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Abstract

This paper considers Maslov’s quantization condition for the dynamical
system in a magnetic field on the basis of the theory of Fourier integral
operators. As a result, it is clarified that a quasi-classical eigenvalue (energy
level) according to the quantization rule provides an approximation of order
h? to the true eigenvalue of the Schrédinger operator.
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Introduction

Let m : P — M be a principal U(1)-bundle over a compact Riemannian manifold
(M,g) (n = dim M), and suppose P is endowed with a connection V. We have
a U(1)-invariant metric (the so-called Kaluza-Klein metric) § on P induced from
the metric g on M, the connection V on P and a U(1)-invariant metric on the

structure group U(1) (cf. [5, §3]). Let us consider the Laplace-Beltrami operator
Ap on P defined by the metric g.

Let Hp be the principal symbol of A p, which is a smooth, U(1)-invariant func-
tion on the cotangent bundle T*P of P. The Hamiltonian system (TgP,p, Hp)
describes the geodesic flow on TP with the standard symplectic form Qp. (The
subscript 0 means that the zero section has been deleted.) The natural ac-
tion of U(1) on (T§P,Qp, Hp) conserves its flow, and we obtain according to
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Marsden-Weinstein reduction procedure the family of reduced dynamical systems
(P, Qu, H,) (P, := J~1(p)/U(1)) parameterized by values p € u(1)* of the as-
sociated momentum map J : TgP — u(1)*. Moreover, (P,,$,, H,) is isomorphic
with the dynamical system (T*M, QM HM) on T*M, where

M = Qpr + (p,730), (ma : T*M - M),
with © being the u(1)-valued curvature form on M induced from V, and
Hy' = Hy + |pf*,

with Hy(z,€) = [I€]17 ((z,£) € T*M). The dynamical system (T*M, QM HM)
describes the motion of a charged particle (the magnetic flow) with the “charge” u
under the magnetic field ©. (See e.g. [5] for details of the mechanics in a magnetic
field.) Let po be the element of u(1)* satisfying (uo,d/0t) = 1 for the invariant
vector field 8/0t of U(1) = {€**| 0 < t < 27}. In this paper we pay attention to
the system (T*M, QM HM) describing the motion of the particle with the unit
charge. :

Considering the self-adjoint differential operator D; = —i8/0t on P associated
to the action of U(1), we have the eigenspace decomposition

L*(P) = P Hm,

meZ

where the space H,, consists of functions f satisfying f(p-e*) = ™ f(p) (p € P).
Since Ap commutes with D;, we can define the restriction of Ap to the subspace
‘Hm, which we denote by H,,. We call flm the magnetic Schrodinger operator with
charge m.

Let E,, = M (m € Z) be the associated line bundle of P defined by the
unitary representation, e** — e~*™¢ of U(1). Then, through the unitary relation
L*(E,,) = H,, the operator H,, is identified with the second order, self-adjoint
elliptic differential operator on L?(E,,) , which is locally written as

(0.1) =3 M (V5 - imA;) (Vi — imA) + mP o2,
.k

where V is the Levi-Civita connection of (M, g), and © = d(3°; Ajdz’) ® 8/0t.
The spectrum of the operator H,, consists of non-negative eigenvalues

MM <™ < <M<l oo

Note that the spectrum of Ap is the union of the spectra of H,,’s:

UN™i=12,...}.

meZ
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The analysis on the relation between the spectrum {)\gm)} (or associated eigen-
functions) and the classical system (T*M, 2}/, H') has been developed in various
aspects. Among others, V. Guillemin and A. Uribe (1], [2] have obtained a for-

mula which gives a relation between the asymptotic distribution of {(/\g-m))l/ 2}
along the line v = Em (v := A'/?) and the periodic trajectories lying on the

energy level: \/HY = E of the system (T*M,Q),H)). On the other hand,

R. Schrader and M. Taylor [7], and S. Zelditch [13] presented some results con-
cerning the asymptotic distribution of eigenfunctions when the classical system is
ergodic. We also refer [8] by T. Tate as a research in the same direction. The
recent work [9] presented a generalization of Helton’s theorem concerning cluster
points of {(/\gm))l/ 2} in the case of magnetic flow with “few” periodic trajectories.
Our interest in this paper is an opposite case, namely the case where the classical
system is completely integrable.

In [12] A. Yoshioka defined a quantization condition for the Hamiltonian sys-
tem of magnetic flow, (T*M, Qﬁ’f JH 3” ), as a generalization of Maslov’s quantiza-
tion condition [6], and searched the Lagrangian tori (energy levels) satisfying the
quantization condition for the system on (CP™,can) with the harmonic magnetic
field. On the other hand, in the case of the geodesic flow (the system of free par-
ticle) on a Riemannian manifold A. Weinstein [11] clarified a relationship between
Maslov’s quantization condition and the (asymptotic) distribution of eigenvalues
of the Laplace-Beltrami operator within the theory of Fourier integral operators.

We consider in the present paper the relationship between the quantization
condition by Yoshioka and the spectrum {/\gm)} (or {()\g."‘))l/ 2}) along Weinstein’s
idea. The main theorem is the following.

Eigenvalue Theorem Let L be a compact Lagrangian submanifold of (T*M, Qﬁ”o)

and E a real number satisfying E > |uo|. Suppose L and E satisfy the following
conditions:

(i) \JHY =E on L,

(i) L is invariant under the magnetic flow ¢,, and the restricted flow @1
leaves invariant a non-zero half-density,

(i11) L satisfies the Maslov-Yoshioka quantization condition (Q) (formulated in
§1).
Let d be the smallest element of the set {1,2,4} for which dmp([v]) = 0 ( mod 4)
for all [y] € m (L), where my, € H*(L,Z) is the Maslov class of L.

