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Abstract

In this article, we realize, by the duality method, Sato hyperfunc-
tions valued in a locally convex topological vector space, which is not
necessarily a Fréchet space. We prove analogs of Schwartz’s Kernel
Theorem for analytic-linear mappings and vector-valued Sato hyper-
functions. Further we define several operations on analytic-linear map-
pings and vector-valued Sato hyperfunctions.
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Introduction

Since, in 1959—1960, Sato established the theory of Sato hyperfunctions, some
authors have tried to extend this theory to the vector-valued case(cf. Ion-Kawai[5]
and Ito[7], [9] and [10]). Until now the case of Fréchet-space-valued Sato hyper-
functions was considered as the limiting case because of the difficulty of the theory
of functions of several complex variables.

In this article we show that we can realize Sato hyperfunctions valued in a
locally convex topological vector space E by the duality method. Here E is not
necessarily a Fréchet space. This realization is difficult by the algebro-analytic
method if E is not a Fréchet space(cf. Ion-Kawai[5] and Ito[7], [9]). In fact,
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there exist counterexamples of Itano and Vogt[6], [16], which show that there ex-
ist some vector-valued distributions that cannot be realized as boundary values
of holomorphic functions. Let A(K) be the space of all real-analytic functions
on some neighborhoods of K when K is a compact set in a real-analytic man-
ifold M countable at infinity. Then A(K) is a nuclear DFS-space. Then we
consider the space A'(K; F) = L(A(K), E) of all continuous linear mappings
from A(K) into E, endowed with the topology of uniform convergence on each
bounded set in A(K). Then, for a relatively compact open set Q2 in M, we define
the space B(Q; E) = A'(Q%; E)/A'(6; E) and call each element in B(Q; E) an
E-valued Sato hyperfunction on Q. If we put B;(€; E) = 0 for an open set
in M which is not relatively compact and put B;(Q2; E) = B(Q; E) for a rela-
tively compact open set {2 in M and consider natural restriction mappings, then
the family {B;(€2; F); 2 is an open set in M} becomes a presheaf, but in general,
it is not a sheaf. We denote by ZB the sheafification of this presheaf and call
it the sheaf of E-valued Sato hyperfunctions over M. If F is a Fréchet space,
the presheaf { B(w; E);w is an open subset of {2} becomes a sheaf over a relatively
compact open set ) in M. By virtue of this fact, we can see that the sheaf £B
is flabby (cf. Ito[7], [9] and [10]). But if E is not a Fréchet space, we can not see
that the sheaf £ is flabby. This is an open problem.

We can prove analogs of Schwartz’s Kernel Theorem for analytic-linear map-
pings and E-valued Sato hyperfunctions if E is complete. Further we define several
operations on analytic-linear mappings and E-valued Sato hyperfunctions.

In section 1, we recall some properties of holomorphic functions and real-
analytic functions. .

In section 2, we define analytic-linear mappings and mention some of their
properties. :

In section 3, we define E-valued Sato hyperfunctions and mention some of their
properties.

In section 4, we prove analogs of Schwartz’s Kernel Theorem for analytic-linear
mappings valued in a complete, locally convex, topological vector space and define
several operations on analytic-linear mappings.

In section 5, we prove analogs of Schwartz’s Kernel Theorem for E-valued Sato
hyperfunctions when F is complete, and define several operations on vector-valued
Sato hyperfunctions.

1. Holomorphic functions and real-analytic functions

Let M be an n-dimensional and real-analytic manifold countable at infinity
and X a complexification of M. We denote by O the sheaf of germs of holomorphic
functions over X and by .A the sheaf of germs of real-analytic functions over M.
Then A = O| holds. ‘

Then we have the following,.
Theorem 1.1(the Oka-Cartan Theorem B). Let Q2 be a Stein open set in
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X. Then we have H?(Q, O) =0, (p > 0).
Proof. See Hérmander[4], Corollary 7.4.2, p.182. Q.E.D.
Theorem 1.2(Malgrange). For every compact set K in M, we have

H?(K, A) =0, (p>0).

