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Abstract

Ih_ this paper, we define the concept of modified and mixed Fourier microfunctions
and investigate their structures. Thereby we obtain the decomposition of singularity of
modified and mixed Fourier hyperfunctions. Then we can deduce the qualitative and
quantitative property of modified and mixed Fourier hyperfunctions by examining only
their singularity spectrums. We also investigate their vector-valued versions.
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Introduction

This paper is the second part of the series of papers on the theory of Fourier
microfunctions of several types.

In this paper, we define the concept of modified and mixed Fourier
microfunctions and their vector-valued versions, and study their fundamental
properties. We can investigate these in a similar way to S.K.K. [22] and Ito [4].

Sheaf homomorphisms & — # and «/* > #* are defined and they become
injections. . Thereby, the concept of modified and mixed Fourier hyperfunctions
can be considered as a generalization of the concept of slowly increasing and
real-analytic functions. _One purpose of this paper is to analyse the structure of
the quotient sheaves #/s/ and %*/o/*. We can analyse this structure by a
similar way to the theory of Sato and Fourier microfunctions. For Sato and
Fourier microfunctions, we refet the reader to Kaneko [8], [9], [10],
Kashiwara-Kawai-Kimura [11], Morimoto [13], [14], Sato [18], [19], [20],
[21], Sato-Kawai-Kashiwara [22] and Ito [4]. The first target is to show that
we can define the sheaves € and %* of modified and mixed Fourier microfunctions
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over S*M, respectively, which is the cosphere bundle over M, the radial
compactification of R'™, and that we can have the fundamental exact sequences

0 > of s B >7z*“2 —0,
and

0— A — B — 1,6 —0,

where n: S*M — M is the projection and 7, € and = L%" denote the direct images
of € and €* with respect to 7, respectlvely

Further we investigate more precise structures of modified and mixed Fourier
microfunctions. Until now, the ﬂabblness of the sheaves ¢ and %* is not yet
known.

Next, we consider a similar construction of the theory of vector-valued
modified and mixed Fourier microfunctions.

At last we note that modified and mixed Fourier microfunctions on an open
set in S*R™™ are nothing else but Sato microfunctions and vector-valued Sato
microfunctions, respectively, where S*R" is the cosphere bundle over R'".

In section 4, we construct the theory of modified Fourier microfunctions.

In section 5, we construct the theory of vector-valued modified Fourier
microfunctions.

In section 6, we construct the theory of mixed Fourier microfunctions.

In section 7, we construct the theory of vector-valued mixed Fourier
microfunctions.

4. Theory of modified Fourier microfunctions

4.1. Modified Fourier hyperfunctions. In this section we apply the general
theory of section 1 of Ito [4] to certain special situation and construct the
theory of modified Fourier microfunctions. :

In this subsection we recall the notion of modified Fourier hyperfunctlons
following Saburi [16] and Ito [2].

Let R" be an n-dimensional Euclidean space and R, be its dual space. Let
D" = R"U §% ! be the radial compactification of R" in the sense of Kawai [11],
Definition 1.1.1, p. 468. We denote this D" by R and put M = R and
X=C= Dz" which is the radial compactification of C" identified with R*".

Let 0 be the sheaf of slowly increasing and holomorphic_functions on X
following Saburi [16] and Ito [2], and put o = Oly. Then o is the sheaf of
slowly increasing and real-analytic functions on M. Then we have g =1 ‘0
where 1: M — X is the canonical injection.

As in Saburi [16] and Ito [2], we define the sheaf of modified Fourier
hyperfunctions on M.
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Definition 4.1. The sheaf & is, by definition,
% = #1(0) = Dist" (M, &),

where the symbol in the right hand side of the above equality is due to Sato
[17], p. 405. A section of # is called a Fourier hyperfunction.
~_As stated in Saburi [16] and Ito [2], we have HE(@)=0 for k #n and
4 constitutes a flabby sheaf on M.
Now we apply Lemma 1.1 of Ito [4] to this case where &#, X and Y corres-
pond to @, X and M respectively. Then we obtain the sheaf homomorphism

~

g — 4,

which will be proved to be injective later. This injection allows us to consider
modified Fourier hyperfunctions as a generalization of slowly increasing and
real-analytic functions. The purpose of this section is to analyse the structure
of the quotient sheaf %/« by a similar way to S.K.K [22].

4.2. Definition of modified Fourier microfunctions. Here we use the notation
in subsection 1.1 of Ito [4]. Suppose that M = R" and X = C". Then we have
the following isomorphisms

T(XNC")|gn= TR"@®iTR", TR" =~ R" x R",
T*(XNC|gn= T*R"® iT*R", T*R"=R" x R,

by the complex structure of XNC" = C". Here i denotes ./ —1 and R, is the
dual space of R". Hence we have the isomorphisms

Ten(XNC") = TR", Spa(XNC") = SR* = R" x §" 1,
TA(XNCY) = T*R", S5(XNC) = S*R"=R" x S,_,

by the identification i« & Since X is the radial compactification of X nC"
along the real subspace, we can take the radial compactification of T(X N C")|gn
and T*(X nC")|g~ along the base space. Hence we obtain the isomorphisms

TX|y=2TM®iTM, TM =M x R",
T*X |y =2 T*M @ iT*M, T*M =M x R,.
Hence we have the isomorphisms
Ty X =TM, SyX =SM =M x §"°',
TEX = T*M, SEX =S*M =M x S,_,.