Then, there is a sequence {A;':Hl)

(0.2) |V MY —(dk + 1)E| < R/(dk + 1)

for a positive constant R (see Fig.1).

}e2, of eigenvalues of Ap such that
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v=Em
/ yl = A

ol 1 /) m-1m m+1
Figure 1

—

We notice that this theorem is understood in a semi-classical sense as follows:
Consider the Schrodinger operator

H=-3 ¢*(hV; - i4;)(AV: — iAx) + |pol®

ik

corresponding to the operator (0.1) with A := 1/m being regarded as Planck’s
constant. The eigenvalue problem

Hy =Xy

is equivalent to X
Hpntp = m* M.

Put A(R) := /\gfkﬂ)/ (dk + 1)2, which is a eigenvalue of H. Then, the asymptotic
property (0.2) is written as

IVA(R) — E| < RR?, i.e., |MK)—E? < R'R.

Thus, E? is an approximate eigenvalue of H of order 2 in A.

Remark Suppose the dynamical system (T*M, QM HI?) is completely inte-

grable. Then, for commutative first integrals, f; = H % , fa,--., fn, €ach torus
L. :={m € T"M| f;(m) = ¢; (1 < j < n)}

is a Lagrangian submanifold, which satisfies automatically the condition (i),(ii) in
Eigenvalue Theorem.
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In Section 1 we define the quantization condition for the dynamical system of
magnetic flow, which is essentially same as the formulation by Yoshioka [12]. In
subsequent sections (§§2-7) we prove Eigenvalue Theorem by modifying the proof
in the case of geodesic flow by Weinstein [11] (see also [10, Ch.XII, §4]). In our case,
different from [11], the dynamical system has the U(1)-symmetry, and we have to
perform the analysis of Lagrangian manifolds and Fourier integral operators under
the U(1) action.

1 Quantization condition for magnetic flow

The Hamiltonian system of magnetic flow, (7™M, Qﬁ”O,H % ), is obtained along the

reduction procedure from (TgP,Qp, Hp) as follows:

o

ToP 20 7 (ug) —22 Pyo(= J (o) /U(1) —2s T*M
D) )

where ¥, is a symplectic diffeomorphism, i.e., ‘I!l*‘oﬂﬁ’fo = Q,, and 7 Q,, =

i* Qp hold. Let L be a compact Lagrangian submanifold of ("M, Qﬁ”o) Put
Lp := (¥, om,,) (L),

which is a compact submanifold of TfP. Obviously we have

Lemma 1.1 Lp is a Lagrangian submanifold of (T§P,p).

Let my, € H'(Lp,Z) be the Maslov class of the Lagrangian submanifold Lp.
We can regard mp,, as amap mp, : m(Lp) = Z. Let wp be the canonical 1-form
on T}P, ie., dwp = Qp. We define a quantization condition for the system of
magnetic flow essentially following Yoshioka [12].

Definition We say that a compact Lagrangian submanifold L of (T*M, Q%)
satisfies the Maslov-Yoshioka quantization condition if

1 1

wp — —mLP(['ﬂ) €L

(@) o 1

holds for every closed curve v on Lp, where [y] denotes the equivalent class of .

We see the relation between two Lagrangian manifolds L and Lp by using local
coordinates. Let (z!,...,z"™) be a local coordinate of U C M (n = dim M). We
take (z,t) = (z!,...,z",t) (0 < t < 27) as a local coordinate of U x U(1) =
7~ Y(U) C P, and let (z,t,n,7) be the canonical coordinate of T*U x U(1)).
The action of e** € U(1) on TP is given by (z,t,n,7) — (z,t + s,n,7) and
the momentum map J : T§P — u(1l)* associated to this action is written as
J(z,t,n,7) = To. Hence, the submanifold J~1(ug) is locally equal to the set
{(z,t,n,1)}. Thus (z,n) is regarded as a local coordinate of the reduced phase
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space P,,. Let (z,&) = (z!,...,2™,&,...,&,) be the canonical coordinate of
T*M. The diffeomorphism ¥, is written with respect to these coordinates as

Uy (a7, m5) = (¢,6;) with & =n; — 4;(z),
where © = d(}_; A;(x)dz?) ® 8/0t. Thus, we have locally
Lp = {(z,t,£ + A(z),1) € T;P| (z,€) € L, 0 < t < 27}.
By means of the local expressions above we easily obtain the following lemmas.

Lemma 1.2 Let~y be a closed curve on Lp, and put ¥ := V0T (v) C L. Then,

me e ([7]) = mL (7).

Lemma 1.3 Let ¢ = (z,to,m,1) € Lp, and let ¢ = c(t) = et- = (z,to +
t,m1) (0 < t < 2m), which is the closed orbit of £ by the U(1) action on Lp.
Then,

—1—/wp:1, and mp,([c]) = 0.
2r /.

Remark If the magnetic field (the curvature form) © on M is exact, i.e., © = d#,
then we have

Qe = dwyl with W = w + (po, 0 = 3 (& + Aj(2))da’

i=1

on whole T*M, and it follows from Lemmas 1.2 and 1.3 that the quantization
condition (Q) for L (C T*M) is equivalent to

1 1
— - -m(3]) € Z

for every closed curve ¥ on L.

