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Abstract

In this article, we give the axiom of the theory of quantum proba-
bility as a specialization of Masani’s theory of orthogonally scattered
measures[11]. Then we mention the basic notions and properties of
quantum probability.

2000 Mathematics Subject Classification. Primary 81P10; Secondary
81525, 60A05, 60A10

Introduction

In the general interpretation of a wave function (z,t) in old quantum the-
ory, we understand the situation as follows: the time evolution of a quantum
theoretical particle is described by a wave function and the particle is found in a

certain space region D with the probability / |¥(z, t)|*dz. But this interpreta-

tion seems to be expedient and does not haveD the logically and mathematically
decisive foundation. Therefore I had continued to look for such a decisive foun-
dation. Recently I found a mathematical substance which seems to be useful for
a logical and mathematical foundation of the interpretation of a wave function
in old quantum theory. Thus, in this article, we wish to axiomatize the theory
of the new mathematical substance. This is the theory of quantum probability
as a specialization of Masani’s theory of orthogonally scattered measures [11].
This is the counterpart in this case of the fact that the theory of probability has
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been obtained as a specialization of the theory of measures. Thus in this article
we mention the basic notions and properties of quantum probability.

This article is the full presentation of the lecture of Y. Ito[6].

We note that the term “quantum probability” is the renaming of “hypoprob-
ability measure” used in Y. Ito[6].

The author wishes to thank Professors H. Komatsu and M. Morimoto for
many valuable discussions.

1. The notion of quantum probabilities and their
basic properties

In this section we mention the notion of quantum probability and their basic
properties . »

Definition 1.1. Let (£2, B) be a measurable space which is composed of a
set Q and a o-algebra B of subsets of 2. Let H be a complex Hilbert space.
Then we say that £ is an (H-valued) quantum probability over (€2, B) if the
following are satisfied:

(i) € is a set function on B valued in H.

(ii) If A = £ ; A, (countable disjoint sum of A, € B), then §(A4) = ¥52%,£(An)
(in the norm topology of 7). '

(iii) A,Be B, ANB=0=£(A) L&(B).
(iv) || €(Q) ||= 1, where || - || is the norm on H.

In this article, the final space of a set function £ is always assumed to be a
complex Hilbert space H except for the explicit expression of any specification
of H. So we call an H-valued quantum probability a quantum probability if we
need not to specify a Hilbert space H.

By virtue of the definition of quantum probability over (2, B), we have the
following immediately.

Corollary. If ¢ is a quantum probability over (Q0,B), then || £() || is a
probability measure over (2, B).

Definition 1.2. || £(-) ||? is called the probability measure associated with
the quantum probability £, end denoted by Pe(-).

Then P;(A) =|| £(A) ||? holds for A € B.

Example 1.3. (a) Let E be a projection-valued measure for H on (2, B),
and, for any x € H such as || z ||= 1, let &,(A) = E(A)z for A € B. Then each
£, is a quantum probability over (€2, B).

(b) Let (2, B, Q) be a probability sapce and let H = Ly (2, B, Q). Let {(A) =
X4, the indicator function of A, A € B. Then, obviously, £ is an H-valued
quantum probability over (2, B), and P: = @Q holds.
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(c) Let A = {z,;we Q}.be an orthonormal subset of H, Q2 being an index-
set. Let B be the family of all subsets of 2. Let

E(A) = ycaa,2,, A E€EB,
where the coefficients {a,, } form a sequence of complex numbers such that

Then, obviously, £ is an H-valued quantum probability over (€2, B).

Remark. The theory of quantum probability comes within the scope of the
general theory of orthogonally scattered measures and the scope of an interpre-
tation of the theory of old quantum theory. As for this fact, we refer the reader
to Ito[5], Masani[11], Dirac[1] and Neumann[12}.

By the connection between £ and P in Definition 1.2, we have the mono-
tonicity properties of the quantum probability &, reminiscent of probability mea-
sures, as the following.

Proposition 1.4. Let £ be a quantum probability over a measurable space
(Q, B). Then, for any A, B € B, we have the following:

(1) || €(A) - £(B) |I*= Pe(4) + Pe(B) — 2P(AN B).
(2) BC A=>| &(A) - &(B) = Pe(A) - Pe(B).
(3) BC A==| &(B) < £(A) |l

(4) BCAand é(A)=0=&(B) =

In many applications of our theory, a probability space (€2, B, P) is given
initially, and an H-valued set function £ is defined on B initially. In verifying
whether such a £ is a quantum probability, the following result is useful:

Theorem 1.5(on equivalence). Assume that (i) (Q, B, P) is a probability
space and (ii) £ is an H-valued set function on B. Then the following conditions
are equivalent:

(1) For any A, B € B, (¢(A), £(B)) = P(AN B).

(2) ¢ is an H-valued quantum probability over (2, B) with P; = P.

In this case, £ is called an (H-valued) quantum probability over (2, B, P).

Proof. Assume that (1) holds. Then obviously we have the following:

(11) Ae H=| £(A) |P=P(4) < 1.

(1.2) A, BeB, AnNB=0=¢&(A) L&(B).

(13) [| 6@ 2= P@) = 1

It only remains to show that £ is countably additive. Let A=3%,A, bea
disjoint sum of countable subsets A, € B(n = 1,2,3,---). Then, by (i), we have

(1.4) P(A) = £22,P(Ap) = lim_ N P(A,).
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By (1.2) we have £(Ap,) L £(Ay) for m # n. Hence, by (1) and the Pythagorean
Identity, we have

(15) [ €(A) — E3L4(4n) |17
=1 £(A) I* +Z311 || €(AR) II? —2Re(£(A), TA16(40))
= P(A) - S, P(4n).
By (1.4), the right hand side of (1.5) tends to 0, as N — oo. This shows that &
is countably additive on B. Thus (2) holds.

Next, assume that (2) holds. Then it easily follows (on taking only the first
m of the A,’s to be nonvoid) that

(1.6) A=X",A,, (disjoint sum), A, € B(n=1,2,---m)

£(A) = Xr1€(4An).
Namely, £ is finitely additive on B. Now let A, B € B. Then we have
A=(ANnB)+ (A\B), (AnB)N(A\B) =10,
(L7){ B=(ANB)+(B\A4), (AnB)n(B\A4)=40,
(A\B) N (B\A4) = 0.
Thus it follows from (1.6) that
(1.8) (£(A), &(B)) = (E(AN B) + £(A\B), (AN B) +€(B\A4))
= (§(AN B), §(AN B)) + (§(AN B), £(B\A))
+(§(A\B), £(AN B)) + (§(A\B), £(B\A))
= (§(AN B), £(AN B)) =[| (AN B) ||>= P(AN B).
Thus (1) holds. Q.E.D.
For ease of reference, we record here some other obvious properties of our
quantum probabilities:
Proposition 1.6. Let £ be a quantum probability over a measurable space
(Q,B), and let A, B € B. Then we have the following:
(1) £(A\B) =€(A) —&(AN B).
(2) BC A= ¢(A\B) = §(4) — &(B).
(3) £(AU B) = £(A) +£(B) — £(AN B).
(4) E(AAB) = ¢(A) + &(B) — 26(AN B), where AAB = (A\B) + (B\A4).
(5) Pe(ALB) =] (4) — £(B) |-
By Proposition 1.6(5), we readily infer the following useful result.
Proposition 1.7. Let £ be a quantum probability over (0, B). Then £ is
uniformly continuous on (2, B) or on B under the usual metric p on B defined
by
p(A, B) = P¢(AAB), for any A, B € B.
In particular, for A, A, € B(n=1,2,3,--), we have

Pe(ALAg) = 0= £(A) = lim £(An).
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2. The range of a quantum probability

Since the values of a quantum probability £ are vectors in the Hilbert space
‘H, it is natural to associate with £ the least closed linear subspace spanned by
these vectors, and to study its properties, e.g. separability.

