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Abstract

In this paper, we define stationary Fourier hyperfields and prove the structure
theorems of stationary Fourier hyperfields. Thereby we determine the whole class of all
stationary Fourier hyperfields.
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§1. Introduction

In this paper, we define stationary Fourier hyperfields and study their
properties and prove the structure theorem of stationary Fourier hyperfields. A
random Fourier hyperfield is defined to be a vector-valued Fourier hyperfunction
on D? whose values are random variables with mean 0 and finite variance. Then
we introduce the concept of stationary Fourier hyperfields. Stationary Fourier
hyperfields have similar properties to those of stationary Fourier hyperprocesses.
So a similar method can be applicable for studying stationary Fourier hyperfields
(See Ito [9]).

At first we show the existence of the covariance Fourier hyperfunction of a
stationary Fourier hyperfield. Next this covariance Fourier hyperfunction p is
the Fourier transform of a nonnegative measure p with infraexponential
increase. This measure u is called the spectral measure of p. Thirdly we prove
that any stationary Fourier hyperfield is the Fourier transform of a random
hypomeasure with respect to the spectral measure of its covariance Fourier
hyperfunction. At last we prove the structure theorem of stationary Fourier
hyperfields (Theorem 7.3).

In §2, we first introduce some fundamental notions and prepare the notation.

In §3, we define the covariance Fourier hyperfunctions of stationary random
Fourier hyperfields.

In §4, we prove the spectral decomposition theorem of covariance Fourier
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hyperfunctions.

In §5, we prove the spectral decomposition theorem of stationary Fourier
hyperfields.

In §6, we mention the derivative of stationary Fourier hyperfields.

In §7, we mention the structure theorem of stationary Fourier hyperfields.

§2. Fundamental notions and notation

In this paper we restrict ourselves to complex-valued random variables with
mean O and finite variance. Let H be the Hilbert space constituted by all such
variables. In H, we define the inner product by the following relation:

(X,Y)=EX-Y), for X and Y in H,

where E denotes the expectation. We consider only the strong topology on
H. A continuous random fields X (x), xe R, is an H-valued continuous function
on R?, where d is a positive integer. The set of all continuous random fields
is denoted by C(H).

Now we remember the notions of Fourier hyperfunctions and vector-valued
Fourier hyperfunctions following Kawai [17], [18], Ito and Nagamachi [12], [13],
Junker [14], [15], Tto [7], [10], [11].

Let D? be the radial compactification of R? in the sense of Kawai [18],
Definition 1.1.1. Namely D? is the disjoint union R?LIS%"! of R? and the
(d — 1)-dimensional sphere S%°! at infinity. When x is a vector in R\ {0}, we
denote by xoco the point in S% ' whose representative is x in the identification
of S4°' with (R*\{0})/R*. Here R™ denotes the set of all positive real
numbers. Each element in R™ is considered as a multiplication operator on
R*\ {0}. The space D’ is endowed with the following natural topology. Namely,
(i) if a point x of D’ belongs to R, a fundamental system of neighborhoods of
x is given by the family of all open spheres in R* including x. (i) If a point
x of D? belongs to S *, a fundamental system of neighborhoods of x(= yo0) is
given by the family {(C +a)uC,; C,3yo0}. Here a runs through all points
in R? and C runs through all open cones in R? with vertex at the origin which
contains ye R\ {0} and C, denotes the set {zoo; zeC}.

We denote by C? the space D? x \/——1 R‘ endowed with the direct product
topology. D® and S%~' are identified with the subsets of C? by the relations
D3 D'x /—1{0} 5 C* and §'> 89 x [/~ 1{0} 5 C". For a subset U
of C%, we denote by int (U) its interior and by U¢ its closure in .

We define the sheaf ¢ of rapidly decreasing and holomorphic functions over
C? to be the sheal {¢(Q); Q2 is an open set in C“’}, where the section module
((2) on an open set Q in C' is the space of all holomorphic functions f(z) on
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QnC? such that, for any compact set K in Q, there exists some positive constant
0 so that the estimate sup {|f(z)|e(d|z|); ze KN C*} < oo holds.