Proof. We know, by virtue of Grauert’s Theorem (cf. Grauert[3]), that K has
a fundamental system of Stein open neighborhoods. Then, it follows, from the
Oka-Cartan Theorem B and Schapira[14], Theorem B42, p.38, that we have

HP(K, A) 2 limindg,,_o H?(, ©) =0, (p > 0),

where () runs through all Stein open neighborhoods of € with N M = Q. Q.E.D.

If 2 is an open set in X, we set O(2) = I'(Q, @), the section module on Q.
This space has an FS-space topology with seminorms px (f) = supg |f|, where-K-
runs over the family of compact subsets of Q. It is known that O() is a nuclear
- Fréchet space. Let K be a compact subset of X. We put

O(K) = limindg~ g O(R).

O(K) is the space of holomorphic functions in a neighborhood of K endowed with
the inductive limit topology of () where €2 runs over the family of all complex
open neighborhoods of K. It is a nuclear DFS-space(in particular, it is Hausdorff)
and its dual O'(K) is a nuclear FS-space.

Further, every bounded subset of O(K) is contained and bounded in a space
O(Q) with K C Q (cf. Martineau[12] or Komatsu[11]).

If K is a compact subset of M, we have an isomorphism A(K) 22 O(K), where
A(K) denotes the space of real-analytic functions in a neighborhood of K in M.
A(K) is endowed with the topology of O(K). Then O(X) is dense in A(K) by
virtue of the embedding theorem(Grauert[3]).

If Q is an open set in M, let A(R2) be the space of real-analytic functions on Q
equipped with the topology

A(Q) = lim proj g o A(K).

Here K runs over the family of all compact subsets of Q2. Then A(Q2) is a nuclear
F'S-space.

Now we have the following,.

Proposition 1.3. Let M; be an n;-dimensional and real-analytic manifold
countable at infinity and X; a complezification of M;(i = 1,2). Then we have the
following canonical isomorphisms:

(1) O(Q)RO(Qe) =2 O x Q2), (4 is an open set in X;(i = 1,2)).
(2) O(K1)QO(K2) = O(K; x Ka), (K; is a compact set in X;(i =1,2)).
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(3) A(K1)QA(Kz) > A(Kyx Kz);- (K; ds.a compact set in M;(i = 1,2)).
(4) A(Q1)QA(2) =2 A( x ), (U is an open set in M;(i = 1,2)).

Proof. See Ito[7], Proposition, p.30. Q.E.D.
Proposition 1.4. Let K and K2 be two compact sets in M. Then the sequence

0— .A(Kl U Kz) — .A(K1) D .A(K2) — A(Kl N Kz) —0

(fi, o)r— fi—fa

is ezact.
Proof. By virtue of the Mayer-Vietoris Theorem, we have the long exact se-
quence of cohomology groups

0 — A(K; U K;) — A(K1) © A(K2) — A(K1 N K3)

——-)Hl(KlL!Kz, .A)—)

Then, by the Malgrange Theorem, we have H'(K; U K3, A) = 0. Thus we have
the conclusion. Q.E.D.

2. Analytic-linear mappings

In this section we recall the notion of analytic-linear mappings following Ito[8].

In the sequel of this article, E is always assumed to be an arbitrary, locally
convex, Hausdorff and topological vector space over the complex number field
(LCV for short) as far as the contrary is not mentioned. A

Definition 2.1. Let Q be an open set in X and O'(Q; E) = L(O(), E)(=
Ly(O(Q), E)) the space of all continuous linear mappings of O({2) into E equipped
with the topology of uniform convergence on every bounded set in O(€2). We call
an element of O'({; F) an analytic-linear mapping on 2 valued in E or an (E-
valued) analytic-linear mapping on 2. We say that u € O'(S); E) is carried by a
compact subset K of Q if u can be extended to O(K). We then call K a carrier of
u. We also say that u € O(Q; E) is carried by an open subset w of {2 if u is carried
by some compact subset of w. Then w is said to be a carrier of u. The spaces
O'(K; E) = L(O(K), E), A(K; E) = L(A(K), E) and A'(%; E) = L(A(Q), E)
are defined in a similar way. We also say their elements to be analytic-linear
mappings and define the notion of their carriers in a similar way.