Definition 2.1. Let £ be a quantum probability over a measurable space
(€, B). Then the least closed linear subspace spanned by £(B), S{é(B)}, i.e.,
S8{&(A); A € B}, is called the range of the quantum probability £ and denoted
by 85. '

From the facts in.section 3 it emerge that every z in S¢ has the essentially
unique integral expansion in terms of the quantum probability £ This sug-
gests calling £ a quantum probability basis for the range S¢, and adopting the
following definition.

Definition 2.2. A quantum probability £ on a measurable space (2, B) for
which S¢ = M is called an H-basic quantum probability

Definition 2.3. Let £ be a quantum probability on a measurable space
(Q, B). Then we call B or (2, B) separable if the o-algebra B is separable as a
metric space with the metric p in Proposition 1.7.

Then we have a simple sufficient condition for the separability of the range
Sc.

Corollary. Let £ be a quantum probability over a measurable space (2, B)
such that B is separable. Then S¢ is a separable subspace of H.

Proof. Let By be a dense subclass of B considered as in Definition 2.3.

Then it is obvious that the family F of finite linear combinations of vectors
of £&(By) formed with coefficients having rational real and imaginary parts is
countable and everywhere dense in S¢. Q.E.D.

3. The notion of quantum expectation and its
basic properties

Let (Q,B,P) be a probability space and { a quantum probability over
(Q, B, P). Now we wish to define the quantum expectation £[¢] = / d(w)é(dw)
Q

for a suitable complex-valued functions ¢ on Q. We do this along the line
adopted by P. Masani[11] for defining the integration with respect to H-valued,
countably additive, orthogonally scattered measures.
Fundamental to the development is the following well-known result.
Theorem 3.1. Let (Q, B, P) be a probability space and L p = L2, B, P)
the set of all complex-valued B-measurable functions ¢ on Q such that E[l¢f] =

/ |p(w)[2P(dw) < co holds. Then
Q
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(1) Lo, p is a Hilbert space under the inner product

ww»:EW@:LMMWEme

when functions differing on events of probability zero are identified.

(2) The set of all B-simple functions, T _ 180X s A, € B, a, € C, is
everywhere dense in Ly p.

Here we use the notation of expectation

mwzﬂawmw>

for a random variable ¢.
Now let £ be a quantum probability over (€2, B, P). We wish to define for each
¢ € Lo p a quantum expectation of ¢ with respect to the quantum probability

&
ﬂwzﬁawaw>

so that it has the following properties:

(€G] € H,
@m{mwM£wn:ww»:EWﬂ

We single out these properties because they entail all the other properties we
want our quantum expectation to have, as the next lemma shows.

Lemma 3.2. Bvery quantum ezpectation £|¢)|, defined for a random variable
¢ in Lz p, and having the properties (QE), has the following properties:

For any ¢,%, ¢, € Ly p(n =1,2,3,---) and any compler numbers a,b,

(1) 1| El6] 12=] ¢ [2= Ellgp).

(2) If we set

:memwmwx

where xa(w) denotes the indicator function of an event A € B, then, for any
A, B € B, we have

(€l#; Al, €[¥; B]) = (€[¢; AN B), E[y; AN B)).

(3) Elag + by] = a€[g] + bE[Y).

(4) || Elpm] — Elgnl II°= Elom ~ ¢nl*].

(5) ¢n — @inLo p <= &[] — E[P) in .
Proof. (1) Take 9 = ¢ in QE(2).

(2) We have, by the definition and QE(2),

(Ele; Al EW; B)) = (Elpxal, EWxa]) = (xa, ¥xB)P
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= (¢xanB,¥xanB)p = (E[¢; AN B, E[p; AN BJ).
(3) We have by QE(2), for any f € Lz p,

(Elad + byl, E[£]) = (ad + b9, f)p = a9, f)p + (4, f)p
= a(&[g],ELf]) + B(ENY], E[f]) = (0] + DEW], ELS))-

Hence we have
(3.1) =z =E[ad+ ] —allp] —dEW] L E[f].

Now let L be the set of all £[f], for f € Lz p. Then, by (3.1), L L and
therefore z 1< L >, where < L > is the linear subspace in # spanned by L.
But z €< L > by virtue of (3.1). Thus z = 0, and this yields (3).

(4) is obvious from (3) and (1).

(5) follows from (4). Q.E.D.

We now define the quantum expectation in two steps so as to ensure the
properties (QE).

Step 1. For a B-simple function ¢, ¢ = X% _,anXa,, An € B, an € C, we
put

Eld] = X7 _1an€(4An)-

A simple computation shows that

(3.2) For a B-simple ¢, £[¢] has the properties (QE).

Consequently it has all the properties (1) ~ (5) in Lemma 3.2.

Step 2. Now let ¢ € Lz p. Then, by Theorem 3.1(2), there exists a sequence
(¢n)3, of B-simple functions ¢, such that ¢, — ¢ in Lz p. This sequence
is Cauchy in Ly p, and therefore, by Lemma 3.2(4), the sequence (£[¢n])7, is
Cauchy in H, and so has a limit z € H. Furthermore, if ()52, is another
sequence of B-simple functions converging to ¢ in La p, then ¢, — %, — 0 in
Lo p, and therefore, by Lemma 3.2(4),

| £l¢n] — Er] [|— 0, asn — co.

This shows that the limit z depends only on ¢, and not on the approximating
sequence of B-simple functions. Thus we have the following natural definition.

Definition 3.3. (i) For a B-simple function ¢, ¢ = X7 _,anX4,, 4An €
B, a, € C, we define £[¢p] by the formula

E[¢] = Xr=10nE(An)-

(ii) For an arbitrary ¢ in Ly p, which is not B-simple, we define £[¢] by the
formula

£¢] = lim £lgn,

where (¢,)32.; is any sequence of B-simple functions ¢, converging to ¢ in
La p. Then we call this £[¢] the quantum expectation of ¢ with respect to the
quantum probability &.

