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Abstract

We realize partial mixed Fourier hyperfunctions and Fréchet-space-valued partial
mixed Fourier hyperfunctions as boundary values of (Fréchet-space-valued) partially slowly
increasing holomorphic functions. Then we prove the equivalence of the above and
the correspondant realized independently by the duality method.
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Introduction

This paper is the last part of this series of papers, which includes
Chapters 11 and 12. For the outline of this paper, see “Contents” in the
part of this series of papers [37]. Here we note that “isomorphisms” usually
mean topological ones without explicit mention for the contrary. For references
we refer to the lists of references at the end of papers [37], [38], [40], [41],
and this one.

Here I wish to express my hearty thanks to Professors H. Yoshizawa, T.
Hirai, H. Komatsu, A. Kaneko, M. Morimoto, S. Nagamachi and H. Kaneta
for many valuable advices and discussions during the preparations of this work.

Chapter 11. Case of sheaves 0%, &/*, O, and &/,
11.1 The Oka-Cartan-Kawai Theorem B

In this section we prove the Oka-Cartan-Kawai Theorem B for the sheaves
O* and O,.
For a 3-tuple n=(n, n,, ny)=(n,;,n) of nonnegative integers with
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In| = n, + n, + ny #0, where n' = (n,, ny), we denote by K" the product space
C" x F" = C™ x C™ x E™ and by Y" the product space R" x D" = R™ x D™
x D". We put C"l = C" x C" x C™. We denote then z = (7, 2/, z")e C" so
that z/ = (zy, 2, ), 2" = (Zuy 415 5 Znyamy) AN 27 = (2 4 ny 41575 Zy)-

For a subset F of K", we denote by int(F) its interior and by F* its closure
in K"

Definition 11.1.1(the sheaf O* of germs of partially slowly increasing holomor-
phic functions). We define the sheaf @* over K" to be the sheaf {0*(); 2 is an
open set in K"}, where the section module *(£2) on an open set £ in K" is the
space of all holomorphic functions f(z) on 2nC™" such that, for every positive
number ¢ and for every compact set K in Q, the estimate sup{|f(z)|e(— e(jz"| +
|2”))); ze KNCM} < oo holds. Here e() denotes the function e' = exp(t) of te C.

If we define a seminorm | f|lx, of O*(2) by the relation |f|g,=
sup{| f(z)|le(— &(1z"| + |2""])); ze KN C™} for a compact set K in Q and a positive
number ¢, O*(2) becomes a nuclear FS-space with respect to the topology defined
by the family of seminorms {|l f|x,; K is a compact set in £ and & is a positive
number}.

Definition 11.1.2(the sheaf @, of germs of partially rapidly decreasing holomor-
phic functions). We define the sheaf ¢, over K" to be the sheaf {0, (Q); Q
is an open set in K"}, where the section module @, (€2) on an open set £ in K"
is the space of all holomorphic functions f(z) on QnC" such that, for every
compact set K in 2, there exists some positive constant ¢ so that the estimate
sup{| f(z)le(d(|z"| + |2"])); ze KnC"} < oo holds.

0,(2) becomes a nuclear FS-space with respect to the topology defined by
the family of seminorms {| f|x _;; K is an arbitrary compact set in € and ¢ is
some positive constant depending on K). Let O, (K) be the space of all partially
rapidly decreasing holomorphic functions on a certain neighborhood of K. Then
0,(K) becomes a nuclear DFS-space.

It is easy to see that O*|¢in = Oylcm = O holds.

Definition 11.1.3. An open set Q in K" is said to be an O*-pseudoconvex
open set if it satisfies the conditions:

(1) sup{|Im z"|, |Im z"| — |Re z"|; z = (z, 2", Z")e QN C"} < o0.

(2) There exists a C®-plurisubharmonic function ¢(z) on 2n C'"! having the
following two properties:

(i) The closure of Q, = {zeQnC"; ¢p(z) <t} in K" is a compact subset
of Q for every real number ¢.

(i) ¢@(z) is bounded on LN C™ for every compact subset L of V.,

Then we construct a soft resolution of the sheaf ¢* and prove the
Oka-Cartan-Kawai Theorem B using it.
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First we mention the definition of the sheaf L* = L% . of germs of partially
slowly increasing locally square intergrable functions over K.

