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Abstract

In this paper, we investigate the conditions that (slowly increasing) holomorphic
functions F.(z) on C. have the boundary values F.(x % i0) :{‘Erpo F.(x +ig in the
sense of .«/'([a, b]) (or .¢/'(D)) and define the Sato (Fourier)vhyperfunction f(x)y=
Fi(x +1i0) — F_(x —i0) on [a, b] (or D) as their boundary values.
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§1. Introduction

In this paper we consider the inherent meaning of the boundary values of
holomorphic functions. On the occasion of saying that Sato-Fourier hyperfunc-
tions are realized as boundary values of holomorphic functions, we consider them
to be (relative) cohomology classes with coefficients in the sheaf ¢ or @ of germs
of holomorphic functions or slowly increasing holomorphic functions. But the
boundary values of functions are in its own meaning the values taken by them
on the boundary of their domain of definition. So that, the relation between
the boundary values of holomorphic functions and (relative) cohomology classes
with coefficients in the sheaf ¢ or € is not so clear in the direct manner. Thus,
the point of this paper is to show in what meaning we can consider the (relative)
cohomology classes with coefficients in the sheaf ¢ or ¢ as the boundary values
of holomorphic functions.

For the sake of simplicity, we consider the I-dimensional case.

Let C be the complex plane, and C, and C_ the upper half plane and the
lower half plane respectively. Then C= C, URUC_ holds. Here R denotes the
real axis.

Now we consider two holomorphic functions F,(z) and F_(z) defined on
C, and C_ respectively. Then we ask what the boundary value of the
holomorphic functions is, which is represented, symbolically, as
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(1) Fi(Xiio):gleo Fi(x £ie)
and
(2) f(x)=F_(x +i0)— F_(x — i0).

If F(z) is holomorphic on C, or C_, the right hand side of (1) converges
pointwise and the limit

f(x) = F(x) = F(x % i0)

represents an ordinary function. Thus the function f(x) is certainly the boundary
value. But, generally speaking, the meaning of the limit (1) is a question. As
for the limit of functions, we have the classical concepts of convergence such as
pointwise convergence, uniform convergence and extended uniform convergence,
and those in the sense of Schwartz distributions and in the sense of
Roumieu-Beurling’s ultradistributions. Even if there are no limits in the classical
sense, we happen to have the Ilimits in the sense of distributions or
ultradistributions. In fact, the holomorphic function F,(x % i¢), (¢ > 0), defines
a distribution or ultradistribution as a function of x. Then, for certain
holomorphic functions F, (z), there exist the limits (1) in the sense of distributions
or ultradistributions and they become distributions or ultradistributions respecti-
vely.

In this time we wish to assert that the limit (1) in the sense of Sato
hyperfunctions or Fourier hyperfunctions becomes a Sato hyperfunction or a
Fourier hyperfunction respectively. In general, the topology of the space of
Sato-Fourier hyperfunctions on an open set is trivial. But we can endow the
space of Sato-Fourier hyperfunctions on a compact set the topology of Fréchet
space. In the sense of this topology do we consider the limit (1).

The space of Sato hyperfunctions on a bounded closed interval [a, b] is the
space ./’([a, b]) of real analytic functionals with support in [a, b]. Let
F(z)eO(C\[a, b]) and put F,(z) = F(z)|Cy. Then F,(x + i¢), (¢ > 0), can be
considered as elements of /' ([a, b]) as functions of x. Then the limits (1) exist
in the sense of Sato hyperfunctions and f(x) = F,(x 4+ i0) — F_(x — i0) becomes
a Sato hyperfunction on [a, b]. This means that a Sato hyperfunction f(x) is
the boundary value of the holomorphic function F(z). As for the notations of
this paragraph, see section 4.

