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Abstract

The proof of the main results (a generalization of Helton’s theorem) in the previous
paper [6] is incorrect. This paper points out the error in [6], and derives a weakened
conclusion concerning the difference spectrum of the Schrédinger operator in a magnetic
field.
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In the previous paper [6] we considered the relationship between the
distribution of the energy levels of the quantum system in a magnetic field and
the periodicity of the classical orbits of the system (a generalization of Helton’s
theorem). We, however, have found that the proof developed in it does not go
well and “Theorem” should be weakened. This paper is devoted to the correction
and an addendum to the paper [6].

After reviewing the geometrical setting of the mechanics in a magnetic field,
we point out in §2 the error in the “proof”, and derive a weakened conclusion
(Proposition 2.2 and Theorem 2.4). Further in §3 we briefly offer some results
concerning the relation between the quantum spectrum and the holonomies of
the connection.

1. Geometrical setting of the mechanics in a magnetic field (cf. [6, §§2-3])
Let n: P —> M be a principal U(1)-bundle over a compact C® manifold M,
where U(1) ={e";0<t<2n}. The cotangent bundle T*P of P is endowed
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with the standard symplectic structure £, and the U(1) action on P is naturally
lifted to the symplectic action on (T*P, 2). We have the momentum map
J: T*P > u(1)* (u(1)* being the dual space of the Lie algebra u(l) of U(1))
associated to this U(1)-action, and obtain the symplectic manifold (P, = J~*(u)/
U(1), ,) for each peu(l)* reduced from (T*P, Q) according to the Marsden-
Weinstein reduction mechanism.

Given a connection ¥ on the principal bundle P. Then we can construct
a diffeomorphism ¥,: P, » T*M associated to the connection 7. Let O be the
curvature form of ¥ (which is a u(1)-valued two form on M), and let 0,=<{u06)
for peu(1)*. Then, ¥, turns out to be a symplectic diffecomorphism between
(P,, 2,) and (T*M, Q)) with Q) being given by Q, + 73 6,, where £, denotes
the standard symplectic form on T*M and =, is the projection of T*M onto
M ([6, Proposition 2.4]). Take a Riemannian metric m on M, and m naturally
induces the Hamiltonian function H on T*M, locally expressed as H(x, n) =
Im™*(x)n;n.. Thus we have a Hamiltonian dynamical system (T*M, Q), H),
which is isomorphic with (P,, 2,, H, = ¥} H), and we regard this Hamiltonian
system to describe the motion of a classical particle with the “charge” u(eu(1)*)
in the magnetic field 6.

Next, we introduce the quantum system associated to (T*M, Qﬁ‘ , H). Let
us consider the subset

A* =‘{Aeu(1)*; (A, 8)0tY€L},

of u(1)*, which is identified with Z. For each AeA* define the irreducible
unitary representation p, of U(1) by

'Pl(eit) = e-—i(l,a/at)tesl c C\\O

Then, we obtain the complex line bundle =,: E;, - M associated to the principal
U(1) bundle P by the representation p,. Moreover, on the line bundle E; we
have the linear connection F® induced from ¥ on P. From the connection /¥
on E, and the Riemannian metric m on M we can naturally define a differential
operator L'” called the Bochner-Laplacian, which is a second order, non-negative,
formally self-adjoint elliptic operator acting on C®(E;) (the space of C* sections
of E;). Let a=2Xa;dx’®d/dt be the connection form (defined on an open
subset of M) of ¥ with respect to a local frame of P. Then, L™ is locally
expressed with respect to the local frame of E; (associated to the local frame of
P) as

jk

where V is the Levi-Civita connection associated to m. As the quantum object
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corresponding to the Hamiltonian system (T*M, Q¥, H) (=(P,, 2,, H,)) we take
the differential operator L' on E,, which is called the Schrédinger operator with
magnetic potential o. Note that the classical system (T*M, Q¥, H) is quantized
only for le A* =Z.

2. Spectrum and classical orbits

Let us consider the spectrum {k{’ <x® < .- <k <.--} of LY and the
classical trajectories of (T*M, 23, H). It will be natural to consider instead of
these data the spectrum (V¥ = /k{¥}2; of \/L” and the trajectories of the

flow ¢ on T*M\ 0 associated to the Hamiltonian \/E . Notice that the orbits
of ¢ is the same as those associated to H (ignoring the difference of
parameters). Let = denote the set of cluster points of the set {v\» — v{¥;j, k =
1,2,.).

In the previous paper we asserted the following as Theorem [6, p. 20]:

“Every trajectory of the flow ¢¥ is periodic if T # R.”

However, the “proof” of this “Theorem” has not be carried out correctly, and
the assertion must be weakened.