Proposition 2.2. Let E be complete. Then we have the following isomor-
phisms:

(1) O (% E) =2 O (Q)QE, (Q is an open set in X.).
(2) O'(K; E) 2 O'(K)®EF, (K is a compact set in X).
(3) A(K; E) = A(K)®E, (K is a compact set in M).




Sato Hyperfunctions Valued in a Locally Convex Space 31

(4) A(Q; E) 2 A(Q)QE, (Q is an open set in M).

Proof. See Treves|[15], Proposition 50.5, p.522. Q.E.D.

Definition 2.3. Let K be a compact subset of X. Then we say for K to have
the Runge property if all bounded subset of O(K) is in the closure of a bounded
subset, in O(K), of elements of O(X).

Proposition 2.4. Let K be a compact subset of X with the Runge property.
Let u € O'(X; E). Then u is carriable by K if and only if it is carriable by all
open neighborhood of K.

Proof. See Ito[8], Proposition 2.14, p.35. Q.E.D.

The elements of A'(M; E) are called real and analytic-linear mappings. They
are analytic-linear mappings on X which are carried by a real compact set in M.

Theorem 2.5. For an arbitrary family {K;}ic1 of at-most-countable compact
sets in M, we have Njc1 A'(Ki; E) = A'(Nic1 Ki; E).

Proof. (i) At first we prove the case I = {1,2}. By virtue of Proposition 2.4,
we have the exact sequence

Thus we have the exact sequence
0 — A'(K1 N Ky; E) — A'(Ky; E) @ A'(Ky; E) = A'(Ky U Ky; E).

Thus we have Ker()\) 2 A'(K;; E) N A/(K;; E) 2 A (K1 N Ke; E).

(ii) Next we prove the case I = {1,2,---,m}. We use the induction. The case
m = 2 holds good by (i). Assuming that the case m — 1 holds good, we prove the
case m. Then we have

N A(K; E) = {N272A(Ks; E)} N A (Knm; E)
A (N27'Ki; E) N A (Km; E)

A (NP K} N K E) = A (N, K;; E).

IR 1R

Thus we have the conclusion in this case.

(iii) In the case I = {1,2,3,---}. Put K = Nijc1K; and Ly, = N2, K;. Then we
have Ly DLy D+ D Ly D--- D K and K = N_; Ly,. Thus we have algebraic
isomorphisms

L(limind,, A(L,); E) 2 limproj,,, A'(Ly, E)
lim proj,, N, A'(Kj; E) N2, A (K;; E).

A'(K; E)

o)
[a¥]

Thus we have the conclusion. Q.E.D.

In the proof of Theorem 2.5, we have used the following.

Lemma 2.6. Let {Ep, umn(m < n)} be an inductive system of LCV’s and
continuous linear mappings and F an arbitrary LCV. Then the family {E;,, up,,}
with E!, = L(Em, F) and the adjoint mapping u,, : E, — E;, (m < n)
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becomes a projective system of LCV’s and continuous linear mappings u,,,, and
we have the algebraic isomorphism

L(limind,, Ep,, F) 2 limproj,, L(Em, F).

Proof. The family {E},,u!,,} is evidently a projective system. Thus we have
to prove the algebraic isomorphism

L(limind,, Ep,, F) 2 limproj,, L(Em, F).