29
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From (3.2) and Definition 3.3, it follows easily that our quantum expectation
has the properties (QE). Hence from Lemma 3.2 we conclude the following,

Theorem 3.4. For any ¢ € Ly p, the quantum expectation E[P| has all the
properties of (QE)and Lemma 3.2.

Corollary. The set of all £[¢], for ¢ € Ly p, is the range SE of the guantum
probability &.

Proof. Put 8§ = {8[ ;¢ € Ly p}. By Lemma 3.2(3), S is a linear subspace
in H. Next, if = lim, 00 E[¢pn], Where ¢, € Ly p, then, from Lemma 3.2(4),
we see that there exists ¢ € Ly p such that 2 = £[¢]. Thus,

(3.3) S is a closed linear subspace of H.

Now, by the definition of the quantum expectation, every z in S is a lin-
ear combination ¥7_,a,6(4,), An € B, a, € C, or a limit of such linear
combinations. Thus we have

S C S{EB)} = Se.

But, by the definition, we have £(B) = £(xB) € S for any B € B. Hence by
(3.3) we have S¢ C S. Thus we have S, =S. Q.E.D.

We can subsume the last theorem and corollary in the following useful result.

Theorem 3.5. Let (2, B, P) be a probability space and € a quantum proba-
bility over (2, B, P). Then the correspondence U : ¢ — E[@P| is an isometry on
Lyp= L2 (2, B, P) onto Sg(C H).

Thus, every such £ carries with it two Hilbert spaces, S¢ and L, p, isomorphic
under the natural correspondence U.

To each = in S thus corresponds a unique ¢ in Lg p such that z = £[¢].
This justifies our using the term basis (in Definition 2.2 and above) in connection
with the quantum probability £.

Let £ be a quantum probability over a given probability space (€2, B, P). Let
M¢ be the projection on  onto S¢. Then, by the last theorem, to each z € H
corresponds a ¢, € Ly p such that

(34) M(z) = E[o,)-
How are x and ¢, related? Obviously,
(3.5) ¢r = U~ (Me(2)) = (U“IMR(U))(m) =Uz

where U* is the adjoint of U, U being regarded as isometry on Ly p into  and
R(U) denotes the range of U. To find a morerevealing connection between z
and ¢, than that in (3.5), consider the case when the probability space (£, B, P)
is given as follows:

(2) Bisao — algebraof all subsets of (2.

(1) Qisacountableset Q = {1,2,3,---}.
(3.6)
(3) P = P for a certain quantum probability £ over (Q2, B).
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Then (é(n);n=1,2,3,---) is an orthogonal sequence in H, and in place of (3.4)
we have

, o Em) | E0)
(34) Me(®) = Boms® gty P Tem) T
It follows that ¢, is defined on €2, and for any n =1,2,3,---,
, o Em) 1
G %= ey P T |

_@Em) _dQ.
=Py~ ap ™

where the last is the Radon-Nikodym derivative at n of the complex measure
Qz(+) = (z,&(+)) with respect to P.

Theorem 3.6(Projection Theorem). Let £ be a quantum probability over
a given probability space (Q, B, P). For any x € H, put Q,(B) = (z,£(B)), B €
B. Let my be the total variation |Qy| of Q. Then we have the following:

(1) For any x € H, Q, is absolutely continuous with respect to P on B.

(2) One determination of the Radon-Nikodym derivative dQ,/dP is U*(z),
(cf- (3.5)); thus we have

dQ:t/dP € L2,P = LZ(Q» Bs P)

and

dQs
Mi(a) = [ Gelan).

Proof. (1) We first prove that
Q; << PonB.
This is obvious for z = 0. If z # 0, put 6 = (¢/ || = ||)?; then clearly
B e Band P(B) < 6 = |Q.(B)| = |(z,¢(B))| <l = || V& = e

(2) We know from Theorem 3.6 and the below that
37 Me(z) = / 6, (w)€(dw), Where ¢, = U* (x).
Q
But since z — M¢(z) L €(B), B € B, therefore for any B € B, we have

(3.8) Qz(B) = (M¢(2),£(B))

= (8[ z]’.g[XB])’ by (37)’
= E[¢4; B, by QE(2).
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This shows that ¢, is a version of d@,/dP. The rest now follows from (3.7).
Q.E.D.

Remark. As noted before Theorem 3.6, when £ is a quantum probability
over the probability space (€2, B, P) as in (3.6), Theorem 3.6(2) becomes

o (#:€(n) §m) | &)
"=t P({n}) R E{ON S EION S

which is the well-known expansion of M¢(z) in terms of an orthogonal set
(é(n);n = 1,2,3,-++). Thus Theorem 3.6 is a generalization of this discrete
result. '

Corollary. In the situation of Theorem 3.6, we have

Me(x) =% £(n) =32, (z )

(z, Elg)) = L $(w)Qu(dw), for any ¢ € Ly p.

Proof. Since x — M¢(z) L €[], therefore we have, by the last theorem,

theleft hand side = (€[dQ,/dP], £]¢))

= / Qs (w) - ¢(w)P(dw) = theright hand side,
q dP

the last equality being due to the substitution rule for the Radon-Nikodym

derivatives. Q.E.D.

We deal next with the effect of an isometric linear transformation on our
quantum probability and quantum expectation.

Theorem 3.7. Let & be an H-valued quantum probability over a given prob-
ability space (Q, B, P). Let T be an isometry on S; into o Hilbert space H,, and
put n(B) = T{£(B)} for any B € B. Then we have the following:

(1) 5 is an H1-valued quantum probability over (Q, B, P).

(2) For any ¢ € L2(Q}, B, P),

Ty L B(w)E(dw)} = /Q $(w)n(d)

holds.
(3) Snp = T(S¢)-
Proof. (1) follows easily from the assumptions, since, for A, B € B, we have

(n(A), n(B))n, = (§(A),€(B))n = P(AN B).

(2) is easily verified for B-simple functions ¢, and then by the usual limiting
arguments for arbitrary ¢ € Ly p because of the continuity of T

(3) follows at once from (2). Q.E.D.

Conversely, a pair of H-valued and H,-valued quantum probabilities £ and
7 over the same probability space determines an isometry on S¢ onto Sy.
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Theorem 3.8. Let £ and n be, respectively, H-valued and H;-valued quan-
tum probabilities over the same probability space (§), B, P). Then there ezists an
isometry T on S¢ onto S, such that, for any B € B, n(B) = T{&(B)} holds.

Proof. By Theorem 3.5, there exist isometries Ue, Uy, on Ly p onto S, Sy,
respectively, such that

Ue: ¢ —> /Q $(w)E(dw), Uy : ¢ —> /ﬂ $(w)n(dw).

Putting T = UnUg ! we clearly get the result. Q.E.D.

