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Abstract

In this article, we give one solution of Hilbert’s 6th problem. We
give the new axiom of quantum mechanics. Thereby we construct
the mathematically reasonable framework which is consistent with the
physical interpretation. This is an answer to the Einstein and Bohr’s
controversy.
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Introduction

In this article we give one solution of Hilbert’s 6th problem. This problem
is the mathematical treatment of axioms of the theories of physics. As for this
problem it is the question what is a solution. Here, if we consider the problem as
the axiomatic treatment of the various theories of physics, some ones have been
already solved and some others are not yet solved.

Now we consider the new axiom of quantum mechanics as the problem. As
for this problem, somebody considers the von Neumann’s theory as a solution.
But in the old quantum mechanics, we have the dissociation of the mathematical
calculation and the physical interpretation. So that in this paper we construct the
new theory of quantum mechanics, and thereby we construct the mathematically
reasonable framework which is consistent with the physical interpretation.

This is an answer to the controversy of Einstein and Bohr.
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1. Orthogonal measures and orthogonal Radon measures

In this section, we mention the orthogonal measures and the orthogonal Radon
measures.

Definition 1.1 We call a triplet (A, B, 1) over a set A a measure space if
the following two conditions are satisfied:

1. B is a o-ring of subsets of A.
2. p is a o-finite completely additive nonnegative measure over B.

A measure space (A, B, p1) is also denoted by the symbol A = A(B, ).
Definition 1.2. Let a triplet (A, B, 1) over a set A be a measure space and &
an H-valued set function over the subring

" B.={B; B e Band u(B) < co}.

Then we call £ an H-valued completely additive orthogonal measure over
(A, B, p) if € satisfies the relation

(6(4),€(B)) = w(AN B), (A, B € By).

Here the measure 1, defined by the relation

pe(A) = (AP, (A€ By)

is called a nonnegative measure of £. Then we have the relation p¢ = |, in
Definition 1.2.

Theorem 1.3. Let a triplet (A, B, p) is a measure space over a set A and ¢
an H-valued completely additive orthogonal measure over (A, B, u). Then we have
the following:

(1) For a sequence Ay € By, (k=1,2,---) such that A; N Ay = 0(j # k) and
Up=1Ax € By, we have the relation

§(Upz14k) = g2 €(Ar), (in H)

(2) For A, B € B, such that AN B = (8, we have the relation £(A) L £(B).

Let £ be an H-valued completely additive orthogonal measure and Ly, =
Ly (A, B, 1) the space of all complex valued square integrable functions on A. Then
we can define the integral of ¢ € Ly ,;

amzﬁm»wm

which has the following two conditions:

(1) £(9) € H, for ¢ € La,,,

(2) (€(9),€(¥)) = (¢,9),, for ¢,9 € Ly, where (,), denotes the inner product
in Lg,ﬂ. '
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Now we mention the definition of orthogonal Radon measures and their prop-
erties.

Let A be an open set in R™. Let K(A) = C.(A) be the space of all continuous
functions with compact support on A. We assume that (A) is endowed with the
canonical LF-topology.

We call a continuous linear form on K(A) a Radon measure. We call a
continuous linear map from X(A) to a Hilbert space H an H-valued Radon
measure. .

Let 4 be a positive Radon meéasure, namely, p(¢) > 0 for every ¢ € K(A)
such as ¢ > 0. o

Definition 1.4. We use the above notation. Let i be a positive Radon measure
on A and £ an H-valued Radon measure on A. Then we call £ an orthogonal
Radon measure on (A, p) if it satisfies the relation

(£(9),£(¥)) = n(8™¥), (6,9 € K(A)).

Here we define ¢* by the relation ¢*(\) = ¢(\)* and the symbol ¢()\)* denotes

the complex conjugate of ¢(A).
Corollary 1.5. We use the notation in Definition 1.4. Then we have the

relation

(6(9), £(¥)) = 0, if supp(¢) N supp(y) = 0.