Then the sheaf .7 is defined to be the sheaf .o/ = ¢|p«. Namely .o7 is the
sheaf of rapidly decreasing and real-analytic functions over D“.

We now define the topology of the space (/(K), where K is a compact set
in C%. Let {Upntm=1 be a fundamental system of neighborhoods of K such that
U,+1 cc U, holds. Here U,,, << U, means that U,,, has a compact
neighborhood in U,, with respect to the topology of C?. Then we endow the
topology of ((K) with the inductive limit topology limind @, ''™(U,). Here
the space @, '/™(U) is the Banach space

Oy 1m(U) = {fe CUNCY; flynce€ O(UNCY, sup { f(2)e(|z|/m):
zeU“nCY < o}

Then ¢(K) becomes a DFS-space. If K is a compact subset of D, we identify
A (K) = (¢(K). In this sense &/(K) is also a DFS-space.

Let 4 = /(D% be the space of all sections of . on D?. A is endowed
with the usual DFS topology. A Fourier analytic functional defined on A4 is
called a Fourier hyperfunction on D? and a Fourier analytic linear mapping from
A to H is called an H-valued Fourier hyperfunction on D?. We denote by A4’
the space of all Fourier hyperfunctions on D? and by A’(H) the space of all
H-valued Fourier hyperfunctions on D?.

Definition 2.1. A random Fourier hyperfield on D? is defined to be an
H-valued Fourier hyperfunction on D‘.

In this paper we only concern random Fourier hyperfields. So we call them
Fourier hyperfields for short.

Let C(H) be the set of all H-valued continuous functions on R? which satisfy
the following estimate

sup { [ X(x)le™**; xe Kn R} < 0

for any ¢ >0 and any compact set K in D? where || - | denotes the norm on
H. An element of C(H) is called a slowly increasing and continuous random
fields. Then C(H) may be considered as a subsystem of A'(H), since we can
identify a slowly increasing and continuous random field X (x) with the following
Fourier hyperfield X (¢) determined by it:

X(¢p) = JX(x)qB(x)dx = J X(x)op(x)dx, for ¢peA.

The following notation is often used in the theory of Fourier hyperfunctions.
Let Fed or FeA(H) and ¢eA.
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7,(shift transformation): 7,¢(x) = ¢(x — h),
T, F(¢) = F(t_,9).
D,(partial derivative, 1 £j < d): D;¢(x) = 0¢(x)/0x;,
D;F(¢) = — F(D;9).

v

*(inversion): & (x) = ¢(— x), F (¢) = F(¢).

“(conjugate): ¢(t) = p(t), F(p) = F(¢).

~

(=5 =2): () = d(—x), F(¢) = F().
"(Fourier transformation): ¢(i) = Je‘z“”'xqﬁ(x)dx,

F(¢) = F(¢),

where, for x = (x,,...,x and A = (4,,...,A)eR*, we put A-x = A, x, + - + Ayx,.
The following relations should be noted:

Fxd)0)=F(@)=F($), (p*¥) =-th & =0

Generalizing Khintchine-It0’s notions of (weakly) stationary processes (see
1t6[6]), we have the following.

Definition 2.2. We call X € 4'(H) weakly stationary or merely stationary for
short if we have, for any ¢ and ¥ in 4,

(T X (@), X (W) = (X(), X (V)
and strictly stationary if the joint probability law of
(ThX((bl)a---’ThX((bn))

is independent of h for any n and for ¢,,...,¢,e4.
We adopt here the following notation:

S : the totality of stationary (random) Fourier hyperfields,

SO the totality of slowly increasing, stationary and continuous random fields,

S : the totality of strictly stationary (random) Fourier hyperfields,

S°: the totality of slowly increasing, strictly stationary and continuous
random fields.

Clearly we have
S>Sus°, s° - 8°.

Definition 2.3. A random Fourier hyperfield X is called a complex-normal
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(random) Fourier hyperfield if X(¢), (¢ € A) constitues a complex-normal system
and a real-normal (random) Fourier hyperfield if X is real viz. X = X and X(¢),
¢ running over real functions in 4, constitutes a (real-) normal system (see
It6 [4], [5] and Hida [3]).