At last, the space of Fourier hyperfunctions on D =[— oo, o] is the space
o'(D). Let F(z)e0(C\D) and put F,(z)=F(z)|C,. Then F.(x + ic),
(6> 0), can be considered as elements of .¢/’'(D) as functions of x. Then the
limits (1) exist in the sense of Fourier hyperfunctions and f(x) = F, (x + i0) —
F_(x —i0) becomes a Fourier hyperfunction on D. This means that a Fourier
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hyperfunction f(x) is the boundary value of the slowly increasing holomorphic
function F(z). As for the notations of this paragraph, see section 5.

Thereby we can represent Sato-Fourier hyperfunctions as boundary values
of (slowly increasing ) holomorphic functions in the inherent sense of the word.

§2. Case of distributions

First, we will consider the convergence in the sense of Schwartz’
distribution. Here, we denote by & the space of infinitely differentiable functions
with compact support on R. Then, if, for each ¢ e 2, there exist

(3) lim Jw F, (x +ie)ep(x)dx,

e~>+0

lim Jw F_(x —ig)p(x)dx,

e=>+0

there exist Schwartz’ distributions F7 (x 4+ i0) and F? (x — i0) so that, for ¢ € %,
(FL(x +i0), p(x)) = quof Fi(x +igo(x)dx

and
(FZ(x —i0), o(x)) = SETO jw F_(x —ig)p(x)dx

hold. Then f(x) in (2) is a Schwartz’ distribution
f(x)=F%2(x +i0) — FZ(x — i0).

Namely, if the limits in (3) exist, the convergence in (1) is meaningful in the
sense of Schwartz’ distribution and the limit (2) can be considered as a Schwartz’
distribution. For which pair F,(z) and F_(z) of holomorphic functions do the
limits (3) exist? As for this, we have the following.

Theorem 1 (Tillmann [12]). Let F,(z) and F_(z) be holomorphic functions
on C,. and C_ respectively. Then, in order that there exist FZ(x +i0) and
F?(x — i0), which define a Schwartz’ distribution f(x) = FZ(x + i0) — FZ(x — i0)
on R, it is necessary and sufficient that, for every r >0, there exists a natural
number such that

sup {[p["[Fy (x + iy)l, [y™F_(x —iy)|; Ix|<r, 0<|y| 7} < 0
holds.
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§3. Case of Roumieu-Beuling ultradistributions

Next, we will consider the convergence in the sense of Roumieu-Beuling
ultradistributions. In the Komatsu’s notations [4], [5], we denote by Z™»(R)
or 2™M»(R) the space of ultradifferentiable functions with compact support and
by Z*(R) either of them. Then, if, for each ¢ e 2*(R), there exist

e>+0

“4) lim Jw F.(x + ig)p(x)dx,

lim foo F_(x —ig)p(x)dx,

e>+0

there exist Roumieu-Beurling ultradistributions F*(x +i0) and F*(x —i0) so
that, for ¢ e 2*(R),

Fri 0, 00 = tim | F G inors
and
(F*(x —i0), o(x)) = alePO fw F_(x —ig)op(x)dx

hold. Then f(x) in (2) is a Roumieu-Beurling ultradistribution
f(x) = F%(x +i0) — F*(x — i0).

Namely, if the limits in (4) exist, the convergence in (1) is meaningful in the
sense of Roumieu-Beurling ultradistribution and the limit can be considered as
a Roumieu-Beurling ultradistribution. For which pair F,(z) and F_(z) of
holomorphic functions do the limits (4) exist? As for this, we have the following.

