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Abstract

In this article, we obtain the notion of real-pseudoconvex domains
in R", and we prove Lo-estimates and existence theorems for the ex-
terior differential operators. For a real-pseudoconvex domain €2, we
have the vanishing of the de Rham cohomology H?({), R) = 0, p > 0.
Thereby we can prove the global solvability of exterior differential equa-
tions in several spaces of functions and generalized functions in a real-
pseudoconvex domain in R". These are analogs of Poincaré’s Lemma
in several categories.
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35N05, 14F17, 14F40

Introduction

At the Conference of Mathematical Society of Japan, October 1992 at Nagoya
University, Gromov lectured about manifolds determined by functional inequali-
ties. Among them there exist pseudoconvex domains in C™. For a pseudoconvex
domain Q2 in C™, we have H?(2,0) = 0, p > 0, where O denotes the sheaf of holo-
morphic functions over C". When 1 heard his lecture, I had a question. Namely
what are real analogs of pseudoconvex domains? Using a similar method to that
of Hérmander for d-operators[5], [6], we have Lo-estimates and existence theo-
rems for the exterior differential operators. As a result we obtain the notion of
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real-pseudoconvex domains in R". For a real-pseudoconvex domain €2, we have
the vanishing of the de Rham cohomology H?(2, R) = 0, p > 0. Thereby we can
prove the global solvability of exterior differential equations in several spaces of
functions and generalized functions in a real-pseudoconvex domain in R". These
are analogs of Poincaré’s Lemma in several categories.

Pseudoconvex domains in C™ are not in general real-pseudoconvex domains in
R?". Convex sets in C™ and disjoint unions of several convex sets in C™ are not
only pseudoconvex but also real-pseudoconvex.

In general, it is hard to calculate the de Rham cohomologies and to prove their
vanishing. We here succeeded in characterizing general regions in R" where the
de Rham cohomologies vanish.

It is known that the de Rham cohomologies do not vanish in general for pseu-
doconvex domains in C™ (cf. Hormander[6], p.59).

In this article, we always consider real-valued functions without explicit men-
tion of the contrary. When we quote the equation (1) in the section 1 for example,
we denote it (1.1).

Here I wish to express my hearty thanks to Professors H. Komatsu and T. Kori
for many valuable advices and discussions during the preparations of this work.

1. Subharmonic functions

In this section we remember the well-known facts on subharmonic functions.
As for subharmonic functions, we refer to Hormander|[6] and Rad[18].

Let R™ be the n-dimensional, real, Euclidean spaces and D a domain in R".
Let u(z) be a real C%-function defined in D. If u satisfies the Laplace equation

Au = 0*u/0z? 4 - + Pu/022 =0, (x = (z1,---,Zp) € D),

we say that u is harmonic in D or a harmonic function in D. Harmonic functions
are by definition 2-times continuously differentiable. In fact, they are real-analytic
in D. .

As for subharmonic functions, we give the following definition.

Definition 1.1. Let u(z) be a real function defined in a domain D of R".
Then we say u to be subharmonic if it satisfies the following three conditions:

(i) —oco < u < +00, u F — co.
(ii) w is upper semicontinuous.

(iii) For each xo € D and every closed ball B = B(xo,r) with center at xo and
of radius r contained in D, u(z) satisfies the following inequality

u(zp) < c_u;lr—"/BUd/\ = A(zo, 7). (1)

“ Here d) denotes the Lebesgue measure in R"™ and wy, denotes the volume of
the unit ball in R"™.
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For the case n > 2, we can replace the condition (iii) in the above definition
by the following condition (iii)":

(iii)’ In the notation in (iii), u(z) satisfies the inequality

u(zo) <

g [913 udo = L(zo,T). (2)
Here do denotes the measure on the sphere B and o, denotes the surface
area of the unit ball in R".

In general, we say that the maximum principle holds for a family of functions
defined in a common domain D if none of them attains its maximum in a interior
point, of the domain D unless it is constant.

It is known that an upper semicontinuous function « in D is subharmonic if
and only if, for every subdomain D’ C D and every harmonic function h in D',
(the family of) u — h satisfies the maximum principle.

In case where u is of class C? in D, - is subharmonic in D if and only if u
satisfies the inequality

Au = 0%u/0z% + -+ + 0%u/0r2 > 0,

(z = (z1,--+,zn) € D).