Put F = limind,, F,, and u,, : F,, — E be the canonical map. The adjoinf map
up, of u,, defines the linear mapping

¢ : L(E, F) — limproj,, L(E,,, F),

T — {’u;nT}

In fact, we have u! , (u!T) = (up, © umpn)'T = u;,, T. Then ¢ is injective. In fact,
let ¢T = {u!, T} =0, i.e. », T = 0 for all m. Then, for x € E and z,, € E,, with
UmZm = T, T(z) = T(umzm) = (u,,T)(Zm) = 0 holds. Thus we have ' = 0. Now
let {T;n} € lim proj,, L(E, F) be given. Then T, = t),, T, = T 0ty (M <)
holds good. Thus there exists T' € L(limind, E,, F) with T, = T 0 uy = 6, T.
This means that ¢T' = {u/, T} = {Tn}. Thus ¢ is an algebraic isomorphism.
Q.E.D.

Theorem 2.7. Let u € A'(M; E) with u # 0. Then there erists the smallest
compact set in M which carries u. We call it the support of u and denote it by
supp(u). . _

Proof. Among all carriers of u, we have only to consider compact carriers of
u. Let {K,} be the family of all compact carriers of u in M. Then let {Kz} be
an arbitrary totally ordered subfamily of {K,} with Kz D Kg (8 < f’). Then
we can choose a subsequence { K} of {Kj3} with N;K; = NgKp = K. In fact, let
{U,} be a countable family of open neighborhoods of K with U; D Uz O --- and
N;U; = K. Then we choose K; as the largest compact set among the subfamily
of all compact sets Kz € {Ks} contained in U;. Then the projective system
{A'(K;; E)} is cofinal with the projective system {A'(Kg; E)}. Thus, by virtue
of Theorem 2.5, we have the algebraic isomorphisms

NgA'(Kg; E) = limprojzA'(Kp; E)
= limproj;A'(Kj; E) 2 A(K; E).
Then u € A/(K; E). Thus K is a minimal compact carrier of u. Thus, by virtue

of Zorn’s Lemma, we have the conclusion. Q.E.D.
< For u, u1, uz-€ A(M; E), we have

supp(u1 + uz) C supp(u1) U supp(uz),
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supp(Au) C supp(u), (A € C).

Proposition 2.8. For every two compact sets K1 and K, in M with K1 C Ka,
there exists a continuous injection ik, k, : A'(Ki; E) — A'(Ka; E).

Proof. (1) Let Yik, k, : A(K2) — A(K1) be a canonical mapping. Then
ik, Kk, is evidently continuous. Let ik, ik, : A'(Ki; E) — A'(K3; E) be its
adjoint map. Then ik, k, is evidently a continuous injection. Q.E.D.

Proposition 2.9. Let K, and K, be two compact sets in M with K; C Ka.
Further, assume that every connected component of K, intersects K1. Then ik, k,
has the dense range in A'(Ka; E).

Proof. By the assumptions, the canonical mapping ‘ix, g, is injective. Thus
A'(K3) is dense in A'(K2). Then we have the inclusions,

A(K1)®E < L(A(K1), E) — L(A(Kz), E)
< L(A(Kz), E) = A'(Ky; E).

Here E denotes the completion of E. Since A'(K;)® E is dense in A'(Kz; E), we
have the conclusion. Q.E.D.

Let now €2 be an open subset of M and K a compact subset of {2. We call the
“envelope” of K (in 2) and denote by K, the union of K and all the relatively
compact connected components (in ) of Q \ K. It is again a compact set.

Corollary 2.10. Let Q be a relatively compact subset of M and K1, Kz (K1 C
K3) two compact subsets of Q such that K; = K; holds (i = 1, 2). Then A'((Q\
K3); E) is dense in A'((Q\ K1)%; E).

3. Vector-valued Sato hyperfunctions

Let E be an LCV. First we consider vector-valued Sato hyperfunctions on a
relatively compact open set in M.
Let Q be a relatively compact open subset of M. We put

B(Q; E) = A(Q; E)/ A (6Q; E).

Then, since A'(0Q; E) is dense in A'(Q; E), B(QY; E) is not endowed with any
nontrivial topology.