Theorem 2 (Komatsu [4]). Let F,(z) and F_(z) be holomorphic functions
on Cy and C_ respectively. Then, in order that there exist F*(x + i0) and
F*(x — i0), which define a Roumieu-Beurling ultradistribution f(x)= F* (x + i0) —
F*(x—i0) on R, it is necessary and sufficient that the function F(z) =(F, (z), F_(2))
on C\ R satisfies the following growth condition: for any compact set K in R,
there exist constants L and C ( for any L> 0, there exists a constant C) such that

sup {|F(x + iy)|; xe K} < Cexp M*(L/|yl)
holds.
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§4. Case of Sato hyperfunctions

In this respect, how should we consider the convergence in the sense of Sato
hyperfunction. The topology of the space of Sato hyperfunctions on an open
set in R is trivial. So that we restrict ourselves to consider Sato hyperfunctions
with support in a bounded closed interval [a, b]. Let ./([a, b]) be the space
of real analytic functions in some neighborhood of [a, b]. Then .o/([a, b]) is a
DFS-space. An element of the topological dual space .«#'([a, b]) is by definition
a Sato hyperfunction with support in [a, b]. Then we have

A ([a, b]) = li’mi%d A ([a—n,b+n)

and
A'([a, b]) = liI)?lEIE)Oj ' ([a—n, b+ n]).

Thus every ¢e.o/([a, b]) belongs to .&/([a —n, b + n]) for some n > 0. As for
their definitions, we refer the reader to Schapira [10] and Ito [2].
Let F(z) be a holomorphic function on C\ [a, b], and F,(z) and F_(z) its
restrictions to C, and C_ respectively.
For pe.o/([a — 4, b + 1]), we put
Ph+1
CFL(x+ie), (0 = | Fi(x + ighp(x)dx
Ja—y
for every ¢>0. Then, F.(x+i¢) can be considered as an element of
oA'([a—mn, b+n]). Since ¢(z) is holomorphic in some complex neighborhood
of [a —#n, b+ 1], we can consider that it is holomorphic in a neighborhood of
[a—6,b+ 0] xi[— 9, 0] with some positive numbers ¢ and ¢ with < 6.

5
—f }—
a— 9o a—n a b b+n b+96
Y
Fig. 1

Now, let 7 be the boundary of this rectangle and oriented in the positive
sense. Put y, =ynC, and y_=9ynC_. Put also I'y =[a—9d,a—n]Uy,
Ulb+n,b+d]and I'_ =[a—0d,a—n]Uy_Ulb+nb+]. Let I, be orien-
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ted in the clockwise sense and /_ oriented in the counterclockwise sense. Then,
by changing the path of integration by the way of Cauchy’s integral theorem,
we have

(FL(x + ie), o(x)) = J Fi(z+ige(z)dz
rs
for pe./([a—n, b+ n]). Here, Ietting ¢— + 0, we have, by virtue of the
Lebesgue convergence theorem,

b+y
lim j F,.(x+igep(x)dx
e +0 a—n

e +0

= lim J‘ F.(z+ie)p(z)dz
rs

J F,(z)¢(z)dz.
I+

Thus, if we put
CFL(x +10), (x)) = J Fi(2)p(z)dz,
I+

we obtain F%(x +i0)e/ (Jla—n,b+n]). For n and 5 with 0<y <y,
F" (x +i¢) and F7(x + i¢) are defined by the same function F,(x + i¢). Thus,
for every oe.«Z([a—1n', b +n']), we have,

(Fhx+ig)la—n, b+ 1] ox))

b+n'
= f F.(x +igep(x)dx

= (F%(x + ig), @(x)).

Here F' (x +ie)|[a — %', b+ 1] means the restriction of F% (x + i¢} to [a — 7',
b+ #']. Thus, for every # and n" with 0 <y’ <#n, we have

Fi(x +ig)l[a—1n',b+n]=FT(x+ie).
Thus, letting ¢ > + 0, we have
F'(x+i0)|[[a—7n,b+n]=F%(x+i0).
Thus the family {F’ (x + i0); # > 0} defines an element F, (x + i0) by the formula
F,(x+1i0)=Fl(x+i0)|[a, b]

for every n > 0.
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Thus, for every ¢e.o/([a, b]), we have

(Filx +10), ) = J Fi(z)p(z)dz

Iy

by the above notations for sufficiently small # and & with 0 <y < 4.
By a similar way, we have

b+n
8Erl10 Ja_n F_(x —ig)p(x)dx

= limJ F (z—ig)p(z)dz
r-

e=>+0

= J F_(2)e(2)dz.
r-

Thus, we obtain F_(x —i0)e.o?'([a, b]) by the formula

(Fo(x = i0), (x)) = J F_(z2)p(z)dz.