Given an H-valued quantum probability £ over a given probability space
(Q, B, P), we can construct other H-valued quantum probability 5 by indefinite
integration with respect to £. Quantum expectations with respect to 7 are then
related to those with respect to £ by a rule of substitution. To prove these
results we need the following.

Lemma 3.9. Let (2, B,P) be a probability space and ¢ a complez-valued

B-measurable function on Q such that / |p(w)2P(dw) = 1 and put
o

Q(B) = | |p(u)P(ds), forany B B.

Then (2, B, Q) is a probability space.

Proof. It is trivial. Q.E.D.

Theorem 3.10(Indefinite integration). Let & be an H-valued quantum
probability over a given probability space (0, B, P) and ¢ a complez-valued B-

measurable function on Q such that / |¢(w)|?P(dw) = 1 and put, for any B €
B, ?
Q(B) = | ol P(a)

and

n(B) = L B(w)E(dw).

Then we have the following:
(1) n is an H-valued quantum probability over the probability space (2, B, Q).
(2) For any f € Ly(Q, B, Q), we have f¢ € Lo(Q, B, P) and

/ F(w)n(dw) = / £ (@)d(w)E(dw).
0 Q

Proof. (1) By Lemma 3.2(2) and the assumptions of this theorem, we have,
for any A, B € B,

(n(4),n(B)) = /A  [#@)FP() = QAN B).
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Thus, by Theorem 1.5, we have (1).
(2) By the definition of Q, we have dQ/dP = |42, as.(P). Hence, for
f € L2(Q, B, @), we have

/ (@) PQdw) = / (@) I$(w) 2P (),
(9} 9]

whence f¢ € Ly(Q, B, P). The equality in (2) is easily verified for B-simple func-
tions f. For an arbitrary f in Lo(2, B, P), we consider a sequence of B-simple
functions f, converging to f in the Ly g norm. The corresponding sequence
(fr®)2, then converges to f¢ in Lg(S2, B, P), and the desired equality easily
follows. Q.E.D.

We turn next to H-valued quantum probabilities induced by measurable
transformations. The following result is obvious.

Theorem 3.11. Let (2, B, P) and KQ B, P) be two probability spaces and 0
o measurable transformation of Q into Q. Assume that P = Pof#~!. Let ¢ be an
H-valued quantum probability over (Q,B,P). Thenn=£o0 6~ ! is an H-valued
quantum probability over (Q, B, P).

Theorem 3.12(General substitution rule). Let the situations be as in
Theorem 3.11. Let ¢ € Ly(1, B, P) Then we have the following:

(1) ¢o 8 € Ly(, B, P).

= | $(@)E(0™(dd)).
@ / ${0(w)}E(dw) = /p 3(@)e(0~ (ds))

Proof. (1) is obvious.
(2) First let é be 3-31mp1e say b= Y =18nX A, A, € B, a, € C. Then

0-1(A,) € B and therefore
$ob= Yh=10nXp-1(4,)
is B-simple on 2. Hence the equality in (2) is immediate from (i) of Definition

3.3 of quantum expectation.
Next, let ¢ € Ly (€, B, P). Then by (ii) of Deﬁnltlon 3.3,

(3.9) theright hand sideof (2) = lim / On (5))§{9—1(d&)},

where ¢, is B-simple and- én — ¢ in Ly (Q B, P) But, by the ordmary sub-
stitution rule, we have

/ﬂ 16 0 6(w) — 0 6(w) P P(dw)

- /Q 16(@) - () P(d)
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and so ¢, 00 — ¢08 in Ly(, B, P). Since the ¢, 0 8's are B-simple, it follows
from Definition 3.3 (ii) that

(3.10) theleft handsideof (2) = lim / Pn © O(w)E(dw).
n—00 ﬂ

The equality in (2) follows from (3.9) and (3.10), since, as shown first, the
quantum expectations on the right hand sides of (3. 9) and (3.10) are the same.
Q.E.D.

The above arguments are clearly reversible, and so we have the following
corollary. ‘

Corollary. Let the situations be as in Theorem 3.12. Let é be a complez-
valued B-measurable function on € and assume that ¢ 0 8 € Ly(, B, P). Then
we have the following:

(1) ¢ € L2(, B, P).

@ [ dfowe@n) = [ d@eo @),

When a variable ¢ depends on a parameter A ranging over a probability space
(A, F,Q), the quantum expectation / d(\,w)é(dw) = F()) defines a function

F on A to H. Under suitable conditions F' can be integrated (in the sense of
Bochner) with respect to @, and the order of iterated integral can be changed.
These conditions are stated in the next theorem, which is regarded as a special
case of Theorem 5.20 of P. Masani[11].

Theorem 3.13(Iterated (quantum) expectations). Let (Q,B, P) and
(A, F, Q) be two probability spaces. Let £ be an H-valued quantum probability
over (Q, B, P) and ¥ be a complez-valued o(F x B)-measurable function on
A x Q. Assume that ’

(i)for almost sure M\(Q), ¥Y(\,-) € L2(Q2, B, P) and

J U9 122 Q@Y < oo
(ii) for almost sure w(P), Y(-,w) € L1(A, F, Q) and
19600 11, 0 Pldo) < o

Then we have the following:
(1) The function / H(\, )Q(AN) € Le(Q, B, P).
A

(2) The function / Y(-,w)é(dw) € L1(A, F,Q; H).

® [ [ soweanea) = [ sowa@rees.

Here o(F x B) denotes the o-algebra generated by F x B and L1 (A, F, Q; H)
denotes the set of all H-valued, Bochner integrable functions on A.
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4. Conditional quantum probability and condi-
tional quantum expectation

In this section, we define a conditional quantum probability with respect
to a quantum probability £ over a given probability space (2, B, P) and the
‘conditional quantum expectation.

Definition 4.1. Let £ be a quantum probability over a given probablhty
space (2, B, P). Then we put

€a(B)=&(ANB)/[|§(A) |, BeB

under the condition that || £(A) ||# 0 for a given A € B and call £4(B) an
(H-valued) conditional quantum probability assuming the event A.

Corollary. In the above notation, £4(B) is a quantum probability over
(Q, B, P4) considering £4(B) as a function of B € B, and || £4(B) ||?*= Pa(B)
holds, where P4(B) is a conditional probability of B assuming the event A.

Proposition 4.2. £(AN B) =|| £(4) || {éa(B)..