Definition 3.1. An element of B(2; E) is called a Sato hyperfunction on w
valued in E or an E-valued Sato hyperfunction on w.

Let K be a compact set in M containing 2. Then, by virtue of Proposition
2.8, we have the canonical map

A(Q; E) — A(K; E) — A(K; E)/A(K\ S, E),
whose kernel is the space

A Eyn A (K \Q; E) 2 A(69; E).
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Thus we have the isomorphism
B(Q; E) = A'(Q%; E)/ A (0 E) 2 A(K; E)/A(K\Q; E).
Let now w be an open subset of 2. Then the mapping
A@, E) — &A@ B)/ A0 \w; F)

defines a mapping
’ B(Q; E) — B(w: E),

because A'(6; E) C A (% \w; E) holds. This mapping is called the restriction.
If T € B(Q; E), we denote by T/, its image in B(w; E). It is clear that, if
Q3 CQ C N and T € B(Qy; E), we have

‘ (Tlﬂz)lﬂa = Tlﬂa'

Thus we have the following,.

Proposition 3.2. Let Q be a relatively compact open set in M. Then the
collection { B(w; E);w is an open subset of Q} becomes a presheaf (of vector spaces)
over Q.

Proposition 3.3. We use the notation in Proposition 3.2. Let w = U;crw;
be a union of open subsets w; of Qi € I) and T € B(w; E) with T|,, =0 for all
i € 1. Then we have T = 0.

Proof. By the assumptions, if ur € A'(w; E) is a representative of T, the
image of ur in A'(w"; E)/A'(w® \ w;; E) is zero for all 4 € I. From here we have

ur € A'(w" \w;; E) forallie I.

Namely, we have
ur € Mier A'(W* \ wi; E).

Here we have

Nicr A (W \ wy; E) 2 A (Nier (@™ \ w;); E)
= A'(w \ Uieqwi; E) = A' (W \w; E) = A'(Bw; E).

Hence we have supp(ur) C dw, so that T' = 0 holds. Q.E.D.

Thus we have seen that the presheaf {B(w : E);w is an open subset of Q}
satisfies the condition (S1) of Bredon[1], p.5. But if F is not a Fréchet space, this
presheaf does not satisfy the condition (S2) of Bredon[1}, p.6. Thus this preﬁheaf
does not become a sheaf unless E is a Fréchet space.

Proposition 3.4. We use the notation in Proposition 3.2. If w is an open
subset of Q and T € B(w; E), then there erists T € B(QY; E) such that T|, = T.

Proof. Let upr € A'(w; _E) be a representative of 7. Then we have ur €
A'(Q%; E) . Thus we define T € B(); E) to be the image of ur in B((}; E). Then
evidently we have T|, = T. Q.E.D.
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By virtue of Proposition 3.3, we can define the support of T' € B(Q; E).
Namely, a compact set K in Q is said to be the support of T if Q\ K is the
largest open set in Q for which T'|g\x = 0 holds. Then we denote K = supp(7T).

Proposition 3.5. .We use the notation in Proposition 3.2. Let K be a compact
subset of ) and put

Bk (Y, E) = {T € B(Y; E);supp(T) C K}.
Then we have the inclusion

A(K; E) C Bx(); E).

Proof. By the assumptions, we have the inclusion map
A(K; E) — A'(Q°; E)/A' (0%, E) = B(QY; E).

Let u € A'(K; E) and [u] its image in B(Q; E). We consider the restriction
[ullo\k- Since B(QA\K; E) = A’ (Q; E)/ A (QV\(Q\K); E) = A'(Q; E)/A'(0QU
K; E) holds and u € A'(K; E) C A'(OQUK; E) holds, we have [u]|q\x = 0. Thus
we have A'(K; E) C Bx(§%; E). QE.D.