Then
f(x)=F,(x +i0) — F_(x — i0)
becomes a Sato hyperfunction with support in [a, b]. The operation of f(x) on

¢(x)e.o/([a, b]) is given by the formula

(5) oy = j

I,

F+(Z)<P(Z)dz—J F_(2)(2)dz

-
= — f F(z)o(z)dz

by the choice of a convenient path y. We note that f(x) does not depend on
the choice of #.

Conversely, if f(x)e/'([a, b]), we put

F(z) = {f(9), 2ri(¢ —2)) *).

Evidently, we have F(z)e O(C\ [a, b]). Making F,(z) and F_(z) as above using
this F(z) and calculating the limit in (1) as above, we have

(Fi(x +10) = F_(x —i0), (x)) = — J F(z)p(2)dz

= <f(cf), J @(z)(2mi(z — é))“1d2> =S 0.
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Since this holds for every ¢e€.</([a, b]),
f(x)=F,(x+i0)— F_(x —i0)

holds. Hence, if we define a linear map

R: 0(C\[a, b]) — o'([a, b])

by the formula
R(F)=F,(x+i0)— F_(x —i0)= EIPO (Fi(x +ie) — F_(x —ig)),

this is a surjection.

Now we will show R 1(0) = ¢(C). Since ¢(C) <= R™1(0) is evident, we will
show the converse. Assume R(F)=f(x)=0. Then F, (x+i0)=F_(x—i0)
holds. Then, for every ¢ e.9/([a, b]), we have

(6) 0= J Fi(2)e(z)dz - J F_(2)¢(z)dz
I, I

= — J F(z)p(z)dz.

Here vy, I', and I~ may vary as ¢ does.
Now choose an increasing sequence of open discs ([a, b] =)D, < D, < ---
such that (J72,D; = C and put éD,=17;. Then if we put

Gi(z) = J F(O)@2mi(l — z))”'d¢,

G,(z) is holomorphic in D; and G,;,,(z)|D; = G;(z) holds (i=1,2,---). Then
G(z)|C. =F, (z) and G(z)|C_ = F_(z) holds. In fact, if we let ze C,, there
exists some D; so that zeD,. Then we can-choose the curve y in the above so
that y = D; and z is in the outside of y. Then, since F(z) is holomorphic in the
domain enclosed by /; and 7, we have

F(z) = j FOQ@ri({ —2) 'dl — J F(O)Qni({ —2)"'dL.
I

Y
b4

Hence we have

G(z) = Gilz) = F(2) + J FOQ@nmi(l —2)1dL,

7

Then, since z is in the outside of y, (2zi(£ — z))~! belongs to </ ([a, b]) as a
function of ¢ Thus, we have, by virtue of (5) and (6),
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J FQOQ@nmi(l —2)71dl= = {f(), 2ri(¢ —2))"') = 0.

Hence, G(z)| C, = F.(z) holds. ]
Similarly G(z)| C. = F_(z) holds. Hence F(z) can be continued analytically
to a function G(z) holomorphic on C. By the above, we have the following.

Theorem 3. Let F (z) and F_(z) be holomorphic functions on C, and C_
respectively.  Then, in order that the boundary value f(x)=F,(x +i0) — F_(x —i0)
in the topology of <'([a, b]) is a Sato hyperfunction with support in [a, b], it is
necessary and sufficient that there exists some F(z)eO(C\[a, b]) such that
F,.(z)=F()|Cy and F_(z) = F(z)|C_ hold. Especially, in order that f(x)=0
holds, it is necessary and sufficient that there exists some F(z)e O(C) such that
F,(z)=F(2)|C, and F_(z) = F(z)| C_ hold.