This is a generalization of normal processes or Gaussian processes (Doob[1],
II, §3) and complex-(or real-) normal random distributions (It6[6]). A
(complex- as well as real-) normal Fourier hyperfield is strictly stationary, if it
is weakly stationary. The corresponding fact is also true regarding stationary
continuous random fields.

§3. Covariance Fourier hyperfunctions

At first we consider the covariance function p(x) of a stationary continuous
field X(x) on R?. By definition we have

p(x) = (X(x), X(0) = (X(x + y), X().

Then we have, for any ¢ and { in 9,

(X (@), X(¥))

<JX(X)¢(X)dx, JX(y)l//(y)dy>
= J(X(X), X () ¢(x)(y)dxdy

= f p(x — »)d(x)¥(y)dxdy

= p(x)Jcﬁ(x — V¥ (=ydydx,

o

where 2 denotes the space of all C* functions on R? with compact
support. Thus we have pe %’ and

(X(¢), X)) = p(d* ).

Similarly to Khintchine-Itd’s notion of covariance distributions, we here
define the notion of the covariance Fourier hyperfunctions.

Theorem 3.1. Let X(¢p) be any stationary Fourier hyperfield. Then there
exists one and only one Fourier hyperfunction pe A’ satisfying the relation

(X(9), X)) = p(¢p=y),  for ¢ and y in 4.

Definition 3.2. The Fourier hyperfunction p in Theorem 3.1 is called the
covariance Fourier hyperfunction of X.
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Proof of Theorem 3.1. If we put
T,00) = (X(9), X)),  for ¢ and ¥ in 4,

then we get a Fourier hyperfunction T,e 4’ for each ¢ € 4. Taking into account
the fact that T,(y) is continuous in (¢, y)e 4 x 4 and by virtue of Kernel
Theorem, we easily see that ¢ — T, is a continuous linear mapping from 4 into
A’ (see Grothendieck [2], Chapter II, Theéoreme 12 and Ito[10]). Furthermore
this transformation commutes with the shift transformation:

(L) (W) = T,(t_,¥) = (X (@), X (t_¥))
= (X(¢), X(t_p¥)) = (X (r,9), X(}))
= T,.,().

Here we use the following.

Lemma. A continuous linear mapping ¢ — T, from A to A" commutes with

the shift transformation if and only if there exists a Fourier hyperfunction T such
that T, = T+ ¢ holds.

Proof of the Lemma. This can be proved similarly to that of the Lemma
of Ito[9], §2. Q.E.D.

Now we go back to the proof of Theorem 3.1. Thus, by the Lemma above,
T, is expressible as the convolution of a Fourier hyperfunction T and ¢e4:

T,=Tx¢.

Hence it follows that

(X(¢), X)) = T,0p) = (T= ) (¥)
= (T ¢ =) (0) = p(d =),

where we put p = T.
The uniqueness of p follows at once from the fact that the set of all elements
of the form ¢ =y, (¢, Yye ) is dense in 4. Q.E.D.

Theorem 3.3. If X(¢) is a real and stationary Fourier hyperfield, then its
covariance Fourier hyperfunction is real, i.e., p = p.

Proof. Let p be the covariance Fourier hyperfunction. Then that of X
is p, since we have
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(X(¢), X)) = (X(d), X)) = (X($), X (¥))
= p($*V) = p(d* )
= p(¢ = ).
Thus X = X implies p = p. Q.E.D.

§4. Spectral decomposition of covariance Fourier hyperfunctions

Let X(x) be any stationary and continuous random field which has the
covariance function p(x). Then, similarly to Khintchine’s Theorem [19], p(x)
can be expressible in the form

p(x) — je—Zm‘/l-x d‘u(;)

in one and only one way, where u is a nonnegative measure on R? such that
u(R% < oo. The distribution p(¢) induced by p(x) may be expressed as

p(d) = JP(XW(X)dx = J(fﬁ(/i)du(/i), for ge2.

Let X(¢) now be any stationary Fourier hyperfield with the covariance
Fourier hyperfunction p. Then we have

p(d* @) = (X(¢), X($)) 20,

which implies that p is a positive semidefinite Fourier hyperfunction. Thus, by
virtue of Bochner-Nagamachi-Mugibayashi-Junker’s Theorem (see Nagamachi-
Mugibayashi [20], Theorem 4.1 and Junker [15], Theorem 5.8), we have the
following.