We can extend the domain of a positive Radon measure p so that it includes
defining functions of some kind of subsets of A. Then we define the family B* of
subsets of A by the relation

B = {AC A;p(xa) < 00}
Then we can define the set-theoretical measure u(A) by the relation
u(A) = p(xa), (A€ B).

Let B = 0(B*) be a o-ring generated by B*. Then the triplet (A, B, 1) is a measure
space. Then we can define £(E) by the relation

§(E) = &(xe), (E € BY).

Then £ becomes an H-valued completely additive orthogonal measure over the
measure space (A, B, ). We have the relation

B* = {A C A; u(A) < oo}

Then we have the integral relation

€(f) = A FOVE@N), (f € Lo u(A)).
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By the restriction of this integral to the functions in K(A), we obtain the former
orthogonal Radon measure &(¢) on (A, ).

By these relations we can identify an orthogonal Radon measure on (A, u)
and the corresponding set-theoretical H-valued completely additive orthogonal
measure over the measure space (A, B, u).

2. Bra and ket vectors and braket products

In this section we mention the definitions of bra and ket vectors and braket
products.

Definition 2.1. Let A be an open set in R". Then we call p € K'(A) a
Radon probability measure if the following two conditions are satisfied:

(i) p is a positive Radon measure.

(ii) For the constant 1 on A, p(1) is defined and p(1) = 1 holds.

Definition 2.2. Let H be a Hilbert space over the complex number field, and
A an open set in R®. Assume p € K'(A) be a Radon probability measure. Then
we call an H-valued orthogonal Radon measure £ over (A, ) a ket vector, or
simply a ket over A.

A ket vector is an H-valued orthogonal Radon probability measure. We also
denote a ket vector £ by a symbol [§).

Theorem 2.3. Let K be the set of all ket vectors over A. Then K is a subset
of K'(A; H) and satisfies the following.

If¢&,n € K and € + n becomes an H-valued orthogonal Radon measure, then
there ezists gy € K'(A) such that the following conditions are satisfied:

(1) (6(6), () = en( ), (9,9 € K(A)).

(i) pe = pee is a Radon probability measure.

(iii) pen = (kne)"

Definition 2.4. Let K be as in Theorem 2.3. For £ € K, we define £* by the

relation
£ (¢) = £(9")", (¢ € K(A)).

Then we call the above ¢* a bra vector, or simply a bra over A.

We also denote a bra vector £* by a symbol (£|.

Theorem 2.5. Let H* be the dual space of a Hilbert space H and K* the
set of all bra vectors over A. Then K™ is a subset of K'(A; H*) and satisfies the
following. If €, n € K* and € +n* is an H-valued orthogonal Radon measure,
then there exists pg-n- € K'(A) such that the following conditions are satified:

(€ (9), 1" (¥)) = peen~(8"9), (8,9 € K(A))-

Here, for ¢ € K*, we define £* by the relation £*(¢) = £(¢*)*, (¢ € K(A)). Then
¢* € K and pg-,- has the same meaning as in Theorem 2.3.
The map from K to K* defined by £ — £* is a bijective map.
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Now we define the braket product of a ket vector n € K and a bra vector
¢ € K*. We also denote 7 and £ by symbols |n) and (£| respectively. Then we
define the braket product (§||n) = ({|n) of (¢| and |n) by a sesquilinear map

(€lm) : (6, %) > (€7 (), n(¥))1-

Here (, )2 denotes the inner product of H. We usually use (¢|n) instead of (£||n)
for simplicity. Therefore we have

(E@IW) = € @), (8,9 € K(A)).
Thus we have the relations
(Elﬂ) = Mgy — (Nné‘)*'
Therefore, we have the relations, for &neK,

(€ (D)In(¥)) = (§(8),n(¥)) = uen(8*¥), (6,9 € K(A))
and, for &,n € K*,

(€(@)In* () = (€7(9), 1" (¥)) = pe=n+(¢"9), (&,% € K(A)).
The support of (¢|n), supp({(§|n)), is contained in the diagonal set of A x A.