Even if u is not differentiable in the ordinary sense, an upper semicontinuous
function u in D is subharmonic if and only if Au is a positive measure in D where
the differentiation is taken in the sense of distribution in D.

Now we mention the properties of subharmonic functions.

Theorem 1.2. Let D be a domain in R™. Then we have the following:

(1) If uy,---,ux are subharmonic in D and ay,---,ar are positive constants,
then ajuq + - -+ + agug and max(uq(x),- -, ux(z)) are subharmonic in D.

(2) For a subharmonic function u in D, the function obtained by replacing u in
the interior of a closed ball B contained in a domain D of R"(n > 2) by the
Poisson integral with the boundary value u is subharmonic in D.

(3) If u is subharmonic in D and f(t) is monotone-increasing convex function
in R, then f(u) is subharmonic in D. In particular, if v > 0 and logv is
subharmonic in D, then v is subharmonic in D.

(4) If f(2) is holomorphic in a domain D of C, then log|f(2)| and |f(z)| are
subharmonic in D.

(5) If h is harmonic in D, then |h| is subharmonic in D.
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Now we remark that, in the conditions (iii) in Definition 1.1 and (iii)’ below
it, it is sufficient that, for every zo € D, there exists r(xo) > 0 such that (1.1) or
(1.2) holds for every r(0 < r < r(z)). Further we remark that we have —co <
A(zo,7) < L(x0,7) and A and L both | u(xo) when r | 0. If » is subharmonic in
D, then u is integrable on each compact set in D. A and L are both monotone-
increasing with respect to r and convex functions of —logr(n = 2) or r2="(n > 3),
hence they are continuous functions of r. Assuming D’ UdD' C D, let ry be
the distance from D and fix r arbitrary as 0 < r < r;. Then A(z,r) is a
continuous subharmonic function of z in D’. Let Ag(z,r) be the k-times average
of type A(z,7) of u. Then Ai(z,r) is a subharmonic C*~!-function of = and
decreasingly converges to u(x) when r | 0. If we choose a function ,.((z% +--- +
x2)1/2) suitably, the convolution u * ¢, becomes a subharmonic C*-function and
decreasingly converges to v when r | 0.

Now we consider the sequence of subharmonic functions. We have the following
theorem.

Theorem 1.3. Let D be a domain in R". Then we have the following:

(1) The limit of a monotone-decreasing sequence of subharmonic functions in
D(or lower-bounded directed family in D) is subharmonic in D or equal to
—oo identically.

(2) The limit of a uniform convergence sequence of subharmonic functions in D
is subharmonic in D.

(3) If uy,ug,--- are subharmonic in D, then sup(uy,us,---) is not necessarily
subharmonic. But if the function u(x) = sup{u(z),u2(z), -}, (x € D) is
bounded on every compact set in D, then it is equal to a certain subharmonic
function in D except on a set of capacity 0.

2. Real-plurisubharmonic functions

In this section we define the notion of real-plurisubharmonic functions and

mention some of their properties.
Definition 2.1. A real function u defined in an open set Q C R™ with values

in [—00, +00) is called real-plurisubharmonic if
(a) u is upper semicontinuous.

(b) For arbitrary x and w € R", the function ¢ — u(x + tw) is subharmonic in
the part of R where it is defined.

We denote the set of all such functions by P(€2).
We remark that the coneept of real-plurisubharmonic functions is different from

that of plurisubharmonic functions.
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Here we mention the properties of real-plurisubharmonic functions. Some prop-
erties are immediate consequences of their analogues of subharmonic functions. We
mention several other properties.

Theorem 2.2. We use the notation in Definition 2.1. A function u € C*(Q)
is real-plurisubharmonic if and only if

"1 0%u(z)/0z;0TwjwE 2 0, (2 €, we R).

Proof. The theorem follows from the fact that the function ¢t — u(x + tw) is

convex. Q.E.D.
Theorem 2.3. Let Q) be an open set in R". Let 0 < ¢ € C§°(R") be equal to 0
when |z| > 1, let ¢ depend only on |z:1],-- -, |zy|, and assume that [ p(z)dA(z) =1

where dX is the Lebesque measure in R". If u is real-plurisubharmonic in Q, it
follows that

we(z) = / u(z — 2€)p(€)AN(E)

is real-plurisubharmonic, that u. | u when e | 0. (We assume that u is not equal
to —oo identically).