Definition 4.8. Let (Q, B, P) be a probability space and £ a quantum
probability over (2, B, P) and ¢ = ¢(w) a complex-valued random variable in
La p = Ly(§2, B, P). Then we define

Eald] = Elg; Al/ | €(A) I,

and call £4[¢] the conditional quantum expectation of ¢ assuming the event A
with || £(A) [|# 0.
Corollary. In the notations in Definition 4.3,

Eald] = /A $(w)éa(dw) = /Q 6()xA(w)EA(dw)

holds.
Proof. Since €4 is a quantum probability over (€2, B, P,), we have

(1)€ald] € H, -
(QEa) { (2)(EAld), Ealb]) = (6,9)p, = Balob),

where E4(-) is the conditional expectation assuming the event A € B with
P(A) = || €(A) ||*# 0. Thus we have similar results to Lemma 3.2 replacing P
by P4. Thus we have only to prove the Corollary for B-simple functions. But
this is trivial. In fact, for ¢ = X7 _,anx4,., Ar € B, a, € C, we have

1
A0 = gy 4 = Teape
_ r g(A n A"l) —_ r — .,
- 2n=1an ” f(A) ” - Enzla’néA(An) /};(ﬁ(‘d)gA(dJ)).
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Q.E.D.
~ Now assuming that a given random variable ¢(w) takes a value ¢ and

I {6 = ¢} lI=ll €{w; d(w) = 8} II> 0,

then we define a conditional quantum probability £,_;(B) = £a(B) for B€ B

putting A = {w; ¢(w) = ¢} and a conditional quantum expectation £,_z[¢] =
Eay] for a random variable ¢ € Ly p.
For a Borel set C in the complex plane C, we define

£(C) =£(671(C)),  £4(ClA) = €ald™(C)).

Then £4() is a quantum probability law of a random variable ¢ € Ly p and
£4(C|A) is a conditional quantum probability law of a random variable ¢ € Lz, p
assuming the event A € B with P(4) > 0.

Then we have the following,.

Proposition 4.4. £4[¢] = / ¢§¢(d¢]A) holds.

We can also define a conditional quantum probability law &, (C|¢ = ¢) of
another random variable ¢ and a conditional quantum expectation £[Y|¢ = ¢ =
3[¥]. Here C is a Borel set in C and ¢, 9 € L;,p and | €{o=¢}) ||I> 0.
Then if = X7 _,anxa, is a B-simple function such that P(A,) > 0(n =
1,2,---,7), and {a,}%— is included in a Borel set C' in C, we have

£(¢7H(C) N B) = 37 —1€s=a.(B) || (67 (an)) || -

Thus we have

P(~(C)n B) =|| &6~ (C)N B) ||*
=|| £h=€(67 (@) N B) 2= 5oy [| (67 Han) N B
=571 || €p=aa(B) 21l €007 (an)) |I”
=571 || €s=a. (B) II” Po({an})
= [ Véo=sB) I Potad)
Thus we have the following,

Proposition 4.5. If a B-simple random variable ¢ € Lo p has its values
with positive probability, then, for a Borel set C in C and any B € B, we have

P(¢~(C)N B) = /c 1 €,5(B) |12 Py(dd).

Thus | €4=4(B) ||* is the Radon-Nikodym derivative of Q(C) = P(¢~1(C)NB)
with respect to Py(C).
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In general, we can show that, for any random variable ¢ € Ly p and any
B € B, there exists an H-valued measurable function £4=4(B) of ¢ on C such
that, for a Borel set C in C,

P(¢~(C)N B) = /C 1 €,-5(B) I* Po(dd)

holds.

Inf:ax.:‘c,puttingak’lzk—1 -1 k-1 k I-11

+’l-2—n- and [ak,[] = [2—n,°2—n] X [—5;3—, é;;],

n
we have, by virtue of Proposition 1.7,

§67HC)N B) = lim T o&(¢7 (lax] N C)N B)

= lim Y325 sn=ar,(B) || €(¢; (laxg] N C)) || -

n—o0

Here ¢,, is a random variable such that ¢, (w) = ax,y on ¢~ ([ag,]) for any k,!
so that —0o < k,1 < 00. Then we have

P(¢~'(C)N B) =| &(671(C) N B) ||?
= lm || 553 _oo€(¢ (laxg] N C)N B) |12
= lim 55, || €(¢7 ([N C) N B) |1
= im B o, || €sumars(B) 2] €05 (ar N C)) |I?

= /C | €5=3(B) I* Py(dd).

Thus we have the following. ,

Theorem 4. 8. For any random variable ¢ € Ly p and any B € B, there
erists an H-valued measurable function ¢ 4,:93(3) on C as a function of ¢ such
that, for a Borel set C in C,

P(¢7(C)N B) = /C | €,-3(B) |* Po(dd)

holds. Thus || £,_5(B) ||? is the Radon-Nikodym derivative of Q(C) = P(¢~1(C)N
B) with respect to Py(C).

5. Independence

Let £ be a quantum probability over a given probability space (2, B, P).

We say that events A and B are independent if P(ANB) = P(A)P(B) holds.
In general, we say that a finite number of events A,, Aj, - - - A,, are independent
if, for every subset {41,4g,---,ix} of {1,2,---,n},

P(Ai1 nAizn"'nAik) :P(Ah)P(Aiz)"'P(Aik)
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holds. Then we have the following,.
Proposition 5.1. Two events A and B are independent if

§(AN B) = &(A) || £(B) = &(B) || £(4)

holds.
Corollary 1. In the case || £(A) ||> 0, two events A and B are independent

if €a(B) = &(B).
Corollary 2. Two event A and B are independent if and only if

I €(ANB) =l €(A) Il €(B) I -

Proposition 5.2. A finite number of events A,, Az, -- -, A, are independent
if, for every subset {i1,42,---, %} of {1,2,:--,n},
g(Ail nA’iz N---N Aik) ‘:” S(A‘u) I“l 5(141,2) “ ttt ” g(Aik—l) “ E(‘Aik)
holds.

Corollary 1. A finite number of events A1, Ao, ---, A, are independent if,
for every subset {i1,iz,---,%, 3} of {1,2,--+,n}, :

” E(A'h N A'i2 NN Aik) ”> 0
and
EA‘l ﬁA,~20~--ﬂA.-k (A]) = g(AJ)

holds.
Corollary 2. A finite number of events A;, Az,---, A, are independent if
and only if, for every subset {i1,iz,+-+,ix} of {1,2,--,n},

I 6(As, N Az ==V Ag) 1= E(As) T ECAsR) T -+ 1 €(As) |

holds.

We say that an infinite number of events are independent if every finite
subsystem of events is independent.

Proposition 5.3. Every subsystem of a system of independent events is
independent. '

6. Quantum probabilities and quantum expecta-
tion over real intervals: Functions with orthog-
onal increments

The general concept of an H-valued function with orthogonal increments is
as follows.
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Definition 6.1(Masani). Let A be any subinterval of (—oo, 00). A function
z on A to a Hilbert space H is said to have orthogonal increments if

a,bec,de Aanda<b<ec<d z(b) —z(a) L z(d) — z(c).

In the following, we assume that
(A) For an H-valued function z with orthogonal increments on a subinterval
A of (—00,00),
sup{|| z(t) — z(s) [ s,t € A, s <t} =1

holds.

