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Abstract

In this paper, we extend the Schwartz’ Borel graph theorem and the open mapping
theorem to the case of not necessarily locally convex TVS and solve Grothendieck’s
Conjecture.
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Let E, F be two topological vector spaces (TVS). Then the graph of a
linecar map u: E > F means the subset G(u) = {(x, u(x)); xe E} of the product
space E x F. G(u) 1s said to be a Borel graph when it is a Borel set in E x F,
and it is said to be a closed graph when it is a closed set in E x F. A closed
graph is, of course, a Borel graph. Then we have the following.

Problem. Assume that E and F are two Hausdorff TVS. Then what kind
of TVS is permissible for E and F for which the following two assertions hold
simultaneously ?

(i) A linear map of E into F with the Borel graph is continuous (Borel

Graph Theorem).
(i) A continuous linear map of F onto E is an open mapping (Open
Mapping Theorem).

These theorems are first discovered by Banach [1] in 1932 under rather
stronger conditions. Namely, we have the following.

Banach Theorem. Let E, F be two complete metrizable TVS. Then
(1) A linear map of E into F with the closed graph is continuous.
(i) A continuous linear map of F onto E is an open mapping.

We note expressly that the local convexity of TVS E and F is not assumed
in this place.
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This theorem has many important applications. Many mathematicians
extended this theorem in the more general situations.

In the following we will mention several results postponing the explanation
of terminologies.

Grothendieck Theorem [2]. Let E and F be two locally convex Hausdorff
TVS. Assume that E is of type (f) and F is an L¥F-space. Then

(1) A linear map of E into F with the closed graph is continuous.

(i) A continuous linear map of F onto E is an open mapping.

Here we say E to be of type () when it is a locally convex TVS which is
an inductive limit of a (not necessarily countable) family of Banach spaces. We
say F to be an LF-space when it is a locally convex TVS which is an inductive
limit of a sequence of Frechet spaces.

A quasi-complete bornological space is of type (). Here a locally convex
space E is said to be bornological when each absolutely convex set M which
absorbs all bounded sets of E is a neighborhood of zero in E. Especially a
Fréchet space is of type (). An inductive limit of a sequence of spaces of type
() is of type (f). Especially an LF-space is of type (f3).

There Grothendieck presented the following.

Conjecture. In addition to Banach spaces the theorem is also true for all
the spaces F obtained by a finite or an infinite numbers of operations of the
following types departing from Banach spaces, namely by the operations of
making topological direct products or topological direct sums of a countable
families of locally convex spaces and by the transition into closed subspaces or
Hausdorff quotient spaces.

Then Fréchet spaces are permissible because they are closed subspaces of
the topological direct products of sequences of Banach spaces. LF-spaces are
also permissible because they are Hausdorff quotient spaces of topological direct
sums of sequences of Fréchet spaces.

In order to solve Grothendieck’s Conjecture, many mathematicians tried to
extend the closed graph theorem and the open mapping theorem. Among many
results concerning them, the result of the Borel graph theorem of L. Schwartz
[4] in 1966 was surprising.

Schwartz Theorem. Let E and F be two locally convex Hausdorff
TVS. Assume that E is an inductive limit of an arbitrary family of Banach spaces
and F is a Souslin space. Then

(1) A linear map of E into F with the Borel graph is continuous.

(i) A continuous linear map of F onto E is an open mapping.

While Schwartz’ first proof was measure theoretical, 4. Martineau gave
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another proof without the measure theory in the same year [3]. Since a closed
graph is a Borel graph, this solved Grothendieck’s Conjecture by the afterward
mentioned properties of Souslin spaces. But, taking into consideration the fact
that the Banach’s first result is given for not necessarily locally convex, complete
metrizable TVS, it is hard yet to say that the Banach’s result was extended
finally. Therefore, it seems to have an important meaning that one extends the
Schwartz’ Borel graph theorem to the case of not necessarily locally convex TVS.
Our result will be mentioned in the following. '

Theorem. Let E and F be two (not necessarily locally convex) Hausdorff
TVS. Assume that E is one of the following (E,) ~ (E,):

(E,) a complete metrizable TVS,

(E,) a Baire Souslin TVS,
(E3) an inductive limit of an arbitrary family of complete metrizable TVS,
(E4) an inductive limit of an arbitrary family of Baire Hausdorff Suoslin TVS.
Assume that F is one of the following (F,), (F,):

(F)) a complete metrizable TVS,

(F,) a Souslin TVS.
Then

(1) A linear map of E into F with Borel graph is continuous.

(i) A continuous linear map of F onto E is an open mapping.

Here we recall the definitions of terminologies used above. A TVS E is
said to be an inductive limit of an arbitrary family {E,} of TVS when for each
o a linear mapping ¢,: E, - E is given so that E =) ¢,(E, holds and E is

endowed with the finest topology with respect to which each ¢, is continuous.