Definition 11.1.4. We define the sheaf L* over K" to be the sheaf {L*(Q); Q
is an open set in K"}, where the section module L*() on an open set 2 in K"
is the space of all fe L, ,,.(2nC") such that, for every positive number ¢ and
for every relatively compact open subset w of Q, e(— | z])f(2)|,€L,(wnC"™)
holds.

Then L* becomes a soft FS*-sheaf.

Definition 11.1.5(the sheaf ¥ *77). We define the sheaf & *74 over K" to
be the sheaf {£ *79(Q2); 2 is an open set in K"}, (p, ¢ = 0), where, for an open
set 2 in K" the section module ¥ *74(Q) is the space of all fe L*?4(Q) such
that df e L*74*1(Q) holds. We put & * = ¥ *00,

Then ¥ *P4 becomes a soft FS*-sheaf with respect to the graph topology
of the operator d. Then we have the following.

Theorem 11.1.6(Hormander-Kaneko). Put X = int({z = (7, z’, z")e C""; |Im

Z’| <1+ |Re z”|/\/§, [Imz”| <1+ |Re z’”l/\/g}“), and let Q be an arbitrary
O*-pseudoconvex open set in X. Then, for every fe &£ *P1*1(Q) with f = 0, there
exists a solution ue ¥ *71(Q) which satisfies the equation ou = f. Here p, q¢ = 0.

Proof. We can prove this by a similar way to Kaneko [17], Theorem 8.6.6,
(p.175). Q.E.D.

Theorem 11.1.7(the Dolbeault-Grothendieck resolution). The sequence of
sheaves over K"

0 y (¥ P, @ %P0 0 » & *.01 L, _f’___,g*,p,lnl —50

is exact, (p = 0).

Proof. Since every point of K" has a fundamental system of neighborhoods
composed of open sets which are transforms of ¢*-pseudoconvex open sets
contained in X of Theorem 11.1.6 by certain regular inhomogeneous linear
transformations, the conclusion follows from Theorem 11.1.6 and Hormander [4],
Theorem 4.2.5 and Corollary 4.2.6, (pp.86-87). Q.E.D.

Corollary 1. For an arbitrary open set 2 in K", we have the following
isomorphism :

HY(Q, 0%7) = { feZ *r(Q); if =0}/{0g; ge L*P (@)}, (p=0,q= 1)
Now, we can prove the Oka-Cartan-Kawai Theorem B.

Theorem 11.1.8(the Oka-Cartan-Kawai Theorem B). Let X be as in Theorem
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11.1.6. Let Q be an open set in K" which is the transform of an arbitrary
O*-pseudoconvex open set in X by a certain regular inhomogeneous linear
transformation. Then we have HY(Q, 0*?) =0, (p=0,q9 = 1).

Proof. It follows from Theorem 11.1.6 and Corollary 1 to Theorem 11.1.7.
QED

Now we define the sheaf &* of germs of partially slowly increasing
C*-functions over K".

Definition 11.1.9. We define the sheaf &* over K" to be the sheaf {6*(22); Q
is an open set in K"}, where, for an open set 2 in K", the section module 6*(£2)
is defined as follows:

E*(Q) = {fef(QnC™); for every ¢ > 0, every compact set K in 2 and
every ae N2I" the estimate sup{|f®@(z)|e(— e(|z"| + |2"]); z = (Z, 2", 2"
eKnC™"} < oo holds}.

Then the sheaf &* becomes a soft nuclear Fréchet sheaf. Then we have
the following.

Theorem 11.1.10(the Dolbeault-Grothendieck resolution). The sequence of
sheaves over K"

0%,P %,0,0 _ 01 _ 0 0 *,0,{n|
00— O —— & — & — — & —

is exact, (p = 0).

Proof. It goes in a similar way to Hormander [4], Therem 2.3.3, (p.32) by

using a certain weight functions as used in Kaneko [17], Theorem 8.6.6, (p.175).
Q.E.D.

Corollary 1. For an arbitrary open set Q in K", we have the following
isomorphism

HYQ, 0%?) = {fe&*PUQ); of =0}/{0g; g &P HQ)}, (p=20,q21)

Corollary 2. Let Q be as in Theorem 11.1.8. Then, for every fe &*P11(Q)
with 0f = 0, -there exists a solution ue&*PYQ) which satisfies the equation
ou=f. Here we assume p, q = 0.