Then we can show that an H-valued function  on A with orthogonal incre-
ments generates an H-valued quantum probability £ on a certain class of Borel
sets of A. This hinges on the following known lemma:

Lemma 6.2. Let x be an H-valued function with orthogonal increments on
a subinterval A of (—o00, c0) which satisfies the condition (A). Then

(1) There ezists only one function f on A such that

s,t€Aand s <t =12 f(t) — f(s) =] 2(t) — =(s) |*> 0.

(2) The function f is a probability distribution function.

(3) For any t € Int(A), z(t—0) = lims—y—0 z(s) and z(t+0) = lim, 410 2(s)
erist. With obvious amendments this holds also for the end point t of A.

(4) s,t € A and s <t => f(t*) — f(s*) =|| z(t*) — z(s¥) ||, where “*” can
be anyone of the symbols “+ 0", “— Q" or a blank, and likewise for “#”.

(5) The functions z(-—0), z(-+0) are left-continuous and right-continuous,
respectively, on A. '

(6) For any t outside a certain countable subset of A, z(t — 0) = z(t) =
z(t + 0).

Proof. cf. Doob[2], p.425. Q.E.D.

Now let = be an H-valued function with orthogonal increments on a subin-
terval A of (—oo,00) which satisfies the condition (A). Introduce the pre-ring

(6.1) P={J;J=(a,b] C A}
of bounded, open-closed subintervals of A, and define, for any J = (a,b] € P
6.2) £(J) =z(b+0)—z(a+0), P(J) =] z(b+0) —z(a+0)|?.

Here, as to the definition of a pre-ring, see Masani[11], p.63.

We assert the following lemma.

Lemma 6.3. If z, P, £, P are as in Lemma 6.2, (6.1)and (6.2), then € is an
‘H-valued quantum probability over P with P = P.

Proof. By Lemma 6.2(4), P(J) = f (b+0) — f(a+0), where f is nondecreasing
and 0 < f(t) < 1. Hence, as is well-known,

(6.3) P is a countably additive probability measure on P.
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Obviously

(6.4) ¢ is a function on P to H.

Hence, in view of Theorem 1.8 in Masani[11] and Theorem 1.5, in order to
complete the proof, we need only show that

(6.5) For any I,J € P, (&(I),&(J)) = P(INJ).

To prove (6.5), let I = (a,bl, J = (¢,d] with @ < ¢ for definiteness. If
InJ =0, we have

E(I)=z(b+0) —z(a+ 0) L z(d+0) — z(c+ 0) = £(J)
and obviously (6.5) holds. When I N J # @, we must have ¢ < b, and therefore
EI)=z(b+0) —z(c+0)
=z(b+0) —z(c+ 0)+z(c+0) — z(a +0)
=& NJ)+E(U\J)

and similarly

§(7) =& N J)+ €U\
Appealing to the fact that (6.5) holds for disjoint sets, we easily infer that

(€, &) = (€I N J),ed N ) =|| €U nJ) ||
=| z(b+ 0) — z(c+ 0) |>= P(INJ),

assuming b < d for definiteness. Thus we have (6.5). Q.E.D.

Now the Hahn Extension Theorems 2.3 and 2.5 in Masani[11] guarantee that
¢ can be uniquely extended to a quantum probability £ over a probability space
(A, B, P) where B is the o-algebra of all Borel subsets of A, and P is the Hahn
extension of P to B. We have thus established the following.

Theorem 6.4. Let z be an H-valued function with orthogonal increments
on a subinterval A of (—0o0,00) which satisfies the condition (A)and B be the
o-algebra of all Borel subsets of A. Then

(1) There exists a unique probability measure P on B such that for any
(a,b] C A, P((a,b]) =|| (6 +0) —z(a+0) |2

(2) There exists a unique H-valued quantum probability £ over (A, B, P) such
that for any (a,b] C A, £((e,b]) = 2(b+ 0) — z(a + 0).

We now turn to the quantum expectation of a complex-valued function ¢
on a real interval A with respect to £&. Several authors define this quantum ex-
pectation, in the Stieltjes style, with respect to the function z with orthogonal
increments, rather than with respect to the quantum probability £ generated by
z. This approach, though limited, has the advantage of suggesting analogs of
formulas valid for ordinary Stieltjes integrals, e.g. integration by parts. Several
such analogs are actually correct. For instance when the integrand ¢ is continu-
ous, our quantum expectation can be defined in the Riemann-Stieltjes fashion.
This fact is important and we outline a proof along the line of Masani[11].
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Let m:a =X < A < -+ < Ayy < Ay = b be a finite net over [a, b].
We call Ag = [A¢—_1, M) the subintervals of 7, and a set 7* = {t1,-++,ts} such
that tx € Ax a dual of 7. With a slight inconsistency we write “t;, € Ax”
and also “Aj € 7”. We also employ the notation |Ag| = A\; — Ax_; and || =
max{|A,},---,|A,|}. Given an H-valued function z with orthogonal increments

- on [a,b], and a complex-valued function ¢ on [a, b], let

(6.6)  E(m,7") = Zacenteen St} {z(M) — 2(Ae-1)}-

We then assert -
Lemma 6.5. If ¢ is bounded on [a,b], then for any nets m,n' such that
m C 7' and for any duals ©*, 7'*,

I E(r,7*) — B(x', 7") |*< max{Osc(, A)}* - {(8) ~ f(a)},

where f is associated with our function as in Lemma 6.2.
Proof. Let A4,.--,A, be the subintervals of 7, and let 7’ split A subin-
tervals A, ---,A7™. Put

7 = {tg; 1 < k < n}, where t; € Ay,
™ = {ti;1<k<nand1<i<m}, whereti € Al.
Then obviously
E(m,7*) - BE(r',7") = 53, B2 {o(t) — () YAk

where Az means z(d) — z(c) when A = [c,d]. Since the increments A%z are
mutually orthogonal, the Pythagorean identity yields

| E(m,7*) — E(x',7") |P= SP_, 5™ |@(t) — o(tL)[? || Alz 2.

From this, the desired inequality is immediate, since || Aiz [|?= ALf and
|(tr) — @(tt)| < Osc(g, Ag). Q.E.D.

We can now state our theorem.

Theorem 6.6. Let = be an H-valued function with orthogonal increments
on (—o0, 00), satisfying the condition (A)and P and £ be the probability measure
and the H-valued quantum probability generated by x (cf. Theorem 6.4) and ¢
be a complez-valued, continuous function on [a,b]. Then the Riemann-Stieltjes
integral

/ ’ () = lim E(r, =)

ezists, and equals

#(a){z(a+ 0) — z(a)} + /( , SO0 +60){a(t) - 26~ ).
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Note. The asserted equality is simplified in cases of common occurence. For
instance, for a right-continuous z, it reduces to

b
/ H(Ndz(A) = / SVEN).
a (a’bl

In case é{a} = z(a + 0) — z(e), £{b} = 2(b) — =(b — 0), it becomes

b ,
/ SN dz(N) = / SVE(AN).
a [arb]

Proof. Let f be associated with z as in Lemma, 6.2, and € > 0. Since ¢ is
uniformly continuous on [a, b], there exists § > 0 such that

(6.7) A is a subinterval and |A| < § = Osc(¢,A) < €/[2{f(b) — f(a)}]*/2.