Proof. In section 1, we proved that u, decreases when € | 0 in the case n = 1.
Tteration of this result shows that u. is also decreasing if n > 1, and from the case
n = 1 we also immediately find that u < u.. Since limsup, ,ou. < u in view of
the upper semicontinuity of u, we conclude that u. \, © when ¢ | 0. That u,. is
real-plurisubharmonic follows from Theorem 1.3. Q.E.D.

Theorem 2.4. Let Q@ C R™ and ' C R™, let f be a C*-map of Q into
and let w € P(QV). Then f*u € P(f2).

Proof. First asuume that u € C2(€2’). Then we have

?,k:132U(f(fv))/8:vj6mkijk

- 2;L,k:162U/afjafkvjvk >0, weR"

where we write v; = X7, w;0 f;/0z;. Hence f*u € P({2). For a general u € P(SY),
we only have to use Theorem 2.3 to choose a sequence of real-plurisubharmonic
C-functions which decrease toward u. Then Theorem 1.3 shows immediately
that the limit of a decreasing sequence of real-plurisubharmonic functions is real-
plurisubharmonic. This completes the proof. Q.E.D.

3. Real-pseudoconvex domains

Definition 3.1. Let Q be an open set in R". Then  is said to be a real-
pseudoconvex domain if there exists a continuous and real-plurisubharmonic func-
tion u in Q such that Q. = {z;z € Q, u(z) < ¢} CC Q for every c € R.
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Theorem 3.2. If §2, is a real-pseudoconvex open set for every a in an indexr
set A, then the interior Q0 of Nac aASda is also real-pseudoconvez.

Proposition 3.3. A conver open set in R" is a real-pseudoconver domain. A
disjoint union of several number of convez open sets is also a real-pseudoconver
domain.

Theorem 3.4. Let , ) be two open sets in R"™. Assume that Q is a real-
pseudoconvez domain. Then if there exists a C%-diffeomorphism of Q onto UV, ¥
is a real-pseudoconvexr domain.

4. [s,-estimates for the exterior differential oper-
ators

Let 2 be an open set in R"™. If ¢ is a continuous function in €2, we denote by
L2(£2, ) the space of functions in €2 which are square integrable with respect to
the measure e~¥d\, where d\ is the Lebesgue measure. This is a subspace of the
space L 1oc(€2) of functions in {2 which are locally square integrable with respect
to the Lebesgue measure, and it is clear that every function in Ls 1,.(€2) belongs
to Lo (€, ) for some . By L5(€, ¢) we denote the space of forms of degree p with
coefficients L2 (€2, ),

f =Sl pfrde!, de! = dz¥ Ao A dae,

where ¥’ means that the summation is performed only over strictly increasing
multi-indices. We set

17 =S frf?
and

I 1L= / FRedn.

It is clear that Lo(€2, ) is a Hilbert space with this norm. Similarly we define
LY ..(Q2) and DP(Q) where D(Q) is a symbol for C5°(€2). The space DP(Q) is of
course dense in LE(, v) for every ¢.

If @1 and ¢, are two continuous functions in €2, then the operator d defines a
linear, closed, densely defined operator

T: LE(Q, 1) — LB (Q, ¢2).

Namely, an element u € LE(, 1) isin Dr if du, defined in the sense of distribution
theory, belongs to L2 (€, ), and then we set T'u = du. That T is closed follows
from the fact that the differentiation is a continuous operation in distribution
theory, and the domain is dense since it contains DP(£2).

For suitable densities, we want to prove that the range of T consists of all
f € L2TH(Q, 2) such that df = 0 (which is of course a necessary condition for f
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to be in the range of T). The following lemma reduces this question to the study
of an estimate.

Lemma 4.1. Let T be a linear, closed, densely defined operator from one
Hilbert space Hy to another Hz, and let F be a closed subspace of Hz containing
the range Ry of T. Then F = Rr if and only if for some constant C

I fle<CN T f lm, f€FNDr-. (1)

Proof. See Hérmander|6], Lemma 4.1.1, p.78. Q.E.D.

In proving approximation theorems, we shall need the information concerning
the operator 7% which follows from (4. 1).

