TigM x g"

for ([g], ) € M x U ([g] denoting the point of M corresponding to g € G), where Y is a
smooth map of U into g. Then,

Lemma 3.3. ZH, = H] holds for everyt € R.
Proof. We have )
Hi(lg) 1) = (%, 1, + (), 1)
Differentiate the equation (u#,X), = u(X) (X € g) with respect to ¢, and we get
((e#*), X)e = —(u*, X)!. On the other hand,

(X, X)! = (@2, 20, (X))o = 2(¢(X), X),

holds. Therefore we get

H{(lg], 1)
= S ) = —(9(F), 1), = —p(6(u?))

= —¢*u(u?) = —(¢"n, u);
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= (ZH)([glw). ®

Suppose Z is a complete vector field on M x U, and let y; is the one-parameter group
of transformations generated by Z. It follows from Lemma 3.3 that x; satisfies (1.1). As
seen in §1 x; is-a homogeneous symplectic diffeomorphism if and only if Z satisfies

(3.3) Law =0,
and
(3.4) (o2 =2 (c>0),

Je being the map (g, ) = (g, cu).

The main result of this note is the following.

Theorem 3.4. Let H; = (M x g*,w, H,) (t € R) be a one-parameter family of Hamil-
tontan systems corresponding to the deformation of a metric which is induced from an
almost-inner derivation ¢. Suppose that there exist a conic and open subset U of g* and a
smooth map Y of U into g such that
(c.1) M x U is invariant under the flow of H; for each t,

(c.2) the vector field Z given by (3.2) 1is complete in M x U,

(¢.3) —¢*(u) = ad*(Y (1)) holds for every p € U,

(c.4) Y(cp) =Y (u) holds for every positive real number ¢ and p € U, and _
(c.8) v{r(Y ()} — {v(Y (1))} = 0 holds for every constant vector fields v, 7 : U —
g iv(p) =p () =1

Then, (M x U,w, Hy) = (M x U,w, Hy) holds for everyt € R.

Proof. Tt suffices to check the conditions (3.3) and (3.4) for the vector field Z. The
condition (3.4) follows directly from (c.4). For p = (LaV,v),0 = (LeuW, 1) € TigM x
U (V,W € g) we have

(Lzw)(lg), #)(p, 0)
= d(iz)(o) 1) (o)
= plullgl #)(Z,0)} — o{w(lg], 1)(Z, £)} ~ w(lgl, u)(Z, [, o)),

where we regard in the last line p and ¢ as the vector fields p([h],¢) = (L.V,v) and
o([h, Q) = (LW, 7), respectively, on M x U. Note that [p,d)(q, = (La[V, W],0). By
means of the conditions (c.3) and (c.5) the above turns out to be
AERW) +7(Y () + oY (1), WD} = o{d"u(V) + (Y (1) + u([Y (), VI)}
(R W]) — (¥ (), [V, W) = 0.
Thus we get (3.3). ¥

Expressions by local coordinates. Let {V},:-+,V,} be a basis of g and {V}, -+, V*}
its dual basis of g*. Associated with these bases we take coordinates (z!,- -+, z") of g and
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(1, ++, pn) of g*. Put ¢*(u) = 3272, qS;(/J.)VJ-“, Y(p) = e Yj(y,)Vj. Then, the condition
(c.3) is expressed as

¢1 (1) 0 X;Chu o T;Chu Y:(u)
5 (1) ; Clat; 0 v 25 Chapy Y3(p)

(c.3) - : : -
¢ (1) X C{nﬂj Y anﬂj 0 Y*(w)

where {C}, } are the structure constants, i.e., [V, Vi] = &, C4.V;. The matrix in the formula
above is singular, hence, the vector Y (u) is not uniquely determined. The condition (c.5)
is equivalent to

oy’ oyk
.5 — =0, 1<jk<n,
(c.5) o o <5k<
that means the one-form o« = ¥, Y7du; on g* to be closed.

Now we see in some examples that for an almost-inner derivation of the nilpotent
algebra g there exist a conic, open and dense subset U of §* and a smooth map Y of U
into g which satisfy the conditions (c.1)-(c.5).