Now let m;, 72 be nets such that |7;} < & and let 7} and (7, U7p)* be duals
for m; and 7 Uma(i = 1,2). Then by the last lemma and (6.7),

| E(m;,75) — E(my U g, (m Uma)*) |12

< max{Ose(, A)} - () ~ f(@)} < 5¢

whence
| E(m,73) - E(my,m3) |< €.

Thus {E(m,7*)} is an H-valued Cauchy directed system as |m| — 0, and
therefore has a limit, which by definition is the Riemann-Stieltjes integral,

b
f¢mmm.
To relate this integral to / d(N)E(dN), we first show that
(a,b)
(68)  lim / bem- (VEEN) = / BVE(N),
171=0.J(a,b) (a,b)

where ¢r n+ = Tnem,tren O(E) X O 1,00]-

Since
(A) = Gr,n (A) = Tim 1 {0(N) — () IX a1, 2] (A,
therefore
I¢(>‘) - ¢1r,1r* (A)I < 11{1235 OSC(¢’ A)
Hence

£ - . 2
u /<.,,,,> S(NE(N) /M e (VE(@N) |
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- /( , 1800 ~dea- VPN
< {maxOsc(g, A)*P(a, b).

But the right hand side — 0 as 7] — 0 (cf.(6.7)). Thus we have (6.8).

We now consider only nets 7 : @ = Ay < A; < +++ < Ap_y < A, = b, for
which Ay, .-+, Ap—1 are points of right continuity of z, i.e.,, z(A\t) = z(\x + 0).
Then, by a routine calculation using (6.6) and (6.2), we have

E(r,7*) = ¢(t1){z(a + 0) — z(a)} + P d(tr)E(Ak—1, i)
+o(tn)é(An-1, An) + ¢(tn){x(b) -z(b- 0)}
= ¢(t1){a(a +0) — z(a)} + / b (VE(@N)
(a,b)

+9(t.){z(b) — (b - 0)},
where the last equality follows from Step 1 of Definition of £[¢] (cf. section 3).
Now let |r| — 0. Then by (6.8) and the continuity of ¢ at a and b, the right
hand side tends to

¢(a){z(a+0) —z(a)} + ./( b $(NE(dN) + ¢(b){z(b) — 2(b - 0)}.

Q.E.D.

We now prove a generalized version of the law of integration by parts, which
ties up our H-valued Riemann-Stieltjes integral with an H-valued Bochner inte-
gral. The formulation and proof are suggested by Masani[11], p.104 and Doob’s
treatment[2], p.432.

Theorem 6.7(Integration by parts). Let = be an H-valued function with
orthogonal increments on {a, b] satisfying the condition (A),and ¢ be a complez-
valued absolutely continuous function on [a,b]. Then

b
/ 6(N)dz(A) = $(b)z(b) — dla)er(a) - /( RO

the last being an H-valued Bochner integral with respect to the Lebesque mea-
sure.

Proof. Let A = [a,b], B be the o-algebra of all Borel sets of A, and £ be the
‘H-valued quantum probability and P the probability measure associated with
&, cf. Theorem 6.4. Then we have

P(A) =|| 2(6) - z(a) [*= 1.
Since z is defined only on [e, b}, therefore

¢{a} = z(a +0) — z(a), £{b} = z(b) — z(b — 0),
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‘and hence, by the note to Theorem 6.6, our Riemann-Stieltjes integral equals
Eld) = / d(A)€(d)). Hence we must show that
A

(6.9) E[¢] = /A BVE) = S(b)z(b) — $(a)z(a) — /| RV

For this we introduce the function ¥y on A X A :

(6.10)  Y(w,\) = { (@xien@), e ﬁr\fé\ < N,

where N is the set (of Lebesgue measure zero) on which ¢’ does not exist. It is
a straightforward matter to verify that 1 satisfies the hypotheses (iii) ~ (v) of
Theorem 5.20 of Masani[11] on iterated integration. Hence

610 [{[ v Ndke@) = [ { [ v Ve@y)as.

An easy caculation shows that
the left hand side of (6.11) = / d(N)E(dN) — p(a){z(b) — z(a)},
A

the right hand side of (6.11) = {(b) — ¢(a)}(5) — / ¢ ()2 (w — 0)dw.

A

In the last integral z(w — 0) is replaceable by z(w), since the two are equal
except on a countable set, cf. Lemma 6.2(6). The equation (6.11) thus reduces
to (6.9). Q.E.D.

7. Lo-valued quantum probabilities

The Hilbert space of complex-valued random variables over a probability
space (2, B, P) with absolute moments of degree 2 has a natural quantum prob-
ability basis, viz, the one given by the indicator functions, cf. Example 1.3(b)
and Definition 7.2. This gives the theory of Lp-valued quantum probabilities an
indivisual flavor, especially in regard to the isometric and unitary transforma-
tions between Lo-spaces. In this section we study this matter.

Fundamental to the entire development is the well known result: Theorem
3.1. :

Notation. Let (A,F,Q) be a probability space and La g = L2(A, F,Q)

the Hilbert space of all complex-valued, random variables f on A such that

/ IF(VQ( d)\) < co with the inner product
A

(f,9)0 = fA FVTNQ(N).
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Let £ be an Ly g-valued quantum probability over a probability space (Q, B, P).
Then since the value of £ at B, where B € B, is a function on A, it is more con-
venient to denote this value by £ ) than by £(B). We can then write equations
such as:

Eo(€néa) = /A £ (NEm QN
= (&), &))@ = P(AN B), for any A, B € B.

Our quantum expectation is written Ep(¢) = / $(w)é(a.) and not / d(w)é(dw)
o Q

as before.
The fact alleged to at the start of this section can be stated as follows:
Proposition 7.1. Let (A, F, Q) be a probability space and, for any A € F,
X(a) be the indicator function of A. Then x is an Lo (A, F, Q)-basic quantum
probability over (A, F, Q). Moreover, we have

f= fA F\)Xcary, for any f € Lo.g.

Proof. Obviously, for any A, B € F, x4,XB € L2, and

(X X(B)e = Eq(x(yX(®) = Q(AN B).

Therefore, by Theorem 1.5, x is an Lg g-valued quantum probability over (A, F, Q).
Next, let f € Lg g and, for any A € B,

ms(4) = (fyxay)a = /A FNQ@N).