Lemma 4.2. Let T be a linear, closed, densely defined operator from one
Hilbert space H, to another Ha, and let F be a closed subspace of Hz containing
the range Ry of T. Assume that (4.1) is valid. For every v € Hi which is
orthogonal to the null space of T, one can then find f € Dy such that T*f = v

and
| fllm<Cllvln, - (2)

Proof. See Hérmander[6], Lemma 4.1.2, p.79. Q.E.D.

In our application of Lemma 4.1, the spaces H; and Hs will be LB(€, 1) and
LQ“ (€, 2), respectively, T' the operator between the spaces defined as explained
above by the d operator, and F' the set of all f € L§+1(Q, @2) with df = 0 (in the
sense of distribution theory). Let (3 be another continuous function and let S be
the operator from LEYH(Q, ¢2) to L2*%(Q, @3) defined by d. Then F is the null
space of S and to prove (4.1) it is sufficient to show that

I FI2,<CPN T fI2, + 1 SFIZ,), f€Dr-nDs, (3)

Y2 —
for the last term drops out when f is in the null space of S. If the densities are
suitably chosen, it is enough to prove (4.3) when f € Drt2(Q), for we have the
following lemma.
Lemma 4.3. Let 1, v = 1,2,--- be a sequence of functions in C§°(§2) such
that 0 <, <1 andn, = 1 on any compact subset of Q1 when v is large. Suppose
that @, € C*(Q) and that

e ¥y 10, /0nkP <e ¥, j=1,2,v =12, (4)
Then DP*+1(Q) is dense in Dp- N Dg for the graph norm
F—l Flloa H U T fllor + 1SS lloa -
Note that (4.4) means only a finite number of bounds for ¢; — ;41 on each

compact subset of €, so one can always find continuous functions 1, @2, ¥3 sat-
isfying (4.4).
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Proof of the Lemma 4.3. Since
S(mf) —mSf=dn Af, f€Ds,
it follows from (4.4) that
[S(m ) = mSfl*e™#* < | f[Pem%2.
Hence the dominated convergence theorem gives
I S f) =SS llos— 0 when v — oo, f € Ds. ()
If f € Dp. and n € C§°(1), it follows that nf € Dp.. In fact,
(nf, Tu)p, = (f,0Tu)p, = (f, T()) ¢, + (finTu — T(nu)),,

- (77T¥f, u)qﬂ -+ (f, TITU - T(nu))cpw uc DT-

Since no derivative of u occurs in the last term, it follows that (nf, Tu),, is
continuous for the norm || u ||, so there is an element v € L5(, ¢1) with

(’0, u‘)tpl = (7If, Tu)ﬁpm u€ DT-
This means that nf € Dp. and that T*(nf) = v. When n = 7,, we obtain by
estimating 7, Tu — T(n,u) as in the proof of (4.5) that

(1) =0T ) < [ 1fle 7 ufe o172,
which implies the bound
[T (n, f) = T" f 2™ < |fPe2.
As above, we can therefore conclude by dominated convergence that
| T* (0 f) = T" £ llos— O when v — oo if f € Dr-. (6)

Hence 7, f — f in the graph norm if f € Dp- N Dg.

To complete the proof we only have to approximate elements f € Dp.- N Dg
with compact support in € by elements in D?*1(Q). This requires an elementary
lemma:

Lemma 4.4. Let x be a function in C°(R"™) wéth/xda: =1, and set x.(x) =
e "x(xz/e), z € R*. If g € Lo(R™), it follows that

g * Xe(x) = / 9W)xe(x —y)dy = / 9(z —ey)x(y)dy
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is a C*°-function such that || g * xc — g ||L,— O when ¢ — 0. The support of
g * Xe has no points at distance > £ from the support of g if the suport of x lies in
the unit ball.

Proof. See Héormander[6], Lemma 4.1.4, p.81. Q.E.D.

Using the above lemma we complete the proof of Lemma 4.3. If f € Dy N Dg
has a compact support, we define f * x. by choosing x as in Lemma 4.4 and
letting the convolution act on each coefficient of f. The support of f * x. is then
contained in a fixed compact subset of {2 when ¢ — 0, and the lemma gives
that || f — f * xe ||o,— 0. Since S(f * x:) — (Sf) * x-, we also obtain from the
lemma that || Sf — S(f * xc) ||ps— 0. The operator 7™ does not have constant
coefficients but we can write e#2~#1T* = 19 + a where 9 is a constant coefficient
differential operator and a is of degree 0. Since

(P +a)(f*xe) = (P +a)f) * xe +a(f * xe) —(af) * xe

and the right-hand side is Lo-convergence to the limit (9 +a)f+af —af according
to Lemma 4.4, it follows that | 7*(f * x¢) — T* f ||, — 0, which completes the
proof of Lemma 4.3. Q.E.D.