Proof. It follows from Theorem 11.1.8 and the above Corollary 1.
QED

The above Corollary 2 gives some estimate and existence theorems for the
0-operator.
Now we define the sheaf L, = L, , .. of germs of partially rapidly decreasing
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locally square integrable functions over K™

Definition 11.1.11.  We define the sheaf L, over K" to be the sheaf {L(2); Q
is an open set in K"}, where, for an open set 2 in K", the section module L, (Q)
is defined as follows:

L, (Q)={f€L,,(2nC"); for every relatively compact set o in &,
there exists some 6 >0 such that e(3]z|)f(2)],€L,(wnC") holds}.

Then the sheaf L, becomes a soft FS*-sheaf.

Definition 11.1.12(the sheaf ¥ 77). We define the sheaf ¥ 2 over K" to be
the sheaf {£7(Q); Q is an open set in K"}, (p, ¢ = 0), where, for an open set
Q in K", the section module ¥ 24(Q) is defined as follows:

LrUQ) = {felri(Q); If e LEA*1(Q)}.
Especially, we put &, =% 9°.

Then the sheaf # 27 becomes a soft FS*-sheaf with respect to the graph
topology of the d-operator. Then we have the following,

Theorem 11.1.13(Hormander-Kaneko). For certain positive numbers a, (1 > a
>0)and b >0, put X =int({z = (z, z", z")e C'""'; |Im z"| <1+ |Re z”|/\ﬁ, |Im z"|?
<1/2+ |Rez"?, |Imz”| <1+ |Re z”’l/\/g, Im z""|* < a*|Re 2"|* + b*}%). Let
Q be an arbitrary O*-pseudoconvex open set in X. Assume fe¥ EiT1(Q)
with 0f = 0. Then, for every open set w = < Q, there exists a solution ueZ Lw)
which satisfies the equation ou = [ on w. Here assume p, q = 0.

Theorem 11.1.14(the Dolbeault-Grothendieck resolution). 7The sequence of
sheaves over K"

d F

00— O—> 7 20 Lo 0
is exact, (p = 0).

Proof. Since the exactness of the above sequence is equivalent to the local
solvability of the d-equation, we have the conclusion by a similar way to Theorem
11.1.7 using Theorem 11.1.13 and Hérmander [4], Theorem 4.2.5 and Corollary
4.2.6, (pp.86-87). QED

Corollary 1. For an arbitrary open set Q in K", we have the isomorphism
HY(Q, ) = {fe 219Q): 3 = 0}/{0g; ge L 17 1)}, (p20,q2 1)

Then we have the following.
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Theorem 11.1.15. Let X be as in Theorem 11.1.13. Let K be a compact
subset in K" which is the transform of a compact subset in X having a
fundamental system of neighborhoods composed of O*-pseudoconvex open sets

in X by a certain regular inhomogeneous linear transformation. Then we have
HYK, 0%)=0,(p=0,g=1).

Proof. We can prove this by using Theorem 11.1.13 and Corollary 1 to
Theorem 11.1.14. Q.E.D.

Next, we mention the Grauert Theorem.

Theorem 11.1.16(the Grauert Theorem). Let S be an arbitrary subset of Y"
and U a certain neighborhood of S in K". Then there exists an O*-pseudoconvex
open neighborhood V with S « V< U. Namely, S has a fundamental system of
neighborhoods composed of O*-pseudoconvex open sets.

Theorem 11.1.17(Malgrange). For an arbitrary subset S of Y", we have
HYS, o4*%Py=0, (p 20,qg=21). Here we put o/* = 0*|y..

Theorem 11.1.18(Malgrange). For an arbitrary compact subset K of Y", we
have HY(K, o) =0, (p 20,9 =1). Here we put o/, = O,|yn.

11.2 The Malgrange Theorem
In this section we prove the following Malgrange Theorem for the sheaf O*.

Theorem 11.2.1(the Malgrange Theorem). Ler Q be an arbitrary open set in
K" such that there exists an open neighborhood @ of Q with H"(Q, 0*)=0. Then
we have H"™(Q, 0*) = 0.