Taking account of this fact, we denote S,,X and S¥X by iSM and iS*M,
respectively. The point of iSM (resp. iS*¥*M) is frequently denoted by x + i&0
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(resp. (x, i <n, dx > 00 ) = (x, inoo)), where EeS"~ ! (resp. neS, ).
We use the general discussions of subsection 1.1 of Ito [4] to this special
case. We denote

DM = {(x + i€0, (x, inoo))eiSM x iS*M; <ié, in) = — (&, 1) 2 0},
IM = {(x + i0, (x, ino0))€iSM x iS*M; <i&, in) = — <& 1> > 0}.

Let X be the real-monoidal transform of X with center M. Put X+ =
(X — M)U DM and MX* = (X — M) iS*M. Similarly to the diagram (1.3) of
Ito [4], we have the following diagram:

MX* «>DM
MY oiSM  MX*oiS*M

Theorem 4.2. We have #%,(t~'0) =0 for k # 1, where t: *X — X is the
canonical projection.

Proof. Let x = x, + i£0 be a point of iSM. Then we have

#%, (1), = lim indg,, H* (T — iSM, §),  for k> 1,

and we have the exact sequence
0 — #%y(t~10), —> 0,, > lim indg., H'(T — iSM, 0),

where U runs over the neighborhoods of x. Since U —iSM # @, a is injective
by the property of unhique continuation of holomorphic functions. Therefore
H3u(t *0),=0. On the other hand, there is_a fundamental system of
neighborhoods {17} of x such that U — iSM is an @-pseudoconvex open set. It
follows from the Oka-Cartan-Kawai Theorem B that we have

H (710), =0  for k> 1. (Q.E.D)

The following theorem is the most essential one in the theory of Fourier
microfunctions. This is deeply connected with the “Edge of the Wedge”
Theorem.

Theorem 4.3. We have '.#,.’-gw(n‘l(’o’) =0 for k #n, where n: MY* 5 X is
the canonical projection.

Proof. Let x =(x,, ifco)eiS*M. Then, by Proposition 1.4 of Ito [4], we
have
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Hrr(n10), = lim ind, HY(X, 0),
where Z runs over the family of
Z={z=x+iyeU;{pn»> <0 (1<j<n)}

where U is a neighborhood of #(x)=x, in X and #,,...,n,€S,_, are chosen
so that the convex hull of n,(= 1), #,,...,n, contains a certain neighborhood of
the origin. Moreover, we have

lim ind, HY(X, 0) = lim ind; #%(0

x0°
where G runs all over the family of
G={z=x+iyeX;{y,n> <0 (L <j<n)},

for #,,...,n, varying in a neighborhood of —#n. By the “Edge of the Wedge”
Theorem (see the following theorem 4.4), we have

HE),, =0  for k#n.
Therefore, we have
Ky 10)=0  for k#n. (Q.E.D)

Theorem 4.4 (the “Edge of the Wedge” Theorem). Put G = {z=x+ iyeX ;
y;20(1j= n)}°'. Then we have, for each xeM,

#ED), =0  for k#n.

In the proof of Theorem 4.3, we have only use the linear transformation of
G in Theorem 44. o |

The proof of Theorem 4.4 goes in a similar way to Kashiwara-Kawai-Kimura
[10], Theorem 2.2.2, p. 60.

Definition 4.5. We define the sheaf ¢ on iS*M by
€ = Hpla O,

where we denote by a the antipodal map iS*M — iS*M, and by F° the inverse
image under a of a sheaf & on iS*M. A section of ¢ is called a modified
Fourier microfunction. o 5

Now we define the sheaves 9, 0 and «/? by
= ‘;fiISM(T_ 1(‘5)’

’ =j*(@|X—M)a
";ﬂ = (ozﬁlié"‘bla

Qu e
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where j: X — M o X, n: MX* > X and 1: X - X are canonical maps.
- By Proposition 1.3 of Ito [4] and Theorems 4.2 and 4.3, we have the
following.

Proposition 4.6. We have

¢ (k=n—1)

er*n'1§={ )
0 k#n—-1)

Theorem 4.7. We have

~

R"n*(? =R'" 1t 9=0  for k+#0,
and we have the exact sequence |

0—»&7 -—»33? ——»n*(g—>0.

~
~

' Proof. R"'n*‘g = R"*"‘lr*ﬁ is the trivial corollary of the preceding
proposition. The _triangle obtained in Proposition 1.6 of Ito [4] implies
immediately R"n*(g 0 for k #0 and y1e1ds the exact sequence in the theorem.