We now actually compute T, which also gives another proof of (4.6). Thus

choose
u= % _urdz’ € DP(),

f =g frda’ € LT 05).

Since f7 is defined for all J as an antisymmetric function of the indices in J, and
du = {7, 27, Our /0x’ da? A dx’,

we obtain, if f € Dp~,

/ S (T frure=#dA = (T° f,0), = (f, Tt),

= (—1)”/2’,:pE?ﬂfj[@uz/Ba:je_‘pzd)\,
which means that

T*f = (-1)P7ID)E"_ €9 B(e™ ¥ f1)/Ox;dx’. (7)

5. Existence theorems in real-pseudoconvex do-
mains

Choose a function ¢ € C*°(Q?) such that

E;cl:llanu/al'kF < 61/) inQ, v = 1,2,..._
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If we set

C1=9 =20, p2=0—19, P3 =0, (*)

the condition (4.4) is satisfied for any choice of . We shall now study || 7" f ||,,
and || Sf |l,s when f € DP1(Q), keeping 9 fixed in all that follows but making
all estimates uniform in ¢ so that we can make a suitable choice of ¢ at the end
of the discussion. We assume that f € C?(Q).

First note that, since

df = Xy, 5101 /dx;dz; A da”,

we obtain

|df = %7,y 5512101/02;0f5 /Ol
where quI —Ounless j ¢ I,1 ¢ J, and {j}UI = {I} UJ, in which case aﬁ is

J
l

consider the terms with j = I. Then we must have I = J and j ¢ I if af} # 0, so
the sum of these terms is

the sign of permutation ( ; ) We rearrange the terms in this sum. First

E,Izjg] |8f1/8x3|2

Next consider the terms with j # 1. If a‘l’j # 0, we must then havel € [ and j € J,
and deletion of ! from I or j from J gives the same multi-index K. Since

o = s = —ehestf
the sum of the terms in question is
Y% ¥;10fik |00 fik Ox;.
Hence we obtain
|df [? = %1%5|0f1/02;* — Lk %50 fix /0mi0 fukc /0% (1)

(When p = 1, this follows from the fact that |df|? = %|0f;/0zx — Ofx/0z;[?/2.)
Next we consider 7™ f. With the notation

§;w = e¥0(we™¥)/0x; = Ow/0xr; — wdp/0x;,
we obtain from (4.7)
VT f = (—1)P ' S4ER_ 6 firdat + (~ 1PV S, f10%/0xda.

Hence

/ kEh k=183 ik frxe PAA < 2| T f |13, +2/lf|2|d1/)|2€_"°d>\-
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Combining this estimate with (5.1), we obtain
/ WS 1 (85 fix Ok frx — Ofjk /OTkD fik [z 5)e ¥ d
+ / Sp%7|0f1/0x5 e ¥ dN

<2 T°f I, +

STI2, +2 / FRIdg e dA. @)

Now the operators 8/0zy and —&y are adjoint in the sense that

/u;18w2/3xke“"d)\ = —/6kw1w26”"”dA,

wq, we € C§°(Q);
and we have the commutation relations
8;0/0zy, — 8/0zy6; = 8*p/OxpOx;.

Shifting the differentiations to the left in the first sum in (5.2) therefore gives
K / E?chl ijkkazw/axjaxke“‘Pd)\
+2?2?:1/l3f1/5$,'l2e_“9d}\

<2 T FI2, + || SF |2, +2 / FPldwPedn,

f e DPHY(Q). (3)

Now assume that the function ¢ is strictly real-plurisubharmonic, namely we
have
ngzla%o,/axjakajwk > c)]?zlwf, we R,

where ¢ is a positive continuous function in Q. Then it follows from (5.3) that
[(e=2aupiFe s <20 TSI, +1 ST I

f e DPTHQ. (4)

Recalling Lemma 4.3, we have now proved the following,
Lemma 5.1. With @1, @2, @3 defined by (*), where ¢, 1 € C*(S2), we have

I FIRSITf U2, + 1 SF 1%, f € DN Ds, (5)
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provided that

N2 —10%0/0r ;00 wiwg > 2(|dy|? + e*)27_w?, we R". (6)

We can now easily prove an existence theorem.