2 Strategy to prove Eigenvalue Theorem

Let o
T?:=8' x §' = {(e,e*)|0< r,s < 27}

be the two dimensional torus. The strategy to prove Eigenvalue Theorem is to
construct a suitable operator A : D'(T?) — D'(P) (where D'(-) denotes the space
of distributions). The idea is essentially same as [11] by Weinstein, in which A4 is
an operator from D'(S') to D'(P). We take T? instead of S! in our case in order
to consider the U(1)-symmetries in the systems.
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Each element u(r,s) in L?(T?) is written as the Fourier series:

(2.1) u(r,s) = Z Tl meme’™s.

£{,meZ

Put my := dk + 1 (k € Z). For the sequence {my}s2, we define the subspace
L2(T?; {my}) of L?(T?) as follows: A function u € L?(T?) written as (2.1) belongs
to L?(T?; {m}) if and only if s, = 0 holds for every (£,m) & {(mi, m)}50-

Now, let us consider a continuous linear operator A : D'(T?) — D’'(P) which
satisfies the following conditions:

(A-i) E-2ApA — ADp2 induces a bounded operator from L?(T?) to L*(P),
where, D2 := (—1/4)(0/0r + 0/0s)?.

(A-ii) A : L(T?; {ms}) — L*(P) is an isometry,

(A-iii) A(e™*{"*%)) belongs to H,,, for k > ko, where ko is some non-zero
integer.

Suppose we have the above operator A. Put wy, := A(e™("+%)) € H,,,, (k > ko).
Then, by virtue of (A-i) we have '

I(E~2Ap —m2)wellr2py = (B "2ApA — ADqp2)e™"+)|| 2 p)
< M”eimk(r+5)||L2(T2) — M,

M being a constant. Let {<,o§m’°)} be the orthonormal basis of eigenfunction of

(m&)

Hm,c Using the expansion: wy = Z W, jp; , we have

I(E=2Ap — mi)willL2 (p)
— ”E 2 Zw mk) 2 (mk) kawk J(p] “L2(P)

= Z{ y{™))? — E*mi )2 i 5|

Note 3. [,;|> = 1 by means of (A-ii). Combining two inequalities above, we
have
1nf{( (m’“)) E?mi}? < E*M,

hence,

inf |(u(m’° )2 —E’m2| = 1nf |z/(m’°) Emk||u](-m") + Emy| < Const.
J
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This implies

ir;f|1/;m’°) ~ Emy| < Rm; !,
j

that means the conclusion of Eigenvalue Theorem.
In the subsequent sections we construct the operator A as a Fourier integral
operator (8§83 and 4) and check the properties (A-i)-(A-iii) (§§5-7).

3 Canonical relation of A

Let d be the number in Eigenvalue Theorem. Then, it follows from Lemma 1.2 that
d is the smallest element of {1,2,4} satisfying dmy,,([7]) = 0 (mod 4) for every
closed curve vy on Lp. The Maslov class my,, induces a homomorphism [mp,]
from m (Lp) to Z4 := Z/4Z = {0,1,2,3}. Then, the flat line bundle M, over Lp
defined by [my,] € H*(Lp,Z4) is so-called the Keller-Maslov line bundle. Note
that the image of [my ] is the subgroup Z4 of Z4, where Z; = {0}, Z, = {0,2}.
Let p : Lp — Lp be the covering of Lp whose deck transformation group
is given by m(Lp)/ker([my,]) = Z4. For a closed curve ¥ on Lp, we have
my,([p(¥)]) € 4Z. Hence, the quantization condition (Q) means that

/p*wp € 217
5

for every closed curve 4 on Lp. Fixing a point o on Lp, we define a : Lp— Si(=
U(1)) by

a(f) = exp (i/p*wp),
¢
where ¢ is a curve on Lp from 4o to Z.
An element g € Z4 acts on Lp as the deck transformation and on S! as the

multiplication by €™9/2. By virtue of the quantization condition we have the
following (see [11, Lemma 1.2]).

Lemma 3.1 o: Lp = S' is Zy-equivariant, i.e., a(q-f) = e™/2a(f).

Let c = c(t) = €*-£ (0 < t < 1,£ € Lp) be the closed orbit of £ by the U(1)-
action on Lp. Then, by virtue of Lemma 1.3 the lift of ¢ to Lp is a closed curve.
Hence, the action of U(1) on Lp is naturally lifted to Lp, which is commutative
with the action of Z,;. Moreover, we easily see the following.

Lemma 3.2 a: Lp = S! is U(1)-equivariant, i.e., a(e*t-f) = e*a(f).
Now, we define a conic Lagrangian submanifold A C TgP x T3 T?. Let the map
j:Lp xR xS 5 TGP x TgT? = TgP x {(S* x R) x (S* x R)}o
be defined by
i6m2) = (a0, -1, (2, -1)),
where ¢ = p({), and 7¢ is the scalar multiplication in T;P.
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Lemma 3.3 j is a Lagrangian embedding.

Proof. The injectivity of j is easy to see by recalling Lemma 3.1. The differential
Tj of j is computed for o € TsLp, a € T,RT *Rand be T.S* =R as

(31) [T(Z,'r,z)j](ﬁa a, b) = (TU + ae; ((w, ’U) - b, _a)’ (b7 _a)),

where v = [T5p](7) € T;Lp and af denotes the vertical vector at £ € TgP. By this
formula we see Tj to be injective. Thus the image of j is an n + 3 dimensional
submanifold. Moreover, the vector (3.1) is annihilated by the canonical 1-form
wp +wg1 +wgt of TgP x T3 T?, where wgi(t,7) = 7dt. O

Let A be the image of the map j, and A is a conic Lagrangian submanifold of
T3P x T3 T?. The manifold

(3.2) C:=N = {(16;(a(z71-0),7),(2,7))}

corresponding to A is called a homogeneous canonical relation, which is a La-
grangian submanifold with respect to the symplectic form p — Qp2 = Qp —
(QSI =+ Qsl).