(QE.D)

This is the required decomposition of singularity of Fourier hyperfunctions.

Corollary 4.8. We have the exact sequence

0 — 7 (M) > (M) 22 §(i5*M) — 0.

Deﬁnmon 49. Let uega(M) We call sp(u )E(g(lS*M) a spectrum of u.
We denote by S:S.u the support supp sp () of sp(u) and call it a singularity
spectrum of u. 7(S.S.u) is ev1dently the subset where u is not slowly increasing nor
real-analytic and is called the singular support of u.

Corollary 4.10. Let ue# (M). Then u is a slowly increasing and real-analytic
JSunction on M if and only if S.S.u # Q. ‘

Since o = o lgs B = B|gr and € = ¢ lissgn hold in the notation of S.K.K
[22], we have the following Corollary by restricting the exact sequence in
Theorem 47 : :

Corollary 4.11. Let n: iS*R" — R" be the canonical projection. Then we have
the exact sequence

0—A — % » 1,6 » 0.

4.3. Fundamental diégram oné. We apply the arguments in the subsection
1.2 of Ito [4] to a special case. At first we apply Proposition 1.10 of Ito [4]
to the situation F =99 X =M, S=iSM. Then ¥=¢, & = n*(g. We obtain




Theory of Fourier Microfunctions of Several Types (II) 51

the following:
Proposition 4.12. We have
Ry '@=0 for k#0
and we have the exact sequence
0—5F —1 2,4 — ¢ —0.

Now we apply the same proposition to the case where # = 7°. Thus we
obtain a homomorphism

4.1) ;ﬁ-——»r‘lR"'lr*.&ﬂ,
7* = Rjy @ lx-so)lisw
where j: X — Mo MY is the canonical injection, which implies that
R e, @P = R (10 ) (@1x-20)-
Hence we can define the canonical map
R”__‘lt*.xz? Ny §

It yields, together with (4.1), a homomorphism g° —»r‘lﬁ. Summing up, we
have obtained the following.

Theorem 4.13. We have the following diagram of exact sequences of sheaves
on iSM:

0 0
| |
0—rtld— Z* — F —0
| |
4.2) 0—1ld — 1'% —ar_ln*‘z —0
| |
n*r”?:n*t'l‘?
| l
0 0

Proof. It has already been proved that the rows are exact. The right
column is exact by Proposition 4.12. Hence it follows that the middle column
is exact. (Q.E.D)
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Let us transform the diagram (4.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rt'z’~!, where 7/, 7’ are projections
IM —iS*M and IM — iSM, respectively.

For a sheaf # on M, we have

Rtjw 't 'F = Rej7v 'n ' F 2 ' F[1 —n].
By Proposition 1.7 of Ito [4],
Rt/n' ! 1’1? ~ Rr,’n"an*r"lé ~ @[1 —n].
By operating Rt/z'~! on exact columns in (4.2), we obtain
Regjw=15 =0 for k#n—1,
Rgn P =0 for k#n—1.
We define the sheaves " and 3" on iS*M by
| poa =R"'1‘t,’7z’_1;l'”,
Gy =R-tgw1§
Then, in this Way, we obtajn the following theorem.

Theorem 4.14. We have the diagram of exact sequences of sheaves on iS*M :

4.3) 0—n'd —n'd —n 2,8 —0
"] ,
¢ — ¢
| |
0 0 ;

and the diagram (4.2) and the dzagram 4.3) are mutually transformed by the
functors Rt{nw'~'[n — 1] and Rn,t~

We give a direct application of Theorem 4.13, which gives a relation between
singularity spectrum and the domain of the defining function of a modified
Fourier hyperfunction. -

By using the similar notation to Proposition 2.16 of Ito [4], we can state
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the following proposition.
Proposition 4.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have _
(1) If oel'(U, &*), then S.S.(A(@)) < U°. Conversely, if f(x)eI'(zU, %)
satisfies S.S. (f) = U°, then there exists a unique @€ I'(U, £*) such that f = A(¢).
Namely, we have the exact sequence
0 — ZH(U) 2 B (U) <2 B(iS*M — U°).
Q) I'(V, 4%~ T, 4% is an isomorphism.
Proof. Consider the exact sequence
00— F? —1-1F —+7z*t‘1§ — 0.
From this, we have the following diagram
0—> I'(V, &%) —> I'(V, "' &) —> I'(V, n,c"'§)
(4.4) | | |
0—I'(U, &% — I'(U, 17 ' %) — I'U, n,:"%)

with exact rows. Since V-tV =1U and U - tU are open mappings with convex
fibers, we have

TV« ‘@) =ru, %)= rau, 3.