Theorem 5.2. Let () be a real-pseudoconver open set in R™. Then the equation
du = f has (in the sense of distribution theory) a solution u € L2 1oc(§2) for every
f € LB} (Q) such that df = 0.

Proof. From the property of real-plurisubharmonic functions in Q, we can
choose a strictly real-plurisubharmonic function p € C*°(2) such that

K. ={z;z€Q, p(x) < c} CcC, forevery c € R.

Let
371 10°p/ 0z ;0T wjwy, > MY w3,

where 0 < m € C°(Q). If x is a convex increasing C*°-function and ¢ = x(p), we
obtain
]k 1a ©/0z ;0 WijwE 2 X (p)7’151

Hence ¢ satisfies (5.6) if
X' (pym 2 2(|dyJ + €?),

that is, if
X' (t) > sup 2(|dy|* + €¥)/m. (7)
K,

The rlghtéhand side of (5.7) is a finite increasing function of t, which is defined
when ¢t > minp. Hence there exists a increasing C*°-function x’ sat1sfy1n§
7). It is clear that we can choose X so that, in addition, any given f € L} ]oc(Q)

belongs to LEY1(Q, @ — ). But then it follows from Lemma 4.1 that the equation
du = f has a solution u € L5(Q, ¢ — 2¢). This proves the theorem. Q.E.D.

We shall now examine the regularity properties of the solution « of the equation
du = f which we have obtained. In doing so, it is important to note that the
solution of the equation Tu = f given by Lemma 4.1 can be chosen orthogonal to
the null space of T, that is, in (the closure of) the range of T=. This will yield an
additional differential equation for u which is essential in proving the smoothness
of u.

Let W*, where s is a non-negative integer, denote the space of functions in R"
whose derivatives of order < s arein Lo. By W () we denote the set of functions
in Q satisfying the same condition on compact subsets of €2. The space of forms
of degree p with coefficients in this space is accordingly denoted by W,;?(Q2). If f
is of degree p+ 1(p > 0), we set

Sf = £i87_,0f;1/0x;dx’.
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This is essentially the principal part of the differential operator in (4.7).
Lemma 5.3. If f € LY*'(R™) has the compact support, and if df € LEY%(R™)
and 9f € LE(R™), then f € WLPH1(R").
Proof. First note that if f € DPT1(Q), then (5.3) with ¢ = ¢ = 0 gives

8 / Bf1/0z;PAN < 2| OF |3+ [ df | (®)

If f only satisfies the hypotheses in the lemma, we can form a regularization f* x.
of f as defined in Lemma 4.4. If we apply (5.8) to f * x. — f * xs, noting that
I(f * xe) = (9f) * xe — 9f in LE(R™) and the corresponding fact for d(f * x.),
it follows that x. * 8f1/0r; converges in Ly for all I, j when ¢ — 0. Hence
Of1/0z; € La. The proof is completed. Q.E.D.

We can now give an improvement of Theorem 5.2.

Theorem 5.4. Let Q be a real-pseudoconver open set in R", and let 0 <
s < 00. Then the equation du = f has a solution u € W2TVP(Q) for every

loc

f € W2PHH(Q) such that df = 0. Every solution of the equation du = f has this
property when p = 0.
Proof. (a) First assume that p = 0. We know from Theorem 5.2 that the

equation du = f has a solution u € L3 (). The equation du = f means
Bu/; = f; € Wite(®)

for all j. Suppose that u € WZ () for a certain finite 0 with 0 < 0 < 5. We
know that this is true if 0 = 0. If x € C§°(£2), we then obtain

O(xu)/0z; = xf; + Ox/0x;u € W°.

If v is a derivative of order o of xu, it follows that dv/0x; € L, for every j. Hence
v € W1, that is, all derivatives of xu of order o + 1 are in Ly. This means that
u € W2 (). Repeating the argument, we conclude that u € Wi (Q).

(b) Next assume that p > 0. As pointed out after the proof of Theorem 5.2,
the solution of the equation du = f given in that theorem can be chosen in (the
closure of ) the range of T*. In view of (4.7) and the fact that 9* = 0, we have

e Pu) =0, du=f.