Let the actions of ¢ € Z4 and e* € U(1) on Lp x RT x S* be defined by

(E’ T, Z) = (qéa T, Z),
and B o »
(€,7,2) = (e*-L,T,et2),

respectively. On the other hand, their actions on TgP x TgT? are defined by
(6 (2,p), (w,0)) = (& (€22, p), (w, 0)),

and ‘ _
(f; (za p)a (UJ, 0)) — (en'& (Zs p)’ (eztw’ U))’
respectively. Then, the following is easy to see.

Lemma 3.4 The map j is Zy and U(1)-equivariant, hence, A (or C) is invariant
under the actions of Zgq and U(1).

4 Principal symbol of A

The principal symbol of the Fourier integral operator 4 : D'(T?) — D'(P) is
defined as a section of the bundle |TC|'/? ® Mc over the canonical relation C,
where |T'C|'/? denotes the bundle of half-densities on C, and Mc is the Keller-
Maslov line bundle over C.

Let M—EP := p* M|, be the line bundle over L p induced from the Keller-Maslov
line bundle M}, over Lp, and we have the covering p : MEP — My, . Then, MZP
is a trivial bundle with a natural global section so constructed by the lift of locally
constant sections on My ,. We have the following lemma concerning so under the
group actions.
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Lemma 4.1 Let q € Zy, € € U(1). Then, we have

(4.1) | B(s0(g-0)) = €™ *p(s0()),

(4.2) P(so(e™-£)) = p(so(£)).

Proof. The formula (4.1) is just lemma 1.3 in [11], and (4.2) follows from Lemma
1.3. 0

Recall the followihg diagram:

MC sz ____PZ_, MLp

l ! l

C (—J;— IPXR+XSI ———P—r—-> Zp L) LP
Lemma 4.2 The Keller-Maslov line bundle Mo over C is equal to the pull back
of Mz, by the map Pro (j')7".

Proof. We describe the Lagrangian submanifolds in terms of phase functions. Let
the Lagrangian submanifold L C Ty M be locally defined by the phase function ¢ :
UxV 5 R (UCM,V CR"V)as L being (locally) given by {(z, d.)| ¢} (x,8) =
0}. Then, the Lagrangian submanifold Lp is locally given by the function ¢
on U x (R/21Z) x V defined by ¢(z,t,0) = ¢(x,0) + t. Namely, put T :=
{(z,t,0)| ¢y(z,t,0) = 0}. Then, Lp is locally given by

{(z,t, 8, 81)| ¢5(z,1,0) = 0} = {(=,t, 8., 1)| $y(z,6) = 0},

and there is a diffeomorphism from ¥ onto an open subset of Lp. By lifting this
diffeomorphism to Lp, we get A : ¥ — Lp. Then, we have

d(4ls) = (#,dz? + ¢;dt)|, = (po N)*wp = X*(p*wp).

Hence, e*®|5, = ao A holds (by adding a constant to ¢). We recall that ¢, = 1 and
P, (z,t,0) = ¢ (z,t',0) for Vt,t' € R/27Z. Let us define a phase function 3 by

¢(¢,t7r,3,0,7) = T{¢($,t - 3,9) - 'I"} = T{J)(.’L’,H) +t—s-— 'l'},
where r € R and 7 € R*. Consider the critical set

E = {(.’E,t,T,S,g,T)h/)é:w'T:O}
= {(z,t,r,50,7)| (z,t —5,0) € Z, r = ¢(z,t — s5,0)}.
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The point of the Lagrangian submanifold of T§P x T3 T? corresponding to
(z,t,r,s,6,7) € Eis given by

(, 8,95, Y1, ¢z, — 5,0), 97, 5,9;)
= (z,t,7¢. (z,t — 5,0), 7}, (z,t — 5,0), p(x,t — 5,0), -7, 8, —Tdi(z,t — 5,6))
= (z,t,7¢,(x,t,0),7¢;(x,t,0), d(z,t — 5,0),—T,8,—T)
= j(Mz,t,0),T,e*).

Thus, A is defined by the phase function . Note that the signature of the matrix
< Yo (x,t,7,5,0,7) vy (z,t,7,8,6,7) > B ( T¢Yy(z,t —5,0) 0 )

'T'o(z,t,r,s,Q,T) ;.’T(IL',t,T,S,B,T) N 0 0

is equal to that of (¢}, (x,t,6)) (7 > 0), which means that the transition function
for M (or Mc) is same as that of Mz (cf. [3, Ch.XXV]). O

Noticing the diagram above, we take for k € R a half-density a on C written
as

(4.3) a=('""Y*b with b1, z2)=BE)r*?dr Ads|'/?,

where £ € Lp, £ = p(f) € Lp, z = ¢** € S, and B is a half-density on Lp.
By virtue of Lemma 4.2 the Keller-Maslov bundle M is trivial, and we have a
global section o := (Pr o j'~1)*sg of Mc. Let a be a half-density given by (4.3).
Then, the section a ® g of the bundle |T'C|'/? ® M¢ belongs to the symbol class
S*(€;|TC|Y/? ® Mc). We have a Fourier integral operator A € I*~#("+3)(P x
T2; C) defined modulo I¥~%("+3)=1(P x T2; C) by the principal symbol a ® a¢ €
Sk(C;|TC|Y/? ® Mc) (see [3, Theorem 25.1.9)).