Since 'Vt 'V=iS*M — V°=iS*M — U° is an open mapping with
connected fiber, we have

re, n*r‘lé) =I'(n" 'V, t" €)= I'tn ¥, &)
= I'(iS*M — U°, §).
On the other hand,
($*M — U°, ) — 'z *U, v~ €% = I'(U, n,1~'%%)

is injective. Summing up, the middle arrow in the diagram (4.4) is an
isomorphism and the right one is injective. Hence it follows that the left one
is isomorphic. - Moreover,

0 —> I'(U, 4% — (U, ) —> I'(S*M — U°, §)
is exact, which completes the proof. (Q.E.D)

Definition 4.16. We say ued (2) to be micro-analytic at (x, inoo) in iS*M
if (x, inoo)¢S.S.u. This is equivalent to being represented as
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u= ZJA,((p]), (P]e',Jﬂ(Ul), (x, iﬂOO)é Ujo.

5. Vector-valued and mocified Fourier microfunctions

51. Vector-valued and modified Fourier hyperfunctions. In this section we
recall the notion of vector-valued and modified Fourier hyperfunctions following
Ito [2].

We use the similar notation to subsection 4.1. Let E be a Fréchet space over
the complex number field.

Let 0 be the sheaf of E-valued, slowly increasing and holomorphic functlons
on X following Ito [2], Definition 2.1.1, p. 75, and put Eg =EQ Iy- Then Eg
is the sheaf of E-valued, slowly increasing and real- analytic functions on M. Then
we have Eo/ =i 1EQ, where 1: M X is the canonical injection.

As in Ito [2], we define the sheaf of E-valued and modified Fourier
hyperfunctions on M. |

Definition 5.1. The sheaf £ is, by definition,
EZ = w1 (50) = Dist"(M, £0).

A section of EQZ is called an E-valued and modified Fourier hyperfunction.

As stated in Ito [2], we have JfM(E(D) 0 for k #n and EZ constitutes a
flabby sheaf on M. : »

Now we apply Lemma 1.1 of Ito [4] to this case where 4, X and Y corres-
pond to EG, X and M respectively. Then we obtain the sheaf homomorphism

EY EZ,

which will be proved to be injective later. This injection allows us to consider
E-valued and modified Fourier hyperfunctions as a generalzation of E-valued,
slowly increasing and real-analytic functions. The purpose of this chapter is to
analyse the structure of the quotient sheaf EJ /Ed by a similar way to S.K.K
[22].

52. Definition of vector-valued and modified Fourier microfunctions. We
use the similar notation to subsection 4.2. Let E be a Fréchet space over the
complex number field. We denoté by EF the sheaf of E-valued, slowly increasing
and holomorphic functions defined on X. We have the following. ‘

Theorem 5.2.. We hqvé .}ﬁ’gM(t'lE(ﬂz) =0 for k # 1, where ©: MX — X is the
- canonical projection.

Proof. It goes in a similar way to Theorem 4.2. . (Q.E.D)
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The following theorem is the most essential one in the theory of E-valued
and modified Fourier microfunctions. This is deeply connected with the “Edge
of the Wedge” Theorem.

Theorem 5.3. We have in"s*M(n_lE('Oz) =0 for k #n, where n: MX* > X is
the canonical projection. -

Proof. It goes in a similar way to Theorem 4.3. (Q.E.D)
In the above proof, the following theorem is essential.

Theorem 5.4 (the “Edge of the Wedge” Theorem). Put G = {z=x + iyeX;
;20 (1 <j=<n)}'. Then we have, for each xeM,

%é(E(Oz)x =0 for k #n.
Definition 5.5. We define the sheaf % in iS*M by
E(g = %{'g*M(ﬂ_lE@.)a.
A section of % is called an E-valued and modified Fourier microfunctions.
Now we define the sheaves 3, £GP, Eg# by
D = Hhu(r™ D),
E@ﬂ =j*(E(§|X—M),
E&?ﬁ = Eﬁﬁhsw

where j: X — M ¢, MX, n: MX* > X and 7: MX — X are canonical maps.
By proposition 1.3 of Ito [4] and Theorems 5.2 and 5.3, we have the
following, ‘

Proposition 5.6. We have

Rbe n 155 = {E.‘g“, (for. k=n—1),
0, (for k#n—1).
Theorem 5.7. We have
R"n*E‘Z = R"”‘lt*EQz =0 for k #0,
and we have the exact sequence
0—Ed —EF —»n*E‘g — 0.
Proof. It goes in a similar way to Theorem 4.7. (Q.E.D)

This is the requiréd decomposition of singularity of E-valued and modified
Fourier hyperfunctions.
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Corollary 58. We have the exact sequence
0 — o (M; E) - (M ; E) =2 €(iS*M; E) —> 0.

Definition 5.9. Let ue.ﬁ(M ; E). We call sp (u)e‘g (iS*M ; E) a spectrum of
u. We denote by S.S.u the support supp sp (u) of sp (u) and call it a singularity
spectrum of u. m(S.S.u) is evidently the subset where u is not slowly increasing
nor real-analytic and is called the singular support of u.

Corollary 5.10. Let ued (M; E). Then u is an E-valued, slowly increasing
and real-analytic function on M if and only if S.S.u= Q.