This can also be written
du = f, Yu = au,

where a is a differential operator of order 0 with C*-coefficients acting on wu.
Assume that we have already proved that u € W;7:*(Q) for a certain finite o with
0<o <s If x € C§°(R), we obtain

d(xu) € WP, 9(xu) € WoP~L,
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If D is a differentiation of order o, the form D(xu) satisfies the hypotheses of
Lemma 5.3, which proves that D(xu) € W'P. Hence yu € W7+LP, that is,
€ WZP(Q). This completes the proof. Q.E.D '
Corollary 5.5. If Q is a real-pseudoconver open set in R", the equation
du = f has a solution u € CP(Q) for every f € C®P+(Q) such that df = 0.
Proof. By the well-known Sobolev lemma, we have

WEtmP(Q) c C*P(Q)

loc

so that Corollary follows from Theorem 5.4. Q.E.D.

6. The de Rham complexes and the de Rham the-
orems. Vanishing of the de Rham cohomologies

In general, it is hard to caluculate the de Rham cohomology directly. The fol-
lowing two facts for the de Rham cohomology are well-known(cf. Matsushima[15],
p.135).

1. Let M be an n-dimensional differentiable manifold. If M has & connected
components, then H°(M, R) is a k-dimensional vector space.

2. For the n-dimensional Euclidean space R", we have HP(R", R) = 0 for
p> 0.

The second fact follows from Poincaré’s Lemma below.

Lemma 6.1(Poincaré’s Lemma). For every differential form w of degree
p(p > 0) with C*-coefficients on R" such that dw = 0, there ezists some differ-
ential form 0 of degree (p — 1) with C*®-coefficients on R" so that w = d#.

Proof. See Matsushima(15], Lemma(Poincaré’s Lemma), p.135. Q.E.D.

As for Poincaré’s Lemma, we also refer to Akizuki[l], Komatsu[13] and Mu-
rakami[16].

We now prove several de Rham complexes. Then, using them, we caluculate
the de Rham cohomologies. After that, we prove the vanishing of the de Rham
cohomologies.

Definition 6.2. We define the sheaf £P over R™ to be the sheaf {LP (Q) Qis
an open set in R"}, where the section module £?(f2) on an open set {2 in R" is

the space
LP(Q) = {f; f € L} 0(9), df € L3 (D}

Here df is defined in the distribution sense. Especially we put £ = £°.
Then LP constitutes a soft sheaf. Equipped with a graph topology with respect
to the d-operator, £P(2) becomes an FS*-space for an open set 2 in R". :
Theorem 6.3(the de Rham complex). We use the notation in Definition
6.2. Then the sequence of sheaves over R™

0 R — 0 %, p1d, &0 rm_ g




L:-estimates and Existence Theorems 29

is ezact. Here dP denotes the exterior differential operator.

Proof. It follows from Theorem 5.2. Q.E.D.

Definition 6.4. We define the sheaf £? over R™ to be the sheaf of differential
p-forms with C®- coefficients. Especially we put & — £°.

Then £P constitutes a soft sheaf. The section module £P(2) is a Fréchet space
for an open set Q2 in R".

Theorem 6.5(the de Rham complex). We use the notation in Definition
6.4. Then the sequence of sheaves over R"

0 1 n—1
0— R — £0 2, g1 4, 47

E" —0
is ezact. Here dP denotes the exterior differential operator.

Proof. It follows from Corollary 5.5. See also Kaneko[7], Example 5.1.11, p.244.
Q.E.D.

Definition 6.6. We define the sheaf D’ over R™ to be the sheaf of differential
p-forms with distribution coefficients. Especially we put D = D"0.

Then D’*? constitutes a soft sheaf. The section module D"?(€2) is a DLFS-space
for an open set (2 in R™.

Theorem 6.7(the de Rham complex). We use the notation in Definition
6.6. Then the sequence of sheaves over R"

(] 1 n—1
0—>R——+D”0d—>D"li—>---q—~—)D/’"—>O

is exact. Here dP denotes the exterior differential operator.

Proof. See Kaneko[7], Example 5.1.11, p.244. Q.E.D.

Definition 6.8. We define the sheaf OP over C™ to be the sheaf of differential
p-forms with holomorphic coefficients. Especially we put @ = 0°.

The section module OP(QQ) is an FS-space for an open set €2 in C™.