5 Actions of Z; and U(1)

We see in this section the properties of A in relation with the action of Z4 and
U(1). For q € Z4 we define the operator ¢ : C°(T?) = C*°(T?) by

mq

(@)(r,5) = u(r = T, 3),

which is a Fourier integral operator of order zero associated with the canonical
relation C; = {((r + &2, p),(s,0);(r,p),(5,0))} C TgT? x T;T? and with the
principal symbol (without the Mc, -part) |dr A ds A dp A do|'/2. From (3.2) we
have the composition of the canonical relations:

(51)  CoCy={(rh(e",7),(z7)) with a(z™}-8) = e"e9/2},

Note that C' x C, intersects TgP x (diagTgT?) x TgT? transversally. Replace 2
with €'"9/2.7. Then, we have a(27!-7) = ¢'" from Lemma 3.1, and accordingly
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C = C o C, concerning the canonical relation of the composition 4o 4. On the
other hand, the principal symbol ¢(4 o §) is found to be €"9/2g(A) from (4.1),
(4.3) and (5.1). Therefore, by considering

1 S -
8 Z e—urh/ZA oh,
h€EZy

we get a Fourier integral operator A € I*~3("t3)(P x T?;C) such that ¢(A) =
a ® og with a given by (4.3) and that

(5.2) Aoj=e"/?4

holds for Vq € Z4.
Next, for ¢ = e € U(1) we define

(i C®(T?) - C®(T?);  (Cu)(r,s) = u(r,s — t),

(p:C®(P) = C=(P); ((pH)(P) = fp-e™™).

They are Fourier integral operators of order zero associated with the canonical re-
lations C; and CCP respectively induced from the transformations on the manifolds.
We see the transversality condition between canonical relations and get

CEoC = {(r(¢:0; (alz™1-8),7), (2,7)} = {(76; (a((C2) " §),7), (2,7))} = CoC¢

by noticing Lemma 3.2. For the half-density a given by (4.3) we assume that the
half-density 8 on Lp is invariant under the U(1) action, i.e.,

(5.3) (B=pB for V¢ eU(1).

Note that the half-density 3 := [(¥,, o m,,)*S]|dt|*/? induced from a half-density
B on L is U(1)-invariant. It follows from (4.2) that the principal symbols of (} 0 A
and A o ¢ are the same. By considering the modified operator
L[ o d0ddc
' 27 U(1) P
of A satisfying (5.2), we have the following.

Lemma 5.1 Given a ® o9 € S*(C;|TC|Y/? @ Mc), where a is given by (4.9)
with B being U(1)-invariant. Then, there exists A € I*=3("+3)(P x T2;C) with
0(A) = a ® oy which satisfies (5.2) for Vq € Zq and

(5.4) (poAd=Ao(
for V¢ e U(1).
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We see that the operator A in Lemma 5.1 has the property (A-iii) mentioned
in §2. In fact, put wg := A(e™("+*)) and it turns out from (5.4) that

wi(p-e) = [Gpwe(p) = [Gp' o AN (p)  (( =€)
= [A ol ! 1mk(T‘+3)](p) — [A(eimkteimk(r+s))](p)
= zmkt[Aezmk 'r+s)](p) — eimkt’wk(p).

6 The property (A-ii)

From now on we assume that A € I*~:("+3)(P x T2; () satisfies the properties
(5.2) and (5.4) for the group actions.
We introduce some subspaces of D'(T?). For q € Z4, let

D)y (T?) := {u € D'(T?)| (@/d)u = e~/ ?u},
where 4/d € Z, and [(4/ d)u)(r,s) = u(r — —} s). Then, by the theory of Fourier

series we see that
= ’D;,’Q(W).
q€Zg

Let go be the element of Zg such that dgy = 4 (if d # 1) or go = 0 (if d = 1),
and put Dy(T?) := D} (T?). Note that LI(T?) := L*(T?) N Dy(T?) consists of
functions u(r, s) in the form:

(6.1) u(r, s) = Zuk(s)ei(dk“)”.

keZ

Lemma 6.1 The orthogonal projection Iy from L?(T?) to L%(T?) is written as

1 iTqgn
(6.2) My = - > etieg

Proof. For u(r,s) = Y, cz Um(s)e™" the formula (6.2) gives

(Dqu)(r, s) Z e'zd Z Up (5)e™T 29 = Z (%Ze"%q(m””)um(S)e"’"’.
qezd mez m p
Noticing that
d Z Ty { 0 EZEth; modd)
we get the assertion. O

Lemma 6.2 Ifd # 1 and u belongs to Dfi‘q(Tz) with ¢ # qo, then Au = 0.
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Proof. Let u € Dy (T?) (¢ # go)- Then, by means of (5.2) we have
e™/2 Ay = Ae'™?u = (Ao (4//\d))u = 2"/ Ay,

Since ei™9/2 #£ ¢2i/% we get Au = 0. O

Corollary 6.3 A = AIl; holds.

The adjoint operator A* of A € I*~i("+3)(P x T2, () is a Fourier integral
operator belonging to I*~3("+3)(T2 x P;C~'), where

C7! = {((a(z7"-6),7), (2,7); TO)}.