We have Eof = Eof |gn, EB =EH|gn and ®¢ = F€|,gn in the notation of
Corollary 3.11 of Ito [4]. Then we have the following Corollary by restricting
the exact sequence in Theorem 5.7. ‘

Corollary 5.11. Let n: iS*R" — R" be the canonical projection. Then we have
the exact sequence '

0 » Eof »ER :n*E(g—>0.

5.3. Fundamental diagram on EZ. We apply the arguments in the subsec-
tion 1.2 of Ito [4] to a special case. At first we apply Proposition 1.10 of Ito [4]
to the situation & =£39% X =M, S=iSM. Then 4 =%¢, & =n 56. We
obtain the following.

Proposition 5;12. We have
R"n*r"“‘é =0 for k#0
and we have the exact sequence
0—EF — 1711, 5¢ — 17 5@ —> 0.

Now we apply the same proposition to the case where # = EgP. Thus we
obtain a homomorphism

(5.1) EgjP — ¢ 1R ¢ Egfb,
O = Ry Oy -sliswe
where j: X — M ¢ MX is the canonical injection, which implies that
R, B b = R4 (20 ), (0 |- u).
Hence we can define the canonical map
R1g Egl L EF.

It yields, together with (5.1), a homomorphism Egjf 1 'EZ.  Summing up, we
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have obtained the following.

Theorem 5.13. We have the following diagram of exact sequences of sheaves
on iSM:

0 0
0—t g — EgF _, EJ __,0
U d
(5.2) 00—t 1Eg — 1~1Ef —At_ln*Eé —0
n*t'lE(z —n,1 ' E¢
0 0

Proof. It has already been proved that the rows are exact. The right
column is exact by Proposition 5.12. Hence it follows that the middle column
is exact. (Q.E.D)

Let us transform the diagram (5.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rrt/n'~!, where 1/, n’ are projections
IM - iS*M and IM — iSM, respectively.

For a sheaf & on M, we have

Riw 't 'F xRty n'Fxa %[l —n].
By Proposition 1.7 of Ito [4],
Rtn ‘G Rr,’n"an*t'lE‘:? ~ EZ[1 —n].
By operating Rt/n’' ! on exact columns in (5.2), we obtain
Rét/m ~1E5 = 0 for k#n—1,
Rit/mw B8 =0  for k#n— 1.
We define the sheaves £s7 ¥ and 3V on iS*M by
EGv _ Rn-1t{nf—1E&7ﬁ,'
EGv =Rn—lt{nl—1E§_

Then, in this way, we obtain the following theorem.
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Theorem 5.14. We have the diagram of exact sequences of sheaves on iS*M :

(5.3) 0——n kg —sn Ef ——»n‘ln*Eé —0
! |
EZ EZ
l |
0 0

and the diagram (5.2) and the diagram (5.3) are mutually transformed by the
functors Rtjnw’~'[n— 1] and Rn, ™"

" We give a direct application of Theorem 5.13, which gives a relation between
singularity spectrum and the domain of the defining function of an E-valued and
modified Fourier hyperfunction.

By using the similar notation to Proposition 2.16 of Ito [4], we can state
the following proposition.

Proposition 5.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have N

(1) If el (U, Ed?), then S.S.(A()) = U°. Conversely, if f (x)eI'(tU, £%)
such that f = A(@). Namely, we have the exact sequence

0 — (U ; E) 22> F(tU; E) =2 €(iS*M — U°; E).
Q) I'(V,E %) T U, E7P) is an isomorphism. _
Proof. It goes in. a similar way to Proposition 2.16 of Ito [4]. (Q.E.D)

Definition 5.16. We say ued (2; E) to be micro-analytic at (x, inoo) in
iS*M if (x, inoo)¢S.S.u. This is equivalent to being represented as

u=Z2;Mp;), @;ed?(U;;E), (x,in0)¢Us;.

6. Mixed Fourier microfunctions

6.1. Mixed Fourier hyperfunctions. In this subsection we recall the notion
of mixed Fourier hyperfunctions following Ito [2]. '
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Let n = (ny, n,) be a pair of nonnegative integers with |n| =n, + n, #0. We
denote the product spaces C™ x €™ and R™ x R» by C*" and R*" respectively.
Also put C"'=C™ x C, X = C*" and M = R*". Then M is the closure of
R" =R" x R in X. We denote z = (7, z")e C" so that 2 = (z,,...,2,), 2" =
(Zny 41509 Zpm)-

Let 0* be the sheaf of slowly increasing and holomorphic functions on X
following Ito [2], Definition 5.1.1, p. 25. Put &% = (¢*|,,. Then «/* is the sheaf
of slowly increasing and real-analytic functions on M. Then we have /% = 1~ 1 (¥,
where 1: M ¢ X is the canonical injection.

As in Ito[2], we define the sheaf of mixed Fourier hyperfunctions on M.

Definition 6.1. The sheaf %#* is, by definition,
B* = #",(0%) = Dist" (M, 0¥),

where the symbol in the right hand side of the above equality is due to Sato
[17], p. 405. A section of #* is called a mixed Fourier hyperfunction.