Proof. We use the notations in Theorems 11.1.7 and 11.1.14. By Corollary
1 to Theorem 11.1.7, we have only to prove the exactness of the sequence

Fro=1(Q) L, o) 0

Here we consider its dual sequence
L YHQ)—— £ 322) — 0.

Then, by virtue of the Serre-Komatsu Duality Theorem for FS*-spaces, it suffices
to show the injectiveness and the closedness of the range of — 02 = (62). Since
0 is elliptic, its injectivity is an immediate consequence of the unique continuation
property. Now we prove the closedness of its range. This is surely true if Q
is replaced by the open set Q in the assumption of this theorem because
H'"(@, 0*) =0. Then we consider the commutative diagram:
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Z01Q) < F00@) 0.

I l
ggl(gy—g/ 2(Q) «— 0.
where the map i is the natural injection. By the abov_e remark, — 02 is of closed
range. Then Im(— 32) = {i~*(Im(— 02 ))} n{[Im(— 09)]*} is closed, where [ ]*

is the closure of the set [ ]. Therefore — 0% is of closed range. This completes
the proof. Q.ED.

Corollary. Flabby dim 0* < |n|.
11.3 The Serre Duality Theorem

In this section we prove the Serre Duality Theorem for the sheaves (*
and 0O.

Theorem 11.3.1. Let Q be an open set in K" such that dim H?(Q, 0%) <
holds for p = 1. Then we have the isomorphism [HP(Q, 0*)] ~ H"~»(Q, @)
0 =p=in)

3

Proof. We can prove this in a similar way to Theorem 1.4.1, using the dual
complexes

00— 2200Q) T @01 (Q) s L, godi) 0,
0 golnl(g) jolﬂl—l(_Q)(__ 4——,,? (Q)e—O

QE.D

Remark. The theorem is also true for such an open set Q that every 4 is
of closed range in the above diagram used in the proof of Theorem 11.3.1.

11.4 The Martineau-Harvey Theorem(in case of sheves ¢* and ,)

In this section we prove the Martine\au—Harvey Theorem for the sheaves (7*
and O,.

- Theorem 11.4.1(the Martineau-Harvey Theorem). Let K be a compact set
K" Further we assume the following (i) and (ii): |

(i) H'(K, 0)=0,(pz1.

(i) Vs an open neuhbm/zood 0/‘ K and satisfies H”(V e*y =0, (p =1).

Then we have the /‘ollowsz
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(1) HE(V, 0%) =0, (p # |nl).
(2) If |n| =z 2, we have algebraic isomorphisms

HP(V, 0*) ~ H" =Y (V\ K, 0*) ~ 0, (K.
(3) If |n| =1, we have topological isomorphisms
Hi(V, 0%) = 0*(V\K)/O*(V) = 0,(K).
Proof. It goes in a similar way to Ito [43]. Q.E.D.

As a corollary, we mention a fact in the theory of complex functions of
several variables obtained in the proof of Theorem 11.4.1.

Corolloary 1(Hartogs). Assume |n| =2 and let K and V be as in Theorem
11.4.1. Then we have the isomorphism O*(V\K) = O*(V).

We mention the important fact necessary for the proof of Theorem 11.4.1
in the following Proposition.

Proposition 11.4.2. Let K and V be as in Theorem 11.4.1. Then we have
the following isomorphisms:

(1) H}(V\K, 0,)~H°K, 0,)= 0,(K).

(2) HI(VAK, 0,) = H{(V, O,).

11.5 The Sato Theorem (the case of the sheaf (0*)

In this section we prove the pure-codimensionality of Y" with respect to the
sheaf 0*. Then we realize partial mixed Fourier hyperfunctions as “boundary
values” of partially slowly increasing holomorphic functions or as (relative)
cohomology classes of partially slowly increasing holomorphic functions.

Theorem 11.5.1(the Sato Theorem).

(1) YY" is purely |n|-codimensional with respect to the sheaf O*. Namely, for
every p # |n|, #L.(0*) =0 holds.

(2) The presheaf {HZ(V, 0*); Q is an open set in Y"} over Y" is a flabby
sheaf. Here the section module H'(V, 0*) is a relative cohomology group with
coefficients in the sheaf O* and V is an open set in K" which contains Q2 as its
closed subset. We denote this sheaf by #P(0*) = Dist"l(Y", 0%).