Lemma 6.4 C~! x C and T§T? x (diagTyP) x T3 T? intersect cleanly with excess
n, and

C7hoC = {((alz " 0),7), (21,7); (al2y Lo
= {((a(zl—l'q'g)”r)? (2177_); (a(zgl'g)aT): Z‘Z’T))l Ze —EP’q € Zd}

Proof. An element of (C~! x C) N (TgT? x (diagTgP) x T3 T?) is given by

(((a(zl_l 'zl)vT)a (zla T)vTZ); (Tea (a(z2_1 '22)77-)’ (22, T)))

),7), (22,7)) with €, =€ = £}
(

Each tangent vector to C~! x C at this point is given by
(((Ld, ’U]) - bl,a'l )1 (blaal)a TN + ale); (T'U? + a2£a ((Lu‘, U‘Z) - b'Z’ 0,2), (bQ’ a'Z))

(see (3.1)), and it belongs to T[(C~! x C) N (T3 T? x (diagTgP) x T¢T?)] if and
only if

(6.3) U1 + a1l = TUg + axl, ie., T(v1 —vy) = (az —ay)l.

The vertical vector (ay — a1 )¢ is transversal to Lp because the Hamiltonian Hp is
constant on Lp. Therefore, (6.3) means that v; = v2, a; = a2, and accordingly

T[(C™! x C) N (T T? x (diagTyP) x TgT?)]
=T(C™' x C)NTIT; T? x (diagTyP) x TgT?,

which is just the clean intersection condition. The expression of C~! o C in the
lemma is easy to see. The excess is the dimension of the fiber for the fiber space:

(6.4) (C™' x C)N (T3 T? x (diagTgP) x T{T?) - C~ 1o C,

which is equal to the dimension of the space of £ € Lp satisfying a(27'¢) = ¢ for
fixed z, ¢ € U(1). Since the differential Ta of o : Lp — S! is surjective, we have
dim(Kera) = n, and get the assertion. O
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By virtue of Lemma 6.4 the product A* A is a Fourier integral operator of order

2(k~i(n+3))+%:2k—%

associated to the canonical relation C~' o C C TgT? x T3 T?. Note that C~' o C
consists of d connected components { M, }4cz, given by

AIQ = {((Q(ZI—I'Q'Z),T),(ZI,T);((I(Z-Z_I'E),T),(ZQ,T))I EEIP)qEZd}

= {((e™ e, 7), (21,7); (25 '€, 7), (22, 7)) }-

Moreover, we have M, = My o C, with C, being the canonical relation for the
operator ¢ seen in §6. We have the decomposition

A"A=) K,

q€Z4

corresponding to C~! o C = U,M,. The principal symbol (without the Keller-
Maslov bundle part) of K, is given by

(6.5) (27r)_”/2/ axa,
N
where N,,, denotes the fiber over m € M, C C~! o C for the fiber space (6.4). For
m = (™22 e, 1), (21,7); (25 €', T), (22,7)) € M, the fiber Ny, is identified
with the manifold
Lp(v) :={l € Lp| a(f) = "},

which is, moreover diffeomorphic to Lp(v) := p(Lp(v)) C Lp. The integral (6.5)
for a given by (4.3) is calculated as

(6.6) ((2n)-"/2 /L

where (r,s,s',7) is a local coordinate of M, given by z; = e, 25 = eis', and
e’" = e'*~*), Concerning two manifolds Lp(v) and Lp(v') we have Lp(v) =
e~V Lp(v'). In fact, let # € Lp(v') and let £ := ¢**=).¢". Then, we have
a(l) = (=" )o(f') = €', and accordingly £ € Lp(v). Therefore, Jie() BB is a

constant (independent on v) if 8 is U(1)-invariant.

BB)7*~12|dr A ds A ds' A dr|'2,

p(v)

Noticing that M, = MyoC,, we have K, = Bgoq, where B, is a Fourier integral
operator associated to My. Then, by means of (4.1) and (6.6) the principal symbol
o(B,) is equal to ei"%/20(By). Hence, we have B, = €i"%/2B, + R, with R, being
a smoothing operator. As a consequence, it follows from (6.2) and Lemma 6.2 that

A*A = Z (Bo 0 €™/%G + R, 0 §) = (dBo + R)Ig,
q€Z4
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where R is a smoothing operator.

Now, let T : L2(T?) — L?(T?) be the projection operator defined by

(Iaw)(r, s) Z Um, e ™ etme

m>0
for an element u(r,s) =Y, . i me'"e"™ of L?(T?).

Lemma 6.5 The operator Ila is a Fourier integral operator of order —1/2 asso-
ciated with the canonical relation

(6.7) Ca = {((r,7),(5,7); (7', 1), (8", 7)) r +s=1"+5'}.

Moreover, the principal symbol (without the Mc, part) of Ila is given by

(6.8) |dr A ds Ads' A dr|/?

1
V2
on Cf and zero on C5, where (r,r',v,7) withv :=r+s =71'+ s is taken as a
coordinate of Ca, and

Cx = A{((r,7),(5,7); (', 7), (s, 7)) € Ca  with T 2 0}.

Proof. We have (formally)

(IMauw)(r,s) = Z Ty e ™7+
m>0
27 p27 L, o, ]
— Z ((271')_2/ e imr’ p—ims u(rl,sl)d,rldsl)ezm(r-f-s)
m>0 0 0
— (27!’)_2 // ( Z eim(r—r'+s—s'))u(r1’Sl)drldsl
m2>0

= (2m)~° / / [1— e Fe= )T hy(r!, 5" )dr'ds'.