A topological space P is said to be Polish when it is a separable complete
metrizable topological space and a Hausdorff topological space S is said to be
a Souslin space when it is an image of some Polish space by a continuous map.

A subset M of a topological space X is said to be meager if M is contained
in a countable union of closed sets without any interior point. X is said to be
a Baire space if no meager subset of X has interior points.

The class of Souslin spaces is closed with respect to the following operations:

(1) transition to closed or open subspaces.

(2) making countable products and disjoint unions.

(3) making countable intersections or countable unions of Souslin subspaces

of a Hausdorff topological space.

(4) making continuous images.

By these properties of Souslin spaces, Schwartz’ Borel graph theorem and our
Borel graph theorem in the case of F = (F,) give solutions of Grothendieck’s
Conjecture in the extended form.
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The case E = (E,), F = (F,) of our theorem gives a direct generalzation of
the classical Banach theorem.

In our theorem, the class of complete metrizable TVS and the class of
Souslin TVS are considered. The former is contained in the latter when the
former is restricted to the separable case. But it is meaningful to consider the
both classes since in general it does not happen that one of them becomes a
subclass of the other. '

Proof of the theorem. At first we will show (i). In the case where E is
(E3) or (E,), assume that E is an inductive limit of the family {E,} with respect
to the mapping ¢,: E, > E. Then for a linear map u of E into F to be continuous
is equivalent for a linear map u, = u- ¢, of E, into F to be continuous for any
o. The graph G(u,) of u, is the preimage of the graph G(u) of u with respect
to the mapping (x,, ¥) = (¢,(x,), y) of E, x F into E x F. Hence these cases are
reduced to the cases (E;) or (E,). In the case (E,), it is enough to show that
u 1s sequentially continuous, so that we have only to consider the restriction of
u to the smallest closed subspace of E containing an arbitrarily given sequence
of E. Hence we have only to consider the case where E is a separable complete
metrizable TVS. In this time (E,) is a Polish space, consequently it becomes a
Baire Souslin space and is reduced to (E,). Hence, we have only to consider
the case where E = (E,). Then in the case of F = (F,), we have only to consider
the smallest closed subspace of F containing u(E), but this is a separable complete
metrizable TVS, namely, a Polish space since E is separable. Hence we have
only to consider the case F = (F,).

Hence, in order to prove the theorem, we have only to consider the case
where E and F are (E,) and (F,) respectively.

In this case, we need the following.

- Lemma. Let E be a baire Hausdorff TVS. Let S and S’ be two balanced
and absorbing subsets such that S'+ S + S+ S < S. If S and S’ are nonmeager
and Souslin spaces, S is a neighborhood of zero in E.

Proof. Since S’ is nonmeager, the largest open set O(S’) having the property
that every open subset of O(S’) contains some nonmeager part of S’ is not
empty. Let aeS'nO(S’). Since the operation " — O(S’) is translation invariant,
we have O(S") > O(S" —a)=0O(S') — a, where S" =S§"+S§". But O(S)—a is a
neighborhood of zero because O(S’) is an open set containing a. Hence O(S”)
is also a neighborhood of zero. Hence the proof will be complete if we show
O(S") = S. Let xeO(S"). Since O(S”) is a neighborhood of zero, O(S")n[x —
O(S”)] is a nonempty open set which differs from S”n(x — S”) by only a meager
set. Hence, $"N(x — §”) is nonempty. This means that there is yeS” such that
x —yeS”. Hence xeS"+8"=5+S5+S5 +5 <S. (QE.D)
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Now we will return to the proof of the theorem. Let G denote the graph
of u. Let V be an arbitrary closed balanced absorbing neighborhood of zero in
F. Let W denote the intersection of G and E x V. Of course, W is a Borel
set. Since E and F are Souslin spaces, E x F is a Souslin space [F. Treves [5],
Proposition A.4(b), p.551]. By the Proposition A.5 of F. Treves [5], p.552, W
is also a Souslin space. Hence this is also true for its image by the first
coordinate projection [F. Treves [5], Proposition A.4(d), p.551]. This is nothing
else but U=u"Y(V). Since E=u"'(F)= X, nu" (V)= X ,nU, U is non-
meager. Let V' be a closed balanced absorbing neighborhood of zero in F such
that VV+ V' + V' + V' < V. Then U =u"'(V’) has also the same properties as
U. Hence S =U and S’ = U’ satisfy the conditions of the Lemma. Thus U is
a neighborhood of zero in E.

Next we will show (ii). Let v: F—> E be a surjective continuous linear
map. Now let v: F/Kerv— E be an associated injective map. Then v is
continuous. Hence the graph of 7! is closed. But F/Keruv satisfies the
conditions (F,) or (F,) of the theorem. Hence, by (i), v~' is continuous.

(Q.E.D).
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