(3) The sheaf #!N(O*) is isomorphic to the sheaf BP of partial mixed
Fourier hyperfunctions defined in Ito [11]. Thereby we identify two realizations.

Proof. It goes in a similar way to Theorem 9.6.1. Q.ED.

Corollary. Let Q be an arbitrary open set in Y" and V an open neighborhood
of Q such that H?(V, 0*) =0, (p = 1) holds. Then we have the following:
(1) If Inl 22, HG\(V, 0%) = H" = (V\Q, 0%).
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(2) If [nl =1, Ha(V, 0%) = O*(V\Q)/O*(V).

Theorem 11.5.2. We use notations similar to Theorem 1.62. Then we have
the algebraic isomorphism

HEY, 0%) = 0*(V5Q)/ 2, 0%(VE Q).
Here we put
Vo=V, Vi=V\{zeV;Im z; =0}, (j=1,2,--,[n]),
VEQ =nll, v,

j=17j

14

We consider the mapping
b: O*(VEQ) — HI(V, 0*) =~ BP(Q)

determined by the above Theorem. Then, for fe O*(V#Q), we call b(f)eBP(L2)
the boundary value of f and f a defining function of b(f). We have
b=1(0) = Il o*(V#,Q).

Chapter 12. Case of the sheaf Z0*
12.1 The Oka-Cartan-Kawai Theorem B

In this section we construct a soft resolution of the sheaf *¢* and prove the
Oka-Cartan-Kawai Theorem B for the sheaf 0*. In this chapter we always
assume that E is a Fréchet space whose topology is defined by a family = J; of
continuous seminorms of E.

At first we define sheaves £O0* and £&*.

Definition 12.1.1(the sheaf £0* of germs of partially slowly increasing E-valued
holomorphic functions over K"). We define the sheaf #0* over K" to be the sheaf
{0*(2; E); Q is an open set in K"}, where, for an open set 2 in K", the section
module O0*(Q; E) is defined as follows:

O0*(Q; E) = {fe0O(Q2nC™"; E); for every positive & every compact set
K in Q and every qeZ, sup{q(f(2)e(— &(|z’| +|2"])); ze KnC"} <
oo holds}.

We call this sheaf £0* the sheaf of germs of partially slowly increasing E-valued
holomorphic functions.

Definition 12.1.2(the sheaf *€* of germs of partially slowly increasing E-valued
C~-functuions). We define the sheaf £&* over K" to be the sheaf {§*(2; E); Q
is an open set in K"}, where, for an open set Q in K", the section module
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&*(Q2; E) is defined as follows:

E*(Q; E) = { fe&(Qn C"; E); for every positive &, every compact set K
in Q, every ae N*" and every qeJ, sup{q(f“(2)e(— (2’| +|2"]));
ze KnCM"} < oo holds}.

Then the sheaf £6* is a soft Fréchet sheaf and we have the isomorphism
E*(Q; E)= 6*(Q)® E

for every open set 2 in K".
Then we have the following.

Theorem 12.1.3(Hormander). Let 2 be as in Theorem 11.1.8. Then, for
every fe&*PI*YQ; E) with 0f=0, the equation du=f has a solution ue
&*PUQ; E), (p, g 2 0).

Theorem 12.1.4(the Dolbeault-Grothendieck resolution of £0*?). Let E be a
Fréchet space. The sequence of sheaves over K"

0 Epxp __ Egxp0 0 [Egxpt _° . % Egxplnl __,
is exact. Here we assume p = 0.

Proof. It goes in a similar way to Theorem 11.1.7. Q.E.D.

Corollary. We use the notations in Theorem 12.1.4. Then, for an open set
Q in K", we have the isomorphism

HY(Q, EO*?) ~ { fe £%P9(Q; E); df = 0}/{dg; ge &7~ 1(Q; E)},
(p=0 and g = 1).
Now we prove the Oka-Cartan-Kawai Theorem B for the sheaf £0*.

Theorem 12.1.5(the Oka-Cartan-Kawai Theorem B). Let E be a Fréchet
space and Q be as in Theorem 11.1.8. Then we have HY(Q, E0*P)=0, (p =0
and q = 1). '

Proof. It goes in a similar way to Theorem 10.2.1. Q.E.D.
12.2 The Malgrange Theorem
In this section, we prove the Malgrange Theorem for the sheaf £0*.