3. The new axiom of quantum mechanics

The problems of quantum mechanics are as follows:

1. To clarify the quantum state of a system of microparticles and the law of its
time evolution.

2. To calculate the expectations of physical quantities of a system of micropar-
ticles and the statistics.

The characteristics of quantum systems are as follows:

1. Twofoldness of particle and wave.

2. Discreteness of physical quantities.

3. Canonical commutation relations and Heisenberg’s relations of uncertainty.

In the sequel, we formulate the new axiom of quantum mechanics, by which we
can explain those characteristics of quantum mechanics, and obtain the solutions
of the problems above.

Axiom I (quantum system). We assume that a quantum system  is a
probability space (§2, 8, P). Here Q is an ensemble of microparticles w, B is a




48 Yoshifumi Ito

o-algebra of subsets of 2, and P is a completely additive probability measure on
B.

An ensemble of microparticles, namely a quantum system, is generally an in-
finite ensemble. For example, we can consider an ensemble of atoms or molecules
as a quantum systern.

Examples (1) One particle system(a free particle system). This is a
quantum system whose elementary event is composed of only one microparticle.
For example, we have an ensemble of free electrons.

(2) Two particles system. This is a quantum system whose elementary
event is composed of two combined particles. For example, we have an ensemble of
hydrogen atoms. One hydrogen atom is a combined system of one atomic nucleus
and one electron. One hydrogen atom is an elementary event of this quantum
system.

(3) n particles system. This is a quantum system whose elementary event is
composed of n combined particles. For example, we have an ensemble of general
atoms. One atom is a combined system of one atomic nucleus and n — 1 electrons.
One atom is an elementary event of this quantum system.

Axiom II (quantum state). We assume that the quantum state of a quan-
tum system Q = Q(B, P)(= (2, B, P)) is the state of quantum probability distri-
bution of position variables r(w) and momentum variables p(w) of microparticles
composing the quantum system. Here we consider the orthogonal coordinate sys-
tems of n-dimensional Euclidean space R" and its dual space R,,, and n = dN.
Here d is the dimension of the physical space and N is the number of particles
composing one elementary event w.

The quantum state is determined as follows.

(I11) The quantum probability distribution of position variables r = r(w) is
described by a ket vector |¢) or %, which is an orthogonal Radon probability
measure corresponding to an L2-function ¢ on R".

(II) The quantum probability distribution of motion variables p = p(w) is

described by the ket vector |1/A1) or 1, which is the Fourier transform of :

B(p) = (2mh) "2 / Y(r)e= P/ rdr,

(r) = (2mh) "2 / B(p)E P dp,

r= (.’El,fl&'g,‘",xn), b= (p15p27""p‘n)5 P =p1T1 + peZa + -+ PpZp.

Here we put A = h/27 and h is Planck’s constant.

We note that the above Fourier transformation is the classical one.

(IIg) We put = (¥*[¢). Then p is a Radon probability measure on R". We
identify 1 and the corresponding probability measure in the set-theoretical sense,
which we denote by the same symbol p. Then we have, for a y-measurable set A
in R®,

P({w € 4 r(w) € A}) = p(A).




New Axiom of Quantum Mechanics 49

This p(A) denotes the probability with which the position variable r(w) belongs
to the region A. Then we have a probability space (R", By, 1), where B, is a
family of p-measurable events.

(IT4) We put i = (*|¢). Here fi is only the new symbol which does not mean
the Fourier transform of . Then /i is a Radon probability measure on R,,. We
also identify i and the corresponding probability measure in the set-theoretical
sense. Then we have, for a ji-measurable set B in R,

P({w € 4 p(w) € B}) = A(B).

This 4i(B) denote the probability with which the momentum variable p(w) belongs
to the region B. Then we have a probability space (R, B, /1), where By, is a family
of fi- measurable events.