Then my(:) is a finite countably additive measure on A. Letting M, be the
projection on Lj g onto Sy, it follows from Theorem 3.6 that

(7.1 Mx(f):A%(A)X(dX):Af(A)X(dA)-

Thus, by Lemma 3.2(1), we have

| My (f) |P= /A FOPQEN =] FII? -

Since f — M, (f) L xa, A € F and the set of all F-simple functions are dense
in Ly g, this shows that f = M, (f) € Sy; whence S, = L3 g, and (7.1) reduces
to the desired equality. Q.E.D.

Definition 7.2. We call the Ly g-valued quantum probability x given in
Proposition 7.1 the indicator quantum probability basis for Ly(A, F, Q).

By Theorem 3.7, if V' is an isometry on an L,-space, then V' (x) is an Ls-
valued quantum probability in the range of V. This yields the following.
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Theorem 7.3(Isometry between Li-spaces). Let (A;,Bi, P;) be two
probability spaces and H; = La(A;, B;, B;) for i = 1,2. Then

(1) To every isometry V on Hy into Ha corresponds an Ha-valued quantum
probability n over (A1, By, P;) such that S,, = V(H;) and

(12 V()= /A FO)Many, for any f € Hy.

(2) To every Ha-valued quantum probability n over (A1, By, P) corresponds
an isometry V on Hy onto S,(C Hz) satisfying (7.2).
Proof. (1) This follows at once from Theorem 3.7 on setting

(7.3) &) = X(B)> NB) = V(x(&)), for any B € B,
and noting, cf. Proposition 7.1, that, for any f € H;,

V(f)=V( | FOOXx@) = [ FO)nan)-
A A

(2) x,n are H;-valued, H,-valued quantum probabilities, respectively, over
the same (A3, By, P1). Hence, by Theorem 3.8, there exists an isometry V on
Sy, i.e., Hy, onto Sy, such that (7.3) holds. But as just shown, (7.3) entails (7.2).
Q.E.D.

When the isometry V' is “onto”, we get the following more symmetric result:

Corollary 1(Isomorphism between L,-spaces). Let (A;, B;, P;) and H;
be as in Theorem 7.8 for i = 1,2. Then given a unitary operator V on H, onto
Ha, there exist n,& such that

(1) n is an Hz-basic quantum probability over (A1, By, P1), £ is an H1-basic
quantum probability over (A2, Bz, P2),

(2) for any f € Hq and any g € Ho,

V()= Fadmany, V(@) = | 9(X2)é@nry),
Ay Ag

(3) for any By € By and any B, € Bs,

(MBLys X(B2) M2 = (X(B1)s €(B2)) s -

Proof. Let V be a unitary operator on H; onto Hz, and 7 be the He-
valued quantum probability over (A1, Bi, P1) given in Theorem 7.3(1). Then
Sn = V(H1) = Hz, and the first equation in (2) holds. In other words, we have
an Hp-basic quantum probability n over (A3, B, Py) for which the first equation
in (2) holds.

Next, since V' is unitary, V* = V! is a unitary operator on H, onto H;.
Hence we can apply to V* the result just proved for V, and conclude that there
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exists an H-basic quantum probability £ over (Az, Bz, P;) for which the second
equation in (2) holds.
Finally, to prove (3) we note that, by (2), for any B, € B; and any B; € Bz,

V(x(By)) = B, V" (X(Ba)) = &Ba)s

and so
(n(B1)s X(B))Ha = (V(X(B1))> X(Ba)) 12

= (xBy), V" (X)) 12 = (X(B1)»€(B2))Ha -

Q.E.D.

Corollary 1 to Theorem 7.3 shows that the condition (3) is necessary in order
that our isometry V be “onto”. The next corollary shows that the condition (3)
is also sufficient for this. This is nice, because the condition is easy to check in

many practical cases.

Corollary 2. Let (A;, B;, P;) and H; be as in Theorem 7.3, fori = 1,2. Let
n be an He-valued quantum probability over (A1, B1, P1) and, £ be an Hy-valued
quantum probability over (A2, Bz, P2) and, for any By € By end any Bs € Bs,

(M8, X(B2))a = (X(B1): €(Ba)) 1y holds. Then

(1) 8, = Hz, S¢ = Ha, ie, 1, € are Ha-basic, H;-basic quantum probabili-
ties, respectively.

(2) The isometry V given in Theorem 7.3(2) is a unitary operator on H;

onto Hs.
Proof. (1) In view of Proposition 7.1, to prove that S, = H, it suffices to
show that, for any B, € B2, X(B,) € Sy. Now for a given B; € B, let

Q(B1) = (X(Ba)» N(By)) 12> B1 € Bu.

Then by the assumption we have

Q(B1) = (§(Ba)s X(BL))Ha :/B €(By) (A1) Pr(dNr).

Hence we have dQ/dP; = §(g,), a.s.(P1). Hence, by Theorem 3.6, we have

d
My (X(By)) Z/ —Q—(/\1)77(d,\1) = / B2y (A)M(rr)s
Al dP1 Al
and therefore, by the assumptions and Lemma 3.2(1), we have

| My (s 2= /A €z (M) PPy (dAr)

=[| &,y IP= Pa(B2) =] X&) II* -

This shows that X(B,) = My(X(B;)) € Sy, &s desired. Thus S, = H. In exactly
the same way we can show that S; = H;.

(2) follows at once from (1), since, by Theorem 7.3(2), V' is an isometry on
H, onto S, and now S, = Ha. Q.E.D.
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8. The resolution of the identity

We now mention the resolution of the identity as an example of quantum
probability. We mention this following Chapter 11 of Fujita-Ito-Kuroda(3].

Definition 8.1. Let (R, B) be a measurable space and H a complex Hilbert
space. We call a system {F(A); A € B} of projection operators E(A) on H the
resolution of the identity (over the measurable space (2, B)), if, for every A € B,
a projection operator E(A) on H is assigned and the following conditions (E.1),
(E.2) and (E.3) are satisfied:

(E1) If A,nAz = 0, E(A;) 1 E(A2) holds, namely, for every z,y €
H, (E(A1)z, E(A2)y) = 0 holds.

(E.2) If A = B2, A, (disjoint sum), E(A) = £, E(A,,) holds in the strong
convergence topology, namely, for every z € H, E(A)z = 2, E(A,)z holds in
the norm topology of H.

(E.3) E(Q) = I (=the identity operator).

Theorem 8.2. Let (2, B) be a measurable space and {E(A);A € B} a
system of a projection operators on a Hilbert space H. For every x € H such as
| z ||=1, put &(A) = E(A)z for A € B. Then &.(-) is an H-valued quantum
probability over the measurable space (Q, B).

For ¢ € Ly p where P = P¢_, we can define

Elg] = ]Q $(w)Ea (),

which has the properties in Lemma 3.2. Then we have
£lg) = /,, $(w)dE(w)z

in the notation of Fujita- Ito-Kuroda[3]. Thus the theory of spectral resolutions
of selfadjoint operators can be treated within the framework of our theory. But
the restriction that x is normalized is allowed in the point that wave functions
in old quantum theory are meanigful only when they are normalized.
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