We can justify the above calculation by replacing r + s by r + s + i€ and go to the
limit as € = +0. Suppose u belongs to C§°(T?) and suppu C V. Put

p(r,s,r',s)i=(r—r' +s5-5)1- e"(r_"“_s')]—lg(r',s').

where g € C§°(T?) with ¢ =1 on V. Then, we have
(Dau)(r,s) = (2m)~ //T__Tr,s:sislu(r',s')dr'ds'
! !
= =2 lim // p(r,s,r’,8) u(r’,s")dr'ds’.

e—+0 r—r'+s—s'+1ie
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Note that
T R
(7_ —r'4+s—3§+ ’iE)_l — _-/ eiT(r—r'+s—s +ze)d7.,
tJo

and we have

(HAU)(T‘, S) = % // Eif(r—rl_{_s_s,)p(r,s,rl,S')U(T',S')dr’dsld’r
472 >0
. ) ' / 1
= (2m)~%/? // eiT(r—rts=s)_____p(r,s,r',s\u(r', s')dr'ds'dr.

Thus I1A is a Fourier integral operator with the non-degenerate linear phase func-
tion
QO(T',S,T’, SI,T) = 7‘("' —r'+s— SI).

The canonical relation is given by
CA = {((7'7 ‘p:-)v (Sa ‘Pfs); (rlv _‘P;"), (Sla ;‘p;’))l ‘p,r (7‘, 8, Tlv sI’ T) = O}v

which is just (6.7). By noticing that p(r,s,r’,s') = i when r + s = 7’ + ', we
obtain (6.8) as the principal symbol, which belongs to S/?(|]TCa|'/?). Thus the
order of Il is equal to '

a

Note that C3 is equal to the canonical relation Mg of the operator Bp. Set
k =1/2in (4.3). Then, A (and By) belongs to I=5("+V (P x T?; C), and the order
of A*A (and By) is equal to —1/2. Moreover, by virtue of (6.6) we can take such
B (by multiplying a suitable constant) that the principal symbol of A*A is equal
to that of IIa. As a consequence, there exists A € I=3(*t1)(P x T%; C) such that
dBy — o € I73/2(T2 x T?%;C,). Thus we have

A*A = (Tl + RNy = T + R'II,

where II := IIaIly = II4lIA is the orthogonal projection on L?*(T? {m}), and
R' € I73/2(T? x T?;C4p). Here we notice the following.

Lemma 6.6 Let A' := Alln. Then, A’ belongs to I"3"tV(P x T?;C), and the
principal symbol o(A') is equal to o(A).

Proof. We can easily (similarly to the proof of Lemma 6.4) check that the compo-
sition C o Cp is clean with excess 1, and C o Ca = C holds. Thus, A’ is associated
with the canonical relation C and the order of A’ is equal to

1 1 11
——(n+1) =4 - =—= .
) -s+5=-10+1)
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The fiber of (7¢; (27 a(f),T),(z,7)) € C for the fiber space:
(C x Ca) N (TP x (diagTyT?) x TgT?) - CoCa =C

is diffeomorphic to {(21, 22) € S x S| 2122 = a(€)} = S', and we get the principal
symbol of the product AIl5 from (4.3) and (6.8), which turns out to be equal to
o(A). O

We recall that A’ satisfies the property (5.4) in Lemma 5.1 and that A’ = A'Il,.
By noticing the above lemma, we replace A by A'(= AIlp). Then, we have

69) A"A=N+RT=(+R_)I, with R.;II=IR_; =R_,II

where R_; is a pseudo-differential operator of order —1 on T?2. In fact, it is easy to
see that there exists a pseudo-differential operator R_; such that R'TIn = R_1IlA.

The operator I + R_; in (6.9) is a self-adjoint, elliptic pseudo-differential op-
erator of order zero, and commutes with II. It may not be bijective, so let N be
its kernel. Then, N is a finite dimensional subspace of L?(T?) consisting of C*
functions. Let S be the orthogonal compliment of N, i.e.,

(6.10) L*(T>)=N@S.

Let A; be an isometry of N onto a finite dimensional subspace of C*°(P) orthog-
onal to the range of A. Define the linear operator A# : L2(T?) — L?(P) as being
equal to A on S and to A; on N. Note that A# differs from A by a smoothing
operator. For A# we have

(6.94) (A#)*A* = (I + R* )11

with I + R¥, being bijective (see [10, Ch.XILp.648] for details). Finally, put
A:= A#(I 4+ R¥)~1/2 and we get

(6.11) A*A =1L
Let u, v be functions in C*°(T?)N L2(T?; {m}). Then, by virtue of (6.11) we have
(AU,A’U)[}(p) = (A*Au,’l))Lz(Tz) = (HU,U)L2(T2) = (U,U)Lz(']rz).

Thus we see that A satisfies the property (A-ii).

7 The properties (A-i) and (A-iii

We first see the property (A-iii). As already seen in the last part of §6 the property
(A-iii) is derived from the commutativity (5.4) between A and the action of U(1).
However in the proof of (A-ii) in §7 we replace the original A (which satisfy (5.4))
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by A#(I + R¥,)~1/2, hence we have to check the revised A. It follows from (6.9)
that

(7.1) (I +Roy) = (T + Ra)d
holds for V¢ € U(1) if A satisfies (5.4). From this fact we have
(I + R_1)(e™ 9y = )\ eme(r+9) (), € C).