The 12.2.1(the Malgrange Theorem). Ler Q2 be as in Theorem 11.2.1. Then
we have H™(Q, E0*) = 0. ' ‘

Proof. It goes in a similar way to Th.eorem 10.3.1. G Q.E.D.
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Corollary. Flabby dim£0* < |n|.
12.3 The Serre Duality Theorem

In this section we prove the Serre Duality Theorem for the sheaves F@*
and O,.

Theorem 12.3.1. Let Q be as in Theorem 11.3.1. Then we have the
isomorphism HP(Q, *0*) = L(H" ~7(Q, 0,), E), (0 < p < |n)).

Proof. It goes in a similar way to Theorem 10.4.1. Q.E.D.

Here we note that an analogous fact to the Remark at the end of section
9.4 is also true in this case.

12.4 The Martineau-Harvey Theorem

In this section we prove the Martineau-Harvey Theorem for the sheaves FO*
and O,.

Theorem 12.4.1(the Martineau-Harvey Theorem). Let K and V be as in
Theorem 11.4.1. Then we have the following:

(1) Hi(V,20*) =0, (p # |n]).

(2) If |n| =2, we have algebraic isomorphisms

H\(V, *0*) =~ H"~Y(V\K, P0*) = 0\ (K ; E) = L(0,(K), E).
(3) If In| =1, we have topological isomorphisms
Hi(V, *0*) =~ 0*(V\K; E)/O*(V; E) = O, (K ; E).
Proof. It goes in a similar way to Therem 10.5.1. Q.E.D.

As a corollary, we mention a fact in the theory of complex functions of
several variables obtained in the proof of Theorem 12.4.1.

Corollary (Hartogs). Assume |n|=>2. Let K and V be as in Theorem
124.1. Then we have the isomorphism O0*(V\K; E) =~ O0*(V; E).

12.5 The Sato Theorem(the case of the sheaf £0*)

In this section we prove the pure-codimensionality of ¥Y” with respect to
the sheaf 0*. Thereby we realize E-valued partial mixed Fourier hyperfunctions
as “boundary values” of E-valued partially slowly increasing holomorphic
functions or as (relative) cohomology classes of E-valued partially slowly
increasing holomorphic functions. This is a realization of Fourier hyperfunctions
of general type equivalent to the one discussed in Ito [11]. As special cases of
this hyperfunctions, all types of Sato-Fourier hyperfunctions discussed in this
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series of papers (I) ~ (V) are obtained.

Theorem 12.5.1(the Sato Theorem).

(1) Y" is purely |n|-codimensional with respect to the sheaf *0*. Namely.
for every p # |n|, #E.(EO*) =0 holds.

(2) The presheaf {H(V, E0*); Q is an open set in Y"} over Y" is a flabby
sheaf. Here the section module H3\(V, E0*) is a relative cohomology group with
coefficients in the sheaf E0* and V is an open set in K" which contains Q2 as its
closed subset. We denote this sheaf by #Y(EO*) = Dist"(Y", E0*).

(3) The sheaf #VNEO*) is isomorphic to the sheaf M =*(BP) of E-valued
partial mixed Fourier hyperfunctions or Fourier hyperfunctions of general type
defined in Ito [11]. Thereby we identify two realizations.

Proof. It goes in a similar way to Theorem 10.6.1. Q.E.D.

Corolloary. Let Q and V be as in Corollary to Theorem 11.5.1. Then we
have the following:

(1) If In| = 2, HE\(V, F0*) = H" -1 (V\Q, F0*).

2) If |n| =1, Ha(V, B0*) = 0*(V\Q; E)/O*(V; E).

Theorem 12.5.2. We use notations similar to Theorem 11.5.2. Then we have
the algebraic isomorphisms

HINV, Bo*) =~ H" (U, U, E0*)
~ O*(V$Q; E)/ 2", 0*(V#,2; E).
We consider the mapping
b: O*(V§Q; E)y — HI(V, E0*) = BP(Q; E)

determined by the above Theorem. Then, for fe O*(V#Q; E), we call b(f)e AP
(2; E) the boundary value of f and f an defining function of b(f). We have
b=1(0) = X" 0*(V#,Q2; E).
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