Theorem 4.1. We use the notation above. Then p is expressible in the form

M p(¢)= f $Adu(r),  for ¢ped
in one and only one way, where [ is a nonnegative measure satisfying
J'e”s"”d,u(/l) <

for every &> 0.

Definition 4.2. We call the expression (I) the spectral decomposition of p
and u the spectral measure of p.
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Conversely we have the following.

Theorem 4.3. Any Fourier hyperfunction of the form (1) above is the
covariance Fourier hyperfunction of a stationary Fourier hyperfield which is
complex-normal.

Proof. Let p be a Fourier hyperfunction of the form above. Put
L@, 9)=p@=y), for ¢ and y in 4.
Then I'(¢, ) is positive semidefinite in (¢, ), as we have
Yl T 9)EE = pOx0) 20,  for 6= &0,

Therefore we can define a complex-normal system X(¢), (p€4) such that
EX(¢)=0 and E(X(¢)- X(Y)) = I'($, ¥) = p(¢ =) as in Itd6[5] and Hida[3].
Then we can easily see that X(¢) is a continuous linear mapping from 4 to
H. Thus X(¢)is a random Fourier hyperfield. Thus our theorem is completely
proved. Q.E.D.

Here we remember the Bochner-Nagamachi-Mugibayashi-Junker’s Theorem.

Theorem 4.4. A Fourier hyperfunction T on D° is positive semidefinite, that
is, it satisfies the condition

T(p*®) =0,  for every @peA

if and only if it is the Fourier transform of some slowly increasing, positive measure
u on R®. Here a positive measure yu on R® is said to be slowly increasing if it
satisfies the condition

Je”"”d,u(/l) <o,  for every &> 0.

Next we discuss the case of real and stationary Fourier hyperfields. By
Theorem 3.3 we see that p = p holds in this case. But we have

p(9) = p(¢) = f $(Hdu(h) = J G(— Hdu()

= f $(di(A),
(R(E) = u(— E), — E={x; — xeE}).
By the uniqueness of the spectral measure, we obtain the following.

Theorem 4.5. In the case of a real and stationary Fourier hyperfield, the
spectral measure p is symmetric with respect to 0, viz. u(E) = u(— E).



Stationary Fourier Hyperfields 47

Conversely we have the following.

Theorem 4.6. Any Fourier hyperfunction of the form (1) with a symmetric
measure [ is the covariance Fourier hyperfunction of a certain stationary Fourier
hyperfield which is real-normal.

The proof is similar to that of Theorem 4.3. Here we use the existence
theorem of a real-normal system instead of that of a complex-normal one.

§5. Spectral decompositon of stationary Fourier hyperfields

We first recall the notion and properties of random hypomeasures. Let u
be a nonnegative measure defined for all Borel sets in R and B* denote the
system of all Borel sets with finite y-measure. Then an H-valued function M(E)
defined for Ee€ B* is called a random hypomeasure with respect to pu if

(M(E,), M(E,)) = wW(E, N E,)
holds for E, and E, in B*. Then we have the following (1) ~ (3):
(1) IM(E)I* = wE), for Ee B*.
(2) M(E,) L M(E,) if E,, E,eB* and E,nE, =0.

(3) If E,, E,,--- are disjoint to each other and belong to B* with their
sum E=)" E, then we have M(E)=Y "_ M(E,), (in H).

Then we can easily define the integral with respect to the random hypomeasure
(Doob [1], IX, §2):

M(f)= Jf(/l)dM(iv)
for fe L*(R?, u). Then we have, for f;, f,eL*(R%, w) and for c,, c,€C,
(4) (M(f1), M(f2))=(f1, fz)(f ffl (4) E(—/”f)du(i)),

(5) M(c, fi + ey f2) = i M(f1) + ¢, M(f3).