Axiom IIT (motion of a quantum system). We call the time evolution of
the state of a quantum system the motion of the quantum system. The law of the
motion of a quantum system is described by a Schrédinger equation. We call the
Schrodinger equation the equation of motion of the quantum system.

A Schrodinger equation is defined by an equation

81,0_
Aot = HY, $ = p(4 7).

We call the operator H a Hamiltonian, which has a various form corresponding to
each quantum system. H is assumed to be a self-adjoint operator on the image
space H of the ket vector ¥. H is a Hilbert space.

Theorem 3.1(the principle of superposition of quantum states). Let
1,11, %2 be three solution kets of the Schrodinger equation of a quantum system

#2Y

ot _Hw

Assume we have a relation
Y = 1 + agte, (a1,02 € C),
where C is the complez number field. Put
(Y1l¥1) = p1, (Y3l2) = pe, (W |¥) =, (¥1|¥2) = pa.
Then we have the relation

= |1 P + ofoopaz + cnosuis + oz P pe.

Using this principle, we can explain the twofoldness of particle and wave.
Now we consider stationary states and boundary conditions. The equation of
motion of a quantum system is given by a Schrédinger equation
. OY

ih>> = Hy.
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If this equation does not involve the time variable explicitly, this system corre-
sponds to a conservative system. In this case the solution of this equation is
represented as

,‘/) — ¢e—iEt/h’
(*) H¢ = E¢.

Here E is a real number. The equation (*) is a Schrodinger equation independent
of the time variable. Then 4/ is said to be the stationary state with energy E and ¢
is said to be the wave function of the stationary state. The eigenvalue problem of
the equation (*) is to obtain its eigenvlues and eigenfunctions. Under the special
conditions, this state is said to be a restraint state. In this case, eigenvalues are
discrete. This explain the discreteness of physical quantities.

Definition 3.2 (expectation of dynamical variables). Dynamical vari-
ables M and N-are assumed to be functions M = M(r) and N = N(p) of 7 and
p respectively. The expectation values (M) and (N) of M and N, respectively,

are defined by the relations

(M) = (M(r) = (" | M(r)[$) = / " (£, P)M(r)(t, r)dr,

(N) = (N(p)) = (@ IN@)) = / 3* (t, )N (p)i(t, p)dp.

Theorem 3.3. For dynamical variables M(r) and N(p), we have the relations

W) = [ v NGO,

(M) = [ €M, PP,
Here V = Vp and Vp denote the gradient operator with respect to and p,

respectively.
In the integral representation above, operators N (%V) and M (ihVp) work on

those kets ¥ and ¥ on the right hand sides, respectively.
Examples We have the following:

@) = [ vyt ryar,

o) = [Pt = [ )G gm0t .

Az? = ((z - (2))?), Ap = {(pz — (Ps))),

ete..
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Theorem 3.4. If A(r, —ihV) is an Hermitian operator, we have the relation

(" A(r, 2V)I¥) = (9" |AGAV p, P)ID)

Now we consider canonical commutation relations and uncertainty relations.
In the position representation, operators z, (h/¢)(0/0z),-:-, etc. correspond to
dynamical variables z, p,,- -, etc., respectively. Then we have canonical commu-
tation relations

[, pz) = TPy — PoT = iR,
etc.. Then we have the following.

Theorem 3.5(Heisenberg’s uncertainty relation). We consider an one-
_dimensional quantum system. Let Az and Ap be the standard deviations of the
position variable and the momentum variable, respectively. Then we have the
Heisenberg’s uncertainty relation

Ax-Ap > E
2
In the other quantum systems, we have the Heisenberg’s uncertainty relation for
a pair of the canonical conjugate dynamical variables which satisfy the canonical
commutation relation.
In this framework of the new theory of quantum mechanics, L? wave functions
in the old quantum mechanics can be reasonably interpreted if the interpretation
is exchanged by the new one.
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