Example 1(see [4], for details). Let g be the six-dimensional Lie algebra with basis
B = {Ul, Uz, 111, Vé, Wl, Wz} and

(U, Vi] = [Uz, Vo] = W, [Uh, V] = W,

all other brackets being zero. This is a two-step nilpotent Lie algebra with the center z
being generated by {W;,W,}. One way to realize it as a matrix algebra s to let Y2 (2 Ui+
4 Vi + zW;) correspond to the 7 x 7 matrix

0 1 Ty 2
0 0 0 U1
0 0 0 gy 0
0 0 0 O
0 Ty 29
0 0 0 w
\ 0 0 0
Let ¢ : g — g be the derivation defined by
¢(U1) = W2)

with zero on the remaining elements of B. Then ¢ belongs to AID(g). In fact, using the
basis B* = {U}, U5, Vy*, V5, Wy, W3} of g* dual to B, we put p = x, W} + Ko W5 + o with
po =Ly (U + V) € 2t i= {uo € g5 11o(W) = 0 for all W € z}. Then,
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ad*(—Vz),u (K‘l = 0)
¢*(”) = " Ko V1Ko Yy
ad ("';‘;Vl + K,il)' W] - K_W2) M (Kl # 0)

Take the conic, open and dense subset U = {y = ky W} + ko WS + pio; #y # 0, g € zt} of
g*, and the map Y of U into g:

Ka Ko 141
Y{p)= K—1V1 T2 Wi EWz’

satisfies (c.3)-(c.5). Moreover, Z given by (3.2) is a Hamiltonian vector field associated

with the function on M x U:
_ Mika

({g) ) = —.

K1
2. Let g be the (n+ 3)-dimensional (n > 2) Lie algebra with the basis B = {U}, U, V;,
W; 1< j <n} satisfying

[UI)I/]']:‘/_'/-i-l (1SJS?’&—1), [Ul,Vn]=W, [U},W]Z[Ul,,Ug]‘-:O,

(U2, Vi) = [U3, [U, V] = Viga (1< 5 < n—2),
[UQ) Vn—l] = VV, {Uz, Vn] = [Ug, W] = (),
[V, Vil =0 (1 < 5,k < n).

This is an (n+1)-step nilpotent Lie algebra with the one dimensional center z generated by
W. One realization as a matrix algebra is obtained by letting $°2_, =,U; + Y=YVt W
correspond to the (n + 2) x (n + 2) matrix

0 z¢ 29 0 -+ 0 2
0 Ty Xy v 0 Yn

T2 Y3

1 Yo

O 0 71

Let ¢ be the derivation of g defined by
¢(U2) = W

with zero on the remaining elements of B. Let B* = {Ur, U3, V¥, W=} be the basis of g*
dual to B. For = sW* + Uy + paUs + Li=1v;V>, we have
ad*(cV,)p (k= 0)

Vn

P = " 1/2 )
ad <*—Vn._1 + ;I/n - ﬁW) M (K 74 0)
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c being constant. Thus, ¢ belongs to AID(g). The map

Dy Y 154

Y = V;l-— -
() P

1= —
K

of the conic, open and dense subset U = {pn = kW™ + pp; & # 0,0 € 21} of g* satisfies
(c.3)-(c.5), and is the Hamiltonian vector field associated with

Va
F([g])#) =Vp-1— ‘; ‘
3(cf. [5]). Let g be the six-dimensional Lie algebra with the basis B = {Uy,- -+, Us, W}
which satisfies that
[Ul) U2] = U3> [U1> U3] = U4:

[Ul; U4] = Us, [Uz,Ua] = Us,
[U5) U?] = VV) [UB) U4] - W)

and all other brackets are zero. This is a five-step nilpotent Lie algebra with the one
dimensional center z generated by W. Let ¢ be the derivation of g defined by

¢(U2) = U5

with zero on the remaining elements of B. Then ¢ is almost-inner. Let Y (1) be a vector
in g satislying —¢*u = ad*(Y(p))p. Put p = sW* + T, U with respect to the
basis B* = {U},---,Us,W*} of g* dual to B, and take the conic, open and dense subset
U={pu=rcW*+pu; k#0,u €2z} of g*. Then, Y (1) is given as

V() = 0,4 12
o= PREEDPS

which satisfies (c.4) and (c.5), and Z given by (3.2) is the Hamiltonian vector field associ-
ated with

F(lg),p) = —%-

It remains for us to check the conditions (c.1) and (c.2) in the examples above. Note
that z* 22 g*/z*, and we can show (c.1) and (c.2) in every example from the fact that the
vectors Xy, and Z are tangent to M x z*t.

We conclude this note with the following conjecture.

Conjecture. Let M = T'\G be a compact nilmanifold. Let (,); be the isospectral
deformation of a metric on A/ which is induced from an almost-inner derivation of g.

Then there exists a conic, open and dense subset U of g* such that (M x U,w, H;) &
(M X U,W,Ho).

Remark. It is proved by an elementary consideration that if the almost-inner deriva-
tion ¢ is not inner, then the map Y (1) satisfying (3.1) cannot be smooth (continuous) in
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the whole space T*M.
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