As stated in Ito [2], #5(0*) =0 for k # [n| and #* constitutes a flabby
sheaf on M. : '

Now we apply Lemma 1.1 of Ito [4] to this case where &#, X and Y
correspond to (%, X and M respectively. Then we obtain the sheaf
homomorphism

oAt —— B

which will be proved to be injective later. This injection allows us to consider
mixed Fourier hyperfunctions as a generalization of slowly increasing and
real-analytic functions. The purpose of this chapter is to analyse the structure
of the quotient sheaf %#*//* by a similar way to S.K.K [22].

6.2. Definition of mixed Fourier microfunctions. Suppose M = R*" and
X = C*"", where n=(n,, n,) is a pair of nonnegative integers with |n| =n, +
n, #0. We denote by ¢* the sheaf of slowly increasing and holomorphic
functions defined on X. The (co-) sphere bundle iSM (resp. iS*M) are defined
similarly to subsection 2.2 of Ito [4]. We also use a similar notation to
subsection 2.2 of Ito [4]. Then we have the following diagram:

MX+ — DM
75~ / T x :E' \ T
MY > iSM MX* S iS*M

n/n

M

N X

X
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Theorem 6.2. We have Kt 0% =0 for k # 1, where 1: MX — X is the
canonical projection. :

The following theorem is the most essential one in the theory of mixed
Fourier microfunctions. This is deeply connected with the “Edge of the Wedge”
Theorem.

Theorem 6.3. We have #%u(n~10*) =0 for k # |n|, where n: MX* > X is
the canonical projection.
In the proof of the above theorem, the following theorem is essential.

Theorem 6.4 (the “Edge of the Wedge” Theorem). Put G = {z =x + iye
C";y,20 (1 <j<|n])}". Then we have, for each xeM,

HYOV, =0 for k#|nl.
Definition 6.5. We define the sheaf ¢* on iS*M by
¢ = Inl (75_1(9#)“

where we denote by a the antipodal map iS*M — iS*M, and by #* the inverse
image under a of a sheaf # on iS*M. A section of %* is called a mixed Fourier

microfunction.
Now we define the sheaves 2¥, 0% and «/*f by

2= '}fi.ISM(T—l(Q“)’
O*F = j (O*|x - p)
AP = O |5y,

where j: X — M & X, n: MX* 5 X and 7: MX — X are canonical maps.
By Proposition 1.3 of Ito [4] and Theorems 6.2 and 6.3, we have the
following.

Propeosition 6.6. We have
Rt n 19 = {

Theorem 6.7. We have
“n,6* = Rt-17 =0  for k#0,

@y (k=Inl-1
0 (k#|nl—1)

and we have the exact sequence

0 — A*— B — 1,6 —0.

This is the required decomposition of singularity of mixed Fourier
hyperfunctions.
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Corollary 6.8. We have the exact sequence
0 — AH(M) -2 BHM) =2 @H(iS*M) —> 0.

Definition 6.9. Let ue #*(M). We call sp (u)e¢*(iS*M) a spectrum of wu.
We denote by S.S.u the support suppsp (u) of sp(u) and call it a singularity
spectrum of u. 7(S.S.u) is evidently the subset where u is not slowly increasing
nor real-analytic and is called the singular support of w.

Corollary 6.10. Let ue#*(M). Then u is a slowly increasing and real-
analytic function on M if and only if S.S.u= Q.

Since o = A*|gn, B = B*|gn and € = €*|;sg» hold in the notation of S.K.K
[22], we have the following Corollary by restricting the exact sequence in
Theorem 6.7.

Corollary 6.11. Let n: iS*R" — R" be the canonical projection. Then we have
the exact sequence

0O—o —B—n,%—0.

6.3. Fundamental diagram on 4*. We apply the arguments in the subsec-
tion 1.2 of Ito [4] to a special case. At first we apply Proposition 1.10 of Ito [4]
to the situation & =(2%", X =M, S=iSM. Then ¥ =%* & =rn,6" We
obtain the following.

Propeosition 6.12. We have
Rin,t7'¢*=0 for k#0
and we have the exact sequence
0 — 2 —1t !, —n1 16" —0.

Now we apply the same proposition to the case where % = o/*f. Thus
we obtain a homomorphism

(6.1) AP — T IR g PP
A*P = Rj, (O*1x - m)lisms
where j: X — M ¢ X is the canonical injection, which implies that
Rlnl_lf*&{#’ﬂ = R'nl_l('f © )i(OF|x - p)-
Hence we can define the canonical map
RIM=17 of*b — 5,

It yields, together with (6.1), a homomorphism «/*# »t~1%* Summing up, we
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have obtained the following.

Theorem 6.13. We have the following diagram of exact sequences of sheaves
on iSM:

0 0

l 1

0—s1 lofft— gt — 2 0

| | l

(6.2) 00—t 't— 171 —17 7,4 —0
*
Gt =—=mn,1 ¥
0 0

Let us transform the diagram (6.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rt/n’'~!, where 7', n’ are projections
IM —iS*M and IM — iSM, respectively.