We review the “proof” developed there in [6, pp. 21-22]. Take an invariant
metric on U(1), and we can define the U(l)-invariant metric m on P (the
Kaluza-Klein metric) as follows: The metric on U(1l) induces a metric on the
subspace ¥, of T,P (pe P) tangent to the fiber. Let T,P =V, ® H,, be the splitting
given by the connection on P. The metric on M induces a metric on the
horizontal space H, via n,, and we require that ¥, and H, are orthogonal with
respect to m. Let us consider the Hamiltonian system (T*P, £, \/ﬁ) and the

first order elliptic operator \/A: on P induced by the Riemannian metric m. The
space of U(1)-equivariant functions, C°(P), is identified with C%(E;), and on
which \/j = /L™ +|1)® holds. Let ¢, be the Hamiltonian flow of (T*P, 2,
\/ﬁ). The flow ¢, contained in the submanifold J (1) induces the flow §%*
on P, which is same as ¢ (ignoring difference of parameter). For any U(1)-
invariant pseudo-differential operator R on P and feCg(R) we consider

R, = Jw £ (s) exp (— is/A) R exp (is /) ds.

If 2™ # R holds, then the operator R, is a smoothing operator on C®(E,) (or
a compact operator on L*(E;)) for such f that suppf< R\ZW. In [6] we
derived from this fact the following incorrect formula:

(*) Jw FOr@P(x, &)ds=0  for V(x, &)eP,,
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r being the principal symbol of R (defined as a function on P;). Since the flow
dP(x, &) is not homogeneous in ¢, i.e., the orbits of ¢{P(x, c&) (ceR™) is not
same as that of ¢P(x, &), the formula (*) must be replaced by

|-

Here we take (x!,...,x", t) (0 < t < 2m) as local coordinates of z~*(U) = U x U(1)
(Uc M), and (x',...,x", t, &,...,&,, 7) denotes the canonical coordinates of
T*n~'(U). Then, we have

JTMM)NT*2 ' U)={(x, t, &, 1); xeU,0 <t <2m, R,

@2.1) lim [mlﬁa sup r FEr@Px, &))ds
T— o SO oM -7 v

for each Ae A*, and we can take (x, &) as local coordinates of P,. The formula
(2.1) is derived as follows. Put

R} = jT f(s)exp (— is ﬂ)R exp (is\/A:) ds.
. r |

Then, by Egorov’s theorem R} is a pseudo-differential operator of order zero
with the leading symbol

rl(x, &) = J FEr(@P(x, &) ds.

The infimum of the operator norm ||[R} — K| when K varies over compact
operators on L?*(E;) is equal to Iy ., sup,|rf(x, &)| (cf. [3, Theorem 3.3]).
Obviously [|R} — R,| tends to zero as T— oo, and we get (2.1). Unfortunately,
we cannot derive from (2.1) the fact that every orbit of ¢® is closed.

From the formula (2.1) together with some other consideration we will derive
some properties of Z¥. Notice that the orbit ¢¥(x, £) on P, is induced from
the orbit @,(x, t, & A) on T*P (which is just the orbit of geodesic flow). Let
U*P denote the unit cotangent bundle relative to the metric on P, and let
D: T*P\0 - U*P be the map defined by (x, ¢, &, 1)~ (x, t, &/c, T/c) (c = |(&, 1)]).
For the orbit ¢,(x, t, & ) on T*P we define the orbit PU(x, t, & 1) on U*P as

SVx, 1, & 1) = $,(D(x, ¢, & 1)) = D[y(x, 1, & 7)].

Lemma 2.1. The orbit ¢U(x, t, c&, A) converges to the orbit ¢V(x, t, £, 0) as
c— .

Proof. The initial point of the orbit ¢V(x, ¢, c&, A) is

rgtn) (o )
"7 NE DI (e, A TN A elE Al )’
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which tends to (x,t, &/|&[,0) as ¢— oo. Hence the lemma follows from the
properties concerning initial conditions of ordinary differential equations. []

The orbit ¢,(x, t, & 0) induces the orbit ¢P(x, £) on P, which is just the
orbit ¢ (x, &) of geodesic flow on (T*M, Q,, \/E). The function r(x, &, 1) on
T*P, the principal symbol of R, can be taken to satisfy r(x, c&, ct) = r(x, &, 1)
(ceR™), hence we get from (2.1)

2.2) J. ) FOr@Ox, £)ds=0  for Y(x, E)eP, = T*M,

where r with 7 =0 is regarded as a function on P,. By means of the same
argument in [2, pp. 487—489] we conclude from (2.2) that ¢9(x, &) is closed for
every (x, £)e Py, and have the following.