Theorem 6.9(the de Rham complex). We use the notation in Definition
6.8. Then the sequence of sheaves over C™

0—C—0° L0t 4, .. Ton 9

is exact. Here dP denotes the exterior differential operator acting on real and
imaginary parts separately.

Proof. See Kaneko[7], Example 5.1.11, p.244. Q.E.D.

Definition 6.10. We define the sheaf AP over R" to be the sheaf of differential
p-forms with real-analytic coefficients. Especially we put A = A°.

The section module AP((Q) is an FS-space for an open set Q2 in R".

Theorem 6.11(the de Rham complex). We use the notation in Definition
6.10. Then the sequence of sheaves over R"

0—>C———>A0—d°—>.A1d—1>---d—n—->~lAn—+O

is ezact. Here dP denotes the exterior differential operator acting on real and
imaginary parts separately.
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Proof. See Komatsu[9], Theorem 11, p.85 and Kaneko[7], Example 5.1.11,
p.244. Q.E.D.

Definition 6.12. We define the sheaf BP over R"™ to be the sheaf of differential
p-forms with hyperfunction coefficients. Especially we put B = BO '

Then BP constitutes a flabby sheaf.

Theorem 6.13(the de Rham complex). We use the notation in Definition
6.12. Then the sequence of sheaves over R"

0—C—B L8 4.8 0

is eract. Here dP denotes the exterior differential operator acting on real and
~imaginary parts separately.

Proof. See Komatsu[9], Theorem 11, p.85 and Kaneko|[7], Theorem 7.3.3, p.354.
Q.E.D.

Theorem 6.14(the de Rham Theorem). We use the notation in Theo-
rems 6.3, 6.5 and 6.7. Let Q be an open set in R". Then we have the following
isomorphisms for every p > 0,

HP(Q,R) 2 {f; f € LP(Q), df = 0}/{dg; g € L7} (Q)}

= {f; f € EP(Q), df = 0}/{dg; g € EP71(Q)}
= {f; f € D"P(Q), df =0}/{dg;9 € D"P~1(Q)}

Proof. It follows from the cohomology theory in Godement[4]. Q.E.D.

Theorem 6.15(the de Rham Theorem). We use the notation in Theo-
rem 6.9. Let Q be a pseudoconver open set in C". Then we have the following
isomorphisms for every p > 0; '

HP(Q,C) 2 {f; f € OP(Q), df = 0}/{dg; g € OP" ()}

Proof. Hérmander|[6], Theorem 2.7.10, p.58. Q.E.D.

Theorem 6.16(the de Rham Theorem). We use the notation in Theo-
rems 6.11, and 6.13. Let Q0 be an open set in R". Then we have the following
isomorphisms for every p > 0;

HP(Q,C) & {f; f € A*(Q), df = 0}/{dg; g € A”"1(Q)}
= {f; f € BP(), df = 0}/{dg;g € B*"'(Q)}

Proof. It follows from the cohomology theory in Godement[4]. Q.E.D.
Theorem 6.17. If Q) is a real-pseudoconvez open set in R"™, then we have

(1) H?(Q2, R) =0 for every p > 0.
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(2) HP(Q2,C) = 0 for every p > 0.

Proof. It follows from Theorem 6.2 or Corollary 6.5. Q.E.D.

By virtue of the vanishing theorems above of the de Rham cohomologies, we
have the existence theorems for the exterior differential operator d in several cat-
egories of functions and generalized functions. Namely we have the analogs of
Poincaré’s Lemma in several categories. Thus we have the following.

Theorem 6.18. Let F be one of the sheaves L, £, D', A and B, and FP be
the p-forms with coefficients in the sheaf F. Let Q1 be a real-pseudoconvex open set
in R™. Then for every differential form f of degree p(p > 0) with coefficients in
F(Q) such that df = 0, there ezists some differential form g of degree (p—1) with
coefficients in F(S2) so that dg = f.

Theorem 6.19. If§) is a pseudoconvez open set in C™, then we have HP(Q,C) =
0 for every p > n.

Proof. See Hérmander|[6], Theorem 2.7.10, p.58. Q.E.D.

It is known that HP(§2, C) does not vanish for all Runge domains in C™ when
p < n(cf. Hérmander[6], p.59). This shows that the concept of real-pseudoconvex
domains is different from that of pseudoconvex domains.
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