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Abstract

Recently in [4], we have investigated several zeta functions as-
sociated to finite groups and introduced a new equivalence relation
on finite groups. In this paper, we shall study some relations be-
tween this equivalence relation and the corresponding Galois groups
of arithmetically equivalent fields more precisely.
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Introduction

Recently, several zeta functions associated to finite groups were introduced
and investigated in [4] and [9]. Using these zeta functions, we have introduced in
[4] a new equivalence relation on finite groups. We applied this new equivalence
relation to the construction of arithmetically equivalent fields.

The purpose of this paper is to investigate the relations of the above equiv-
alence relation introduced in [4] and the arithmetically equivalent fields more
precisely.

We will use the following notations. Let G be a finite group. We denote the
order of G by |G| and the order of an element z € G by |z|. Let Z/nZ be the
cyclic group of order n. We define the following arithmetic functions associated
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to the finite group G:

sg(n) = #{H <