For a sheaf # on M, we have

Rin 17 'F =Rt 'n ' Fxa F [ —|n]].
By Proposition 1.7 of Ito [4],
Rt " ‘n,a1"'%* = Rijn' " 'Ra, v '€ = ¢*[1 — [n]].
By operating Rt/#’~! on exact célumns in (6.2), we obtain
Ritim’ =12 =0 for k#|n|—1,
Ritjnw " te*f =0  for k#|n|— 1
We define the sheaves /%" and 2*“ on iS*M by
of*Y = RN~y —1 gf*b,
9%V = RIM-1ein "1 9%,
Then, in this way, we obtain the following theorem.

Theorem 6.14. We have the diagram of exact sequences of sheaves on iS*M
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0 0

l

0__)7{—19%#_, M#.v SN Q#,v __)0

| ., l

(6.3) 0—znlot—n'B—n 2% —0
sp l
@* @*
0 0

and the diagram (6.2) and the diagram (6.3) are mutually transformed by the
Sfunctors Rt)w' ~'[|n| — 1] and Rn, t™*

We give a direct application of Theorem 6.13, which gives a relation between
singularity spectrum and the domain of the defining function of a mixed Fourier
hyperfunction.

By using the similar notation to Proposmon 2.16 of Ito [4], we can state
the following proposition. :

Proposition 6.15. Let U be an open subset of iSM wzth convex fiber, and
V a convex hull of U. Then we have

1) If el (U, o£*P), then S.S. (A(p)) = U°. Conversely, if f(x)el (zU, #*
satisfies S.S. (f) < U°, then there exists a unique @ I'(U, o/*?) such that f = ().
Namely, we have the exact sequence

0 —> LHH(U) -2 BHzU) =2 @*(iS*M — U”).
2 IV, «*%y—>rUu, «**) is an isomorphism.
Definition 6.16. We say ue #%(Q) to be micro-analytic at (x, inoo) in iS*M

if (x, inoo)¢S.S.u. This is equivalent to being represented as

u=Xie), p;e A*E(U), (x,inoo)¢ US.

7. Vector-valued and mixed Fourier microfunctions

7.1. Vector-valued and mixed Fourier hyperfunctions. In this subsection we
recall the notion of vector-valued and mixed Fourier hyperfunctions following
Ito [2], which is somewhat different from the one defined by Nagamachi [15].
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We use a similar notation to subsection 6.1. Let E be a Fréchet space over
the complex number field,

Let E0* be the sheaf of E-valued, slowly increasing and holomorphic functions
on X following Ito [2], Definition 6.1.1, p. 37, and put Eo/* = E0*|,,. Then Eor*
is the sheaf of E-valued, slowly increasing and real-analytic functions on M. Then
we have Eof* =17 1E@* where 1: M ¢, X is the canonical injection.

As in Ito [2], we define the sheaf of E-valued and mixed Fourier
hyperfunctions on M:

Definition 7.1. The sheaf £#* is, by definition,
Egt — )il (E0¥) = Dist" (M, E0¥).

A section of £#* is called an E-valued and mixed Fourier hyperfunction.

As stated in Tto [2], #%(E0%*) =0 for k # |n| and £%* constitutes a flabby
sheaf on M. :

Now we apply Lemma 1.1 of Ito [4] to this case where #, X and Y
correspond to E0* X and M respectively. Then we obtain the sheaf
homomorphism

E 'ﬂ# - E'@#’

which will be proved to be injective later. This injection allows us to consider
" E-valued and mixed Fourier hyperfunctions as a generalization of E-valued, slowly
increasing and real-analytic functions. The purpose of this chapter is to analyse
the structure of the quotient sheaf £%*/Eo/* by a similar way to S.K.K [22].

7.2. Definition of vector-valued and mixed Fourier microfunctions. We use
a similar notation to subsection 6.2. Let E be a Fréchet space over the complex
number field. We denote by E0* the sheaf of E-valued, slowly increasing and
holomorphic functions defined on X. We have the following.

Theorem 7.2. We have #%y(t 50" =0 for k# 1, where t: MX > X is
the canonical projection. - B
The following theorem is the most essential one in the theory of E-valued

and mixed Fourier microfunctions. This is deeply connected with the “Edge of
the Wedge” Theorem.

Theorem 7.3. We have #%.,,(n"'E0*) =0 for k # |n|, where m: MX* > X
is the canonical projection,

In the proof of the above theorem, the following theorem is essential.