In order to prove the inclusion Bg(Q; E) C A'(K; E), it is sufficient to know

the following.
Problem A. For two compact sets K; and K, in M and put K = K1 U K.
Then is the sequence

A'(K1; E)® A'(K2; E) — A(K; E) — 0

exact?

If E is a Fréchet space, the answer to the Problem A is affirmative(cf. Ito[7],
Proposition 2.3, p.33). But in general we do not know any answer.

Next we consider E-valued Sato hyperfunctions on M.

Let {B:(Q; E); is an open set in M} be the presheaf over M defined as

follows:
If Q is not relatively compact, B1(Q; E) = {0}.
If Q is relatively compact, B1(Q; E) = B(}; E).
Then restrictions are defined as follows:

Bi(Q; E) — Bi(w; E)
0 — 0if Q is not relatively compact with 2 D w,

T — T|,, if € is relatively compact with 2 D w.

This presheaf satisfies the condition (S1) of sheaves but not (S2) (cf. Bredon([1],
pp.5-6).
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We denote by £B the sheaf associated to this presheaf {B:1(2; E); Q2 is an open
set in M}. It is a sheaf of vector spaces over M.

Definition 3.6. The sheaf £ is called the sheaf of E-valued Sato hyperfunc-
tions over M. :

Then if  is an open set in M and T € I'(2, £B) = B(Q; E), T is defined to
be an equivalence class {(§;, T;);cs} as follows:

The family (€2;,T;)ier of open sets ; in Q and T; € B(Q;; E), (i € I) is
determined as follows:

(%)icr is a covering of Q and ;’s are relatlvely compact open sets and T} €
B(§2;; E) satisfies

: Tilaine; = Tjlaine;-

Two such families (€2;,T;);cr and (€7, Tj)ircr- are defined to be equivalent if

Tila:na, =Ti'|sz.nn,; (tel, z"GI’)

holds. This relation is in fact an equivalence relation by virtue of (S1). Then

I'(Q, ZB) = B(Q, E) is defined to be the quotient space of the space of all families

{(Q@, Ti)icr} of the above type with respect to this equivalence relation. Then
= (S, T3)icr is defined so that T|q, = T;, (i € I) holds.

The symbol B(Q2, E) = I'(Q, £B) is used as the section module of the sheaf £
in abuse of languages. The symbol B(Q, E) = A'(Q%; E)/ A (6S; E) for relatively
compact open set {2 and the symbol B(Q, E) =T'(Q, £B) are distinguished in the
context.

- Here we present the following problem.

Problem B. Is the sheaf £33 flabby?

If E is a Fréchet space, the answer to the Problem B is affirmative(cf. Ito[7],
Theorem 4.1, p.41). But in general we do not know any answer. If the presheaf
{B(w, E) = A'(w?; E)/A'(8w; E);w is an open subset of Q} over a relatively
compact open set €2 in M becomes a flabby sheaf, then we can show that the
answer to the Problem B is affirmative by a similar way to Ito[10], Lemma 1.2.5,
p.221.

4. Operations on analytic-linear mappings and Kernel The-
orems

In this section we now define several operations on analytic-linear mappings.

4.1. Tensor products and Kernel Theorems. At first we recall the tensor
product of analytic functionals.

Proposition 4.1. Let M; be an n;-dimensional, real-analytic manifold count-
able at infinity and X; its complerification (i = 1,2). Then we have the following
canonical isomorphisms:

(1) O'(Q1)80' () = L(O(h), O (R)) = O (R x ),
(€ is an open set in X;(i = 1,2)).
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(2) O'(K1)®0'(Ka2) = L(O(K1), O'(Kz2)) 2 O' (K1 x Ka),
(K; is a compact set in X;(i = 1, 2)).

(3) A'(K1)®A'(Kz2) = L(A(K1), A'(K2)) 2 A'(K: x Ka),
(K; is a compact set in M;(i = 1,2)).

(4) A'(Q)BA'(Q2) & L(A(), A' () = A'(h x ),
(€2; is an open set in M;(i = 1,2)).