Let X(x) be any stationary and continuous random field which has the
spectral measure u. Then we can see that X(x) may be expressed in one and
only one way as

X(x) = J‘e“z”“""dM(/ﬁ)

where M is the random hypomeasure with respect to u. This can be proved
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by considering a stationary distribution X (¢), (¢ €2), induced by X(x) and by
applying a similar method to that in the proof of Theorem 4.1 of
Ito[6]. Therefore the stationary distribution X(¢) induced by X(x) may be
expressed as

X@%=J&DdMuﬁ:M@L for ¢pe2.
We now show that this identity holds for any general stationary Fourier
hyperfield. Namely we have the following.

Theorem 5.1. Let X be any stationary Fourier hyperfield with the spectral
measure . Then X (@) is expressible in the form

(IT) X@%=J&MdM&%:M@L for ¢pe4

in one and only one way, M being a random hypomeasure with respect to
p.  Conversely, any random Fourier hyperfield of such form is a stationary Fourier
hyperfield.

Definition 5.2. We call the expression (II) the spectral decomposition of X
and M the spectral random hypomeasure of X.

Proof of Theorem 5.1. We first remark that 4 is dense in L? = L*(R?, p).
Then the Fourier transformation is a topological isomorphism from 4 onto
itself. Thus the uniqueness of the expression is clear.

In order to prove the possibility of the expression, we put

TW) = X(¢), for ¢ =¢.

Then T is a mapping from A(< L?) into H, which is clearly linear and isometric
on account of the identity:

ITW)II> = (X(¢), X(9)) = p(¢ )
=Jwade»=nw&

since (¢px¢@) "=|p|>. A being dense in L?, we can extend T(J) to a linear
isometric mapping from L? into H. As the chracteristic function y;(1) of a set
E e B* belongs to L?, we may define M(E) as follows:

M(E) = T(xg)-

Then we have
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(M(E,), M(E,)) = Jm (A)7£,(4) du(2) = w(E; N Ey),

since T is isometric. In adition to this, we have
() M(f)=T(f), for fel?,

for this is evidently true for any simple function f in L? by the definition and
we easily see that it is also true for any feL?, by taking into account the fact
that both sides of (IIT) are isometric in f and any feL? is expressed as the
L2-limit of a sequence of simple functions. If we put f = ¢ in (III), we obtain
(IT) at once. The last part of the theorem is clear by the definition. Q.E.D.

Making use of this theorem, we can characterize the class of slowly increasing,
stationary and continuous random fields.

Theorem 5.3. A slowly increasing, stationary and continuous random field X

is a stationary Fourier hyperfield with the spectral measure u such that the following
holds :

jd u(4) < oo.
Proof. A slowly increasing, stationary and continuous random field X is a
stationary and continuous random field. Then, by the facts mentioned in the

beginning of §4 and before Theorem 5.1, its spectral measure u satisfies the
assumption of the theorem and we have the expression

X(¢) = f (AHdM (%) = M(d).

Thus, by Theorem 5.1, X is a stationary Fourier hyperfield with the spectral
measure .

Conversely, let X be a stationary Fourier hyperfield with the spectral measure
1 which satisfies the assumption of the theorem. Then we have

X(¢) = JJ)(i)dM(i), (M(E,), M(E,)) = p(E,NE,),
where the following holds:

Jdu(/i) < 0.

Put
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Y(x)= Je‘z""’"de(}t),

which may be defined, since the A-function e?™'** belongs to L? by virtue of the
assumption on u. Y(x) proves to be a stationary and continuous random field
and, what is more, it becomes a slowly increasing, stationary and continuous
random field. Therefore, we have, for ¢ e 4,

JY(x)qﬁ(x)dx - J(b(x) Je‘z’”'“dM(/l)dx

E f $HAM () = X(9),
which implies that X(¢) is induced by a slowly increasing, stationary and
continuous random field Y. Q.E.D.
In the proof of the theorem above, we have the following.

Corollary. A4 slowly increasing, stationary and continuous random field and
a stationary and continuous random field are identical.

By a similar way to Theorem 4.4, we obtain the following.

Theorem 5.4. In the case of a real and stationary Fourier hyperfield, the
spectral random hypomeasure M is hermitiansymmetric, i.e., M(E) = M(— E).

§6. Derivatives of stationary Fourier hyperfields

Any random Fourier hyperfield has derivatives of any order, which are also
random Fourier hyperfields.