Theorem 7.4 (the “Edge of the Wedge” Theorem). Put G = {z=x + iye
C";y;20 1<j<|n|)}. Then we have, for each xeM,
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HEEOH, =0  for k#|n|.
Definition 7.5. We define the sheaf *%* in iS*M by
Egpt — %QJM(N_IE(O#)“-

A section of £%* is called an E-valued and mixed Fourier microfunctions.
Now we define the sheaves £2%, E¢*F, Eg*# by

B9 = Azt E0Y),
ForP = j*(E(Q#‘x—M),
EtP = EOMP |5y,

where j: X — M < MX* > X and 7: MX - X are canonical maps.
By proposition 1.3 of Ito [4] and Theorems 7.2 and 7.3, we have the
following. '

Proposition 7.6. We have

[ {(Ew, (for k=1n| 1),
* 0, (for k # |n| —1).
Theorem 7.7. We have
Rkn Eg* = R*IM=1¢ E9* =0  for k#0,
and we have the exact sequence
0 —Ett —EB* — 1 E¢* — 0.
This is the required decomposition of singularity of E-valued and mixed

Fourier hyperfunctions.

Corollary 7.8. We have the exact sequence
0 — A*(M; E) > #*(M ; E) =2 $*(iS*M ; E) — 0.

Definition 7.9. Let ue #*(M; E). We call sp (u)e%* (iS*M; E) a spectrum
of u. We denote by S.S.u the support supp sp (u) of sp (u) and call it a singularity
spectrum of u. 7(S.S.u) is evidently the subset where u is not slowly increasing
nor real-analytic and it is called the singular support of u.

Corollary 7.10. Let uc #*(M; E). Then u is an E-valued, slowly increasing
and real-analytic function on M if and only if S.S.u=0.

Put *of = Eot*|ge, 5B =ER*|gn and E€ = E@*|,ugn. Then we have the
following Corollary by restricting the exact sequence in Theorem 7.7.
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Corollary 7.11. Let n:iS*R"— R". Then we have the exact sequence

0 —Eitd —EB — 1,6 —0.

7.3. Fundamental diagram on E@*. We apply the arguments in the
subsection 1.2 of Ito [4] to a special case. At first we apply Proposition 1.10
of Tto [4] to the situation & =(2%°, X =M, S=iSM. Then ¥ =*%*
& =n,E¢". We obtain the following.

Proposition 7.12. We have
Rig 1 Eg*=0  for k#0
and we have the exact sequence
0 —E2 — 1z, 5 —n 7 ¢ — 0.

Now we apply the same proposition to the case where & = Egg*f. Thus
we obtain a homomorphism

(7.1) Egg#b — ¢~ 1RIM=17 Egzhh
Eotf = Rj*(E(O#|X—M)|iSM,
where j: X — Mo M¥ is the canonical injection, which implies that
RI1~1g Eggtb = RIN=1(z 0 ), 05 ).
Hence we can define the canonical map
RiM~1g Eoytb . Eggh,

It yields, together with (7.1), a homomorphism Eo/*f —»t~15%* Summing up,
we have obtained the following.

Theorem 7.13. We have the following diagram of exact sequences of sheaves
on iSM: '
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(7.2) 00—t Byt — 71t 171 Bt —0

—

67

Let us transform the diagram (7.2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rt/n’'~!, where 7, #' are projections

IM —iS*M and IM — iSM, respectively.
For a sheaf # on M, we have

Rijn 't 'FxRtv 'n ' F xn ' F[1—|n]].
By Proposition 1.7 of Ito [4],
Rt/nw ‘m,1 5@ =~ Rjn’ "' Rm,1” 1EE* = B*[1 — |n[].
By operating Rt;n’~! on exact columns in (7.2), we obtain
R¥t/n ~'E9* =0 for k #|n| —1,
Ritjw "1Egg*f =0  for k #|n|—1.
We define the sheaves £o/*¥ and ®2*¥ on iS*M by
Eg#.v = Rinl=1q/ g/ ~1Egytb
Eghv = Rifl=1g g ~1Eghs,
Then, in this way, we obtain the following theorem.

Theorem 7.14. We have the diagram of exact sequences of sheaves on iS*M
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0 0
| l
00— IEM# E.ﬂ#’v —_ Eg#v —0
| \, l
(7.3) 0—n et —n 5B — a7 ln Bg* — 0
| l
Egh . Eqg
| l
0 0

and the diagram (1.2) and the diagram (7.3) are mutually transformed by the
functors Rt{w' "'[|n| — 1] and Rr, t™'. ‘

We give a direct application of Theorem 7.13, which gives a relation between
singularity spectrum and the domain of the defining function of an E-valued and
modified Fourier hyperfunction.

By using the similar notation to Proposition 2.16 of Ito [4], we can state
the following proposition.

Proposition 7.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have '

(1) If oeI’(U, Ef*#), then S.S. (A(p)) = U°. Conversely, if f(x)eI (U, &)
satisfies S.S. (f) < U°, then there exists a unique o e I'(U, Ed# "By such that f = A(p).
Namely, we have the exact sequence

0 —> *#(U; E) =5 #*(tU; E) -2 ¢*(iS*M — U°; E).
(2 Iy, «a*f)— U, Es*?) is an isomorphism.
Definition 7.16. We say ue%*(Q2; E) to be micro-analytic at (x, inoo) in
iS*M if (x, inoo)¢S.S.u. This is equivalent to being represented as

u= ?'1((:01)’ gojed#,ﬂ(Uj; E)a (xs ”100)¢U,°
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