By the above correspondence, we have the following.

Corollary 1. In the notations of Theorem 3, we have the algebraic isomorphism

/' ([a, b]) = O(C\ [a, b])/ ().
As another Corollary, we have the Edge of the Wedge theorem.

Corollary 2. For F(z)e O(C\ [a, b]), put F,(z) = F(z)|C, and F_(z) = F(z)|
C_. Then, if F,(x+i0) and F_(x —i0) exist in the topology of o/'([a, b]) and
F.(x +i0) = F_(x — i0) holds, F(z) can be continued analytically to a holomorphic
function on C.

§5. Case of Fourier hyperfunctions

At last, we will consider the convergence (1) in the sense of Fourier
hyperfunctions. Put D =[— oo, o] and C=DxiR Let O(C\D) and O(C)
be the spaces of slowly increasing holomorphic functions on C\D and C
respectively and .7 (D) the space of rapidly decreasing real analytic functions on
D. Then .Z/(D) becomes a DFS-space. An element of the topological dual
space .Z'(D) is by definition a Fourier hyperfunction on C. As for their
definitions, we refer the reader to Sato [7], Kawai [3] and Ito [2].

If we put C, =DxiR,, C_=DxiR_,R, =(0, ©) and R_ = (- 0, 0),
F(z)e @O(C\ D) is composed of two functions F.(z)e0(C,) and F_(z)e O(C_).
Now, if F(z) = (F.(2), F_ (z))e O(C\ D) is given, we put, for every ¢e.oZ(D),

(Fi(x +ig), (x)) = J‘w F.o(x +ig)p(x)dx.

Then F, (x + i¢) defines a Fourier hyperfunction on D. Then, since F. (z + ig)@(2)
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is a rapidly decreasing holomorphic function in some neighborhood of D, we
have, for a sufficiently small positive number ¢

(Fi(x +ieg), g?(x)> = Jm F.(x+i(0+e)o(x +id)dx

by changing the path of integration by virtue of Cauchy’s integral thecorem. Here,
letting ¢ > + 0, we have, by the Lebesgue convergence theorem,

Jim CF (x4 ig), o(x))

= lim J F,o(x+ i+ ¢)op(x +id)dx

e~ +0
= J F,(x +id)p(x + id)dx.
By a similar way, we have

lim (F_(x —ig), o(x)>

e=>+0

= lim Jw F_(x —i(0 + &))p(x —id)dx

e=>+0

= foo F (x —ido)p(x —id)dx.

Hence, if we put

(Fo(x + i0), 9(x)) = r Fo(x +i0)p(x + id)dx

and

(F_(x —1i0), p(x)) = Jx F_(x —id)p(x —id)dx,

F,(x +i0) and F_(x — i0) become Fourier hyperfunctions on D, so that
f(x)=F, (x+1i0)—F_ (x —i0)

is also a Fourier hyperfunction on D. Then, the operation of f(x) on ¢(x)e ./ (D)
is given by the formula

) oo = jx Fi(x+i0)o(x +id)dx
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— Jw F_(x —id)p(x —io)dx.

By virtue of Cauchy’s integral theorem, this right hand side does not depend
on the choice of a sufficiently small positive number 4.
Conversely, let fe.o/’(D). Put

F(z) = (f(&), exp (= (£ = 2)"2)2mi(¢ — 2)) ).

Then, evidently, we have F(z)e@(C\ D). Putting F.(z)=F(z)|C., F_(z)= F(z)|
C_ and calculating the limit in a similar way as above, we have