Proposition 2.2. If ™ # R for some A€ A*, then every trajectory of the
geodesic flow ¢ on (T*M, Q,, \/ﬁ) is periodic. Moreover, the function p
assigning (x, £)e T*M\ O to the fundamental period of the trajectory ¢®(x, &) is
bounded, and

2
WS Y {_”"_;nez}

@ oermo (X, )
holds good.

By virtue of Wadsley’s theorem [8] (see [1, p. 183 or Appendix A], also)
we see that the orbits ¢¥(x, £) have a least common period, i.e., the Riemannian
manifold (M, m) is a P,-manifold (£ being the least common period). On the
other hand, Guillemin showed the following result concerning # and £ (for the
Laplace-Beltrami operator).

Proposition 2.3 ([2, Theorem 6]). Suppose every trajectory of the geodesic
flow ¢ is periodic with least common period ¢{. Then, T = {2an/¢{;neZ}
holds good.

Combining the above results, we obtain the following theorem.

Theorem 2.4. Suppose L9 # R for some Lye A*\O. Then, every trajectory
of the geodesic flow ¢® on (T*M, Q,, \/H) is periodic with a least common
period denoted by ¢, and moreover

O = {2—;’1, neZ} cI@®

holds for every Ae A*\O.
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Corollary 2.5. X =R for every Ae A* if and only if the geodesic flow ¢
is not periodic (i.e., at least one geodesic is not closed).

3. Further consideration—Spectrum and holonomy

In [4] we considered the spectrum of the Bochner-Laplacian on the vector
bundle over a C,,-manifold. The arguments developed there is directly applicable
to the line bundle E;, over M when (M, m) is a P,-manifold. In this section
we briefly offer some results about the structure of ¥ (1€ A*) in terms of the
holonomies of the connection ¥». The details of this section and further
investigations will appear in the forthcoming paper [7].

When (M, m) is a P,-manifold, we see that the spectrum of ./L“* is
distributed in a neighborhood of the lattice points’

2 B
=k+Z ), k=1,23,...,

where B is the Maslov index of the periodic trajectories. We clarified in [4]

that the distribution of the eigenvalues of \/m in the interval [u, @,+,) as
k— o is described by the holonomies of the connection ™. For each
(x, £)eU*M we denote by Q9 (x, {)eS* the holonomy of 7™ along the closed
geodesic y,(x, &) (0 <t < /) on M with the initial condition (x, £). We say that
the spectrum {V"}>, makes cluster if for any ¢ >0 there is only finitely many

eigenvalues lying the outside of

3.1 U [ +c—e w+c+el,

k=1
where ¢ is some constant with 0 < ¢ <2r//. Then, we have the following (see
[4, Theorem 5.1 and Proposition 5.2]). :

Proposition 3.1 The spectrum of /L™ makes cluster if and only if
Q¥: U*M — §* is a constant function. Moreover, in such case Q%9 =1 or = — 1
according to ¢ =0 or = r/{, respectively, in (3.1).

We can see that ¥ = {2zn//; neZ} holds if and only if the spectrum of
< L® makes cluster. Moreover, we note the following property of the holonomy:
QUi(x, &) = (QP(x, &))"  (meZ).

As a consequence, we have the following.

Theorem 3.2. Suppose 2% = {2an/¢; neZ} for some Aye A*\O0. Then,
(1) TP ={2rn/l;nel} for every ieA*,




Correction and Addendum 87

(2) (M, m) is a P,-manifold, and
(3) QY is a constant function (=1 or = — 1) for every Ae A*\0.

By virtue of further considerations of holonomies of the connection we have
the following theorem concerning the structure of T (Ae A*).

Theorem 3.3. (0) The structure of TP (AeA*) is one of the following three
types:

I: Z® =R for every AcA¥*,

II: 29 = {27n/¢; neZ} and there is Aye A*\O such that T® =R for any
A with |A| = |Al, and

II: Z® = {27n/¢; neZ} for every Ae A*.

(1) Type 1 occurs if and only if the geodesic flow ¢'% is not periodic (i.e.,
(M, m) is not a P,-manifold).

(2) Type 11 occurs if and only if (M, m) is a P,-manifold and the function
Q(f’}") takes a value not + 1 for some lye A*\O.

(3) Type I occurs if and only if (M, m) is a P,-manifold and Q¥ is a
constant function (=1 or = — 1) for every Ae A*\0.

Remarks. 1. In the case of Type II the measure of ™ for 0 < |4| < |4|
is not equal to zero.

2. Type III actually occurs when the principal bundle is the Hopf bundle
$2n+1 _, (CP", m,) with m, being the standard metric and the ¥ is the harmonic
connection, in that case every trajectory of the flow ¢! is periodic for every
AeA* (cf. [5]). The following question is left for future considerations:

' “Does every trajectory of the flow ¢ is periodic for every AeA* when (or
only when) ® is of Type II1?”
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