In fact, obviously (I + R_;)(e!™("+%)) € L2(T?; {m4}), hence we let

(I + R_l)(eimk(r+s)) — Zaeeim“(r+s)-
¢

Then, (7.1) for { = e* derives

E :alezmgtezmg(r-i—s) — ezmkt 2 alezmg(r—i—s),
14 14

and accordingly

are™t = qet™ t  for V4.

Thus we have a; = 0 for £ # k. Note that S = range of (I + R_;) in (6.10), and
we see that e™+(m+2) belongs to N or S. Since N is finite dimensional, e™("+*)
belongs to S for k > Jko. Recall that A# is equal to A on S, we see A¥ satisfies
(5.4), and moreover (7.1) for I+ R¥ on S by virtue of (6.9#). As a consequence,
the property (A-iii) is checked to be satisfied. O

Next we see the property (A-i) for the operator T := E~2ApA — ADp2. It
belongs to I2~3(»+1) (P x T2; C) with its principal symbol vanishing on C seen as
(E~2(1E)? — 7%)a = 0. The subprincipal symbol of T is given by

i_IEHDa + osup(D)a,

where Ly, is the Lie derivative along the Hamiltonian flow Hp on TgP x TgT?
defined by the principal symbol of the differential operator D := E72Ap ® I —
I ® Dy2 on P x T?, and 0,,(D) is the subprincipal symbol of D. Here, note
that the vector field Hp is tangent to C, and note that the o,4(D) = 0. Let 3
be (as mentioned in Eigenvalue theorem) the non-zero half-density on L C T*M
invariant under the magnetic flow. Put 8 := [(¥,, o 7,,)*f]|dt|'/2. Then, S is a
U(1)-invariant half-density on Lp, and is invariant under the geodesic flow on T3P
(Liouville’s theorem). Hence, we have Lg,a = 0. As a consequence, T' belongs to
-3 (P x T2 C).

The final step is to see that T € I~ :(*t1)(P x T2;() is a bounded operator
from L%(T?) to L?(P). The theory of L? continuity of a Fourier integral operator
associated to a homogeneous canonical relation (which is not the graph of a ho-
mogeneous canonical transformation) is developed in [3, Ch.XXV, Lemma 25.3.6
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- Theorem 25.3.8]. As in §2 let (z,t,7,7) be a local coordinate of T3P, and let
m = ((z,t,™,7);(r,7),(s,7)) be a point in the canonical relation C. Then, from
(3.1) the tangent space of C at m is given by

TmC = {((vz, w, 70, + an, a); ({war, v:) + (ws1,w) = b,a), (b, @)},

Let 7p : C — T3P and w12 : C — T;T? be the projections. The image of the
differential T,,7p of mp is decomposed as

A @ C1 = {(v,0,70,,0)} & {(0,w,an,a)},
and that of T, 72 is decomposed as
C2 @ A := {((w,a),(0,a))} & {((~b,0), (b,0))}-
On the other hand, we have the symplectically orthogonal decompositions
T,(T3P) = Su1 @ S12 = {(v2,0,,,0)} ® {(0,,0,a)} = Ty (T"M) & Ty (T'S")
(p:=mp(m)), and
Ty(T3T?) = So1 @ S22 = {((w, ), (w,a))} & {((=b,¢), (b, —c))},

(¢ := mp2(m)). The space \; is symplectically isomorphic to the tangent space
of the Lagrangian submanifold L of (T*M, Qﬁ’{)) through the map ¥,, o m,, :
J Y o) — T*M, hence is a Lagrangian subspace of S;;. Obviously, Ay is a
Lagrangian subspace of Sy,. Moreover, we have T,,C = A\ ® C & Ay, where C
is the graph of a linear symplectic transformation from Sy; to Sy2. Let Q¢ :=

TpQp(= 772 Q712). Then,
corank of ¢ = dimA; +dim A; =n + 1.

Therefore, by virtue of Theorem 25.3.8 in [3] T € I~ (1) (P xT?; C) is a bounded
operator from L?*(T?) to L?(P). Thus, the proof of Eigenvalue Theorem is com-
pleted. O

Finally, we refer to an example.
Example(cf. [4], [12]) Let S*™*! be the sphere with radius 2 in C*+1 = R2"+2,
Then we have the principal U(1)-bundle (called the Hopf bundle):
(7.2) 7: 82 P = S U(1).

This is the Riemannian submersion with CP™ being equipped with the so-called
Fubini-Study metric of holomorphic sectional curvature 1, and induces the connec-
tion V on §2"*1 whose curvature form © on CP" is harmomc The eigenvalues

of v/ m(mEZ ) are

W= \/(J'+@)(j+l%|+n) =(j + lml2+n) +O((j+ |m|2+n)-1)
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(j = 0,1,2,...) (see [4]). On the other hand, due to Yoshioka [12] the classical
dynamical system (T*M, QM HM) (M = CP™) of magnetic flow is completely in-

#o? " ko
tegrable, and the energies |/ H ! of the Lagrangian tori satisfying the quantization

condition (Q) are

1
E'g—_—£+n+ .

(£=0,1,2,...).

Moreover, d = 2 holds for the Maslov class of these Lagrangian torus. Hence, we
have '

|
(2k+1)Eg=(2k+1)€+(n+1)k+§(n+1) (k=0,1,2,...),

(2k+1) _ (. n+1 . on+1,
VAP = )+O((J+k+ ) )

Hence, by putting jr = (2k +1)¢+nk we see the assertion of Eigenvalue Theorem.

and
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