(Fix +i0) = F_(x —i0), o(x)>

= j F.(x+id)p(x + ido)dx

— J‘w F_(x —id)@(x —id)dx

el

= {f(9), Jm @(x +id)exp (— (& — x —i0)*) 2mi(¢ — x — i)~ 'dx

— ‘[m o(x —id)exp(—(& — x +i0)))2mi(é — x +i6)) *dx

=</, @

Since this holds for every ¢e.o/ (D), we have
f(x)=F_(x +i0) — F_(x — i0).
Hence, if we define a lincar map
R: O(C\ D) —> «'(D)
by the formula
R(F)=F, (x+i0)— F_(x —i0) = ETO (Fy(x +ie) — F_(x —ig),
this is a surjection.
Now, we will show R™'(0)= ¢(C). Since ¢O(C) = R™'(0) is evident, we

will show the converse. Assume R(F)= f(x) =0. Then F,(x+i0)=F_(x—i0)
holds. Then, we have, for every ¢e€.9/(D),

) 0={f, > = Jd F.(x +id)p(x + i8)dx
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— J F.(x —i0)p(x —id)dx.
Here, 0 can vary as ¢ does.

Now, put D, =D x i(—n, n). Then, D, = D, c--- and |J*,D, = C hold.
Put 0D, =1,. Let I', be oriented in the positive sense. Then, if we put

Gn(2)=j F(Q)exp (= —2)*)2ri(( — 2))'d¢,
Iy

we have G,(z)e@(D,) and G, ,(z)|D, = G,(z) holds (n = 1, 2,---). Hence we can
define G(z)e@(C) so that G(z)|D, = G,(z). Then we have G(z)|C, = F,(2)
and G(z)|C_ = F_(z). In fact, assume ze C,. Then there exists some D, such
that zeD,. Then choose 6 so that Imz > 6> 0. Let y be the boundary of
D x i(— 6, 0) and oriented in the positive sense. Then, since F(z) 1s holomorphic
in the region enclosed by I, and y, we have

F(z) = J FQ) exp (—(( ~ 2*)2ni - 2))”'d{
I'n

- f F(Q)exp (= — 2" Q2ni(l — 2))"'d{.

Hence we have

G(2) = G,(2) = F(2) + J F(Qexp (= — 2*)Q27i(l —2)"'d{.

Y

Then, since z is in the outside of the domain enclosed by 7, exp (—(¢ — 2)%)
(2mi(¢ — z))~! belongs to .o/(D) as a function of &, Thus, by virtue of (7) and
(8), we have

f F(Q)exp (= —2)2ni({ —2))~1d¢
= — <J‘°0 Fo &+ id)exp(—(& +id —2))Q2ri(¢ +id — z))~1d¢

- Jw F_ (& —id)exp(=(§ —id—2)*)(2mi(l —id — Z))_ldé‘>

0

= —{f(@, exp(=(& = 2)(2ri(¢ —2))" ') =0

Hence G(z)| C, = F.(z) holds.

Similarly, G(z)| C. = F_(z) holds. Hence F(z) can be continued analytically
to a slowly increasing holomorphic function G(z) on C. By the above, we have
the following.
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Theorem 4. Let F.(z) and F_(z) be holomorphic functions on C, and C-
respectively.  Then, in order that the boundary value f(x)=F, (x +i0)— F_(x — i0)
in the topology of '(D) defines a Fourier hyperfunction on D, it is necessary
and sufficient that there exists some F(z)e @(C\ D) such that F.(z)=F(2)|C,
and F_(z) = F(z)| C_ hold. Especially, in order that f(x) =0 holds, it is necessary
and Suﬁﬁ'cieni~ that there exists F(z)e@(C) such that F.(z)=F(z)|C, and
F_(2) = F(2)| C_ holds.

By the above correspondence, we have the following.

Corollary 1. In the notations of Theorem 4, we have the algebraic isomorphism
'(D) = 0(C\ D)/ E(C).

As another Corollary, we have the Edge of the Wedge theorem as follows.

_ Corollary 2. For F(z)e@(C\D), put F.(z)=F(z)|C, and F_(z) = F(z)|
C_. Then, if there exist F,(x +i0) and F_(x —i0) in the topology of o'(D)
and F(x + i0) = F_(x — i0) holds, F(z) can be continued analytically to a slowly
increasing holomorphic function on C.
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