Theorem 6.1. Let X be a stationary Fourier hyperfield with the spectral
measure p and the spectral random hypomeasure M. Then X® (= D*X = D' ...
D44 X) is also a stationary Fourier hyperfield whose spectral measure i, = Wik ko)
and spectral random hypomeasure M, = M, . .  are given by

di(A) = QrA)*du(d), dM(A) = 2riiAYdM(2),
where we put
rA)** = 2ri)** - 2rig)*e,
Qrid) = Qmii - 2miiy)ke.

Proof. We have, by definition,
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X®(@) = (— KX (%) = (— 1) f PP (A)dM(2)

= J Qrii)d(HdM(A),
since we have, for ¢ € 4,
PP = (= DM d(A).
In the above, we put
k| =k, + -+ k.

Thus X® proves to be a stationary Fourier hyperfield satisfying the conditions
above. Q.E.D.

By Theorem 5.3, we have the following.

Theorem 6.2. Let X be as in Theorem 6.1. In order that X™ is a stationary
and continuous random field, it is necessary and sufficient that the spectral measure
w of X satisfies the following inequality:

J J¥du(l) < oo.

§7. The structure theorem

In this section we consider the operation of local operators with constant
coefficients on random Fourier hyperfields and prove the structure theorem of
stationary Fourier hyperfields. Here a local operator with constant coefficients
is defined to be an infinite order differential operator with constant coefficients
of the form

J(D) =) b D"

with

Jim 181kt = 0.

Then we have the following.

Theorem 7.1. Let X be a stationary Fourier hyperfield with the spectral
measure p and the spectral random hypomeasure M. Then, for any local operator
with constant coefficients J(D), J(D)X is also a stationary Fourier hyperfield whose
spectral measure u; and spectral random hypomeasure M, are given by
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duy(A) = |J2riZ)Pdu(2),
dM;(A) = J(2riA)dM(4).
Proof. We have, by definition,
(J(D)X)(p) = X(J(— D)o)

= J(J(— D)) "dM(/) = J~J(2ni2)¢(/',)dM(/l),

since we have, for @€ A4,

(J(= D)) “(A) = JQ2ril)o(L).

Thus J(D)X proves to be a stationary Fourier hyperfield satisfying the above
conditions. Q.E.D.

By Theorem 5.3, we have the following.

Theorem 7.2. We use the notation in Theorem 7.1. In order that J(D)X is
a stationary and continuous random field, it is necessary and sufficient that the
spectral measure | of X satisfies the following inequality :

J‘lJ(2niﬂ,)|2du(/l) < 0.

From Theorem 7.1, we can see that, for any stationary and continuous
random field V(x) and for any local operator with constant coefficients J(D),
X = J(D)V becomes a stationary Fourier hyperfield. Furthermore we can see
that all stationary Fourier hyperfield is of the form above. Thus we have the
following structure theorem of stationary Fourier hyperfields.

Theorem 7.3. An arbitrary stationary Fourier hyperfield is of the form J(D)V,
where V(x) is a certain stationary and continuous random field and J(D) is a
certain local operator with constant coefficients.

Proof. Let X be a stationary Fourier hyperfield. Then, by the vector-
valued version of Theorem 8.4.9 of Kaneko [16], we can find some continuous
random field V(x) and some local operator with constant coefficients such that
X =J(D)V. Since X is stationary, we can see that V is stationary. In fact, we
have, for any ¢ and ¥ in 4,

(0 X (@), T, X () = (X(9), X))

by virtue of the assumption. Then, we have

(@ V(I (= D)), 7, V(J(— D)) = (V(J(= D)o), V(J(= D)y)).
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But, similarly to the proof of Theorem 8.4.9 of Kaneko [16], we can select J(D)
so that J(— D) becomes a continuous mapping of 4 onto itself. Thus, by
Definition 2.2, we can see that V is stationary. Q.E.D.

At all last we mention the vector-valued version of Theorem 8.4.9 of Kaneko

[16].

Theorem 7.4. Every H-valued Fourier hyperfunction on D* can be represented
as J(D)Yf(x) for some slowly increasing, H-valued, continuous function f(x) and
for some local operator J(D) with constant coefficients.
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