Proof. See Ito[7], Proposition 3.1, p.35. Q.E.D.
We note that Proposition 4.1 establishes analogs of Schwartz’s Kernel Theorem

in the case of analytic functionals.

Next we consider tensor products of analytic-linear mappings. In this section,
we assume that E; and E, are two complete LCV’s and put E = E;®, E,, where
w stands for the e- or m-topology in the sense of Treves[15].

Theorem 4.2. Let M; and X; be as in Proposition 4.1, and E, and Ey two
complete LCV'’s. Put E = E1Q, E>, wherew stands for the ¢- or w-topology. Then
we have the following canonical isomorphisms:

(1) O'(Q; E1)@uO' (; E2) 2 O' (S x Qg; E),
(Q; is an open set in X;(i = 1,2)).

2) O'(Ky; E1)®.O'(Ky; Ez) & O'(Ky x Ky; E),
(K; is a compact set in X;(i = 1,2)).

(3) A'(K1; E1)QuA'(Kz; Ez) = A'(K1 x Ka; E),
(K; is a compact set in M;(i = 1,2)).

(4) A'(Q1; B1)Q,A' (e E2) 2 A (S x Q; E),
(Q; is an open set in M;(i = 1,2)).

Proof. It goes in a similar way to Ito[7], Proposition 3.2, p.36. Q.E.D.
~ 'We note that Theorem 4.2 establishes analogs of Schwartz’s Kernel Theorem
in the case of analytic-linear mappings.
With the help of Theorem 4.2, we have the following definitions of tensor

products of analytic-linear mappings.
Definition 4.3. We use the notation in Theorem 4.2. Let u; = ;1 ® €; €

O (Qy; E;) and up = 02 @ ex € O(Qe; Ez), where p; € O'(;) and g2 € O ()
and e; € E;(i = 1,2). Then we define u; ®,, uz by the following relation:

Uy @tz = (1 ® v2) ® (61 Qu €2)

ie.,
(w1 ®uw u2)(f1 ® f2) = p1(f1)p2(f2)(e1 Bu €2),
for f; € O(Y;), (i=1,2).
In all other cases, we define tensor products of analytic-linear mappings of each
type similarly.
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In all real cases, we have

supp(u1 ®. uz) C supp(u1) X supp(uz).

4.2. Multiplication by a holomorphic or a real-analytic function. Let
2 be an open set in X. For f € O(2) and u € O'(Q; E) we define fu € O'(; E)
by the formula
(fu)(g) = u(fyg) for all g € O(Q).

By this definition (/(€2; E) is an O(£2)-module.

For a compact set K in X(or M) and an open set Q in M, we can define an
O(K)-(resp. A(K)-, resp. A(Q)-) module structure of (¥ (Q; E) (resp. A'(K; E),
resp. A'(Q; E)) in a similar way.

For a real and analytic-linear mapping » and a real-analytic function f, we
have

supp(fu) C supp(u).

4.3. Differentiation. Let X be an analytic manifold and €2 an open set in
X.

Let P be a differential operator on 2 of finite order with coefficients in O(£2)
and P* a formal adjoint differential operator. Then, for an arbitrary analytic-linear
mapping u € O'(Q; E) on the open set ), we define Pu by the formula

(Pu)(f) = u(P* f), for every f € O(Q).
In a similar way, we can define the derivative of analytic-linear mappings of each
type.

4.4. Analytic diffeomorphisms. If Q; and €2, are two open sets in X, w =
®(z) denotes a complex-analytic diffeomorphism of {2; onto €22.
Then, for u € O'(Q; E), we define &*u € O'(Qy; E) by the formula

(®*u)(f) = u((f 0 @7 H)|J]), for f € O(),

where |J| is the absolute value of the Jacobian J of the mapping ®~*.

If K; and K, are two compact sets in X and if w = ®(z) is a complex-analytic
diffeomorphism which maps a certain open neighborhood in X of K onto a certain
open neighborhood in X of K, such that ®(K;) = K3, then, for u € O'(Kz; E),
we define ®*u € O'(K;; E) by the formula

(@*u)(f) = u((f 0 @7 H)|J]), for f € O(K1),

If K; and K- are two compact sets in M, this is a special case of the above.
But, in this case, we have

supp(®*u) = & *(supp(u)), for u € A'(K2; E).
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At last, if ©; and € are two open sets in M and y = ®(z) is a real-analytic
diffeomorphism of Q; onto €2, then, for u € A'(; E), we define *u € A'(Qy; E)
by the formula

(@*u)(f) = u((f 0 @ 1)|J]), for f € A(h).
Then we have

supp(®*u) = ®!(supp(w)), for u € A'(Sk; E).

5. Operations on vector-valued Sato hyperfunctions and Ker-
nel Theorems

In this section we define several operations on E-valued Sato hyperfunctions
on M.

5.1. Tensor products and Kernel Theorems. In this subsection, we
assume that E; and E, are two complete LCV’s and put E = E1Q®,,E;, where w
stands for the e- or m-topology in the sense of Treves[15]. Let {B(€; E); is an
open set in M} be the presheaf of E-valued Sato hyperfunctions. '

Let ©; be a relatively compact open set in M; (i = 1,2) and T; € B(;, E;), (i =
1,2). Let then T; € A'(Q!, E;) so that Ts|, = T;, for i = 1,2. Here T}|q, denotes
the image of T; in B(;, E;). Then we have 71 ®., T2 € A'(5' x Q5'; E). Then
we can see that Ty ®,, Ta|q, xq, does not depend on the choice of representatives
T, and Ts of T} and T, respectively. Thus T; ®, T2|q, xg, is an E-valued Sato
hyperfunction in B(€}; x §2; E) which depends only on T; and T>. We denote
this by T3 ®, T2 and call it the tensor product of T and T3. Ty ®, 1> has the
properties of tensor products of vectors. Then we have

supp(T: ®., T2) C supp(71) X supp(73).

Theorem 5.1. Let E; and E; be two complete LCV’s and put E = E1QuE2,
where w stands for the e- or m-topology. Let Q1 and Qp be two relatively com-
pact open sets in My and M, respectively. Then we have the canonical algebraic

isomorphism
B(Qy x Qp; E) & B(Q1; E1) @, B(Sk; Ez).

This is an analog of Schwartz’s Kernel Theorem.

5.2. Multiplication by a real-analytic function. Let (2 be a relatively
compact open set in M. If T € B(Q; E) and f € A(Q), then we define fT as
follows. Let T € A/(Q'; E) such that T|g = T holds. Then fT € A(Q%; E).
Then we can see that fT|q does not depend on the choice of the representative
T. Thus fT|q is an E-valued Sato hyperfunction in B(2; E) which depends only
on f and T, and which we denote by fT.
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5.3 Differentiation. Let {2 be a relatively compact open set in M and P a
differential operator of finite order with coefficients in A(Q°!). Let T € B(); E)
and T € A'(Q°; E) such that T|g = T. Then, using the result in the subsection
4.3, we define PT by the formula PT = PT|g which depends only on 7.

5.4. Analytic diffeomorphisms. Let 2; and ) are two relatively com-
pact open sets in M; and M; respectively and y = ®(z) a complex-analytic
diffeomorphism which maps a certain complex, open neighborhood of Q5! onto
a certain complex, open neighborhood of 25 such that ®(Q$!) = Qgl. Then, for
T € B(Q; E), let T € A(Q5; E) with T|g, = T. Then, using the result in the
subsection 4.4, we define ®*T € A'(Q§'; E). Then we can see that ®*T|q, does
not depend on the choice of representatives T. Thus ®*T|q, is an E-valued Sato
hyperfunction on §2; which depends only on 7. We denote this by ®*7". Then we

have
supp(®*T) = &~ (supp(T)), for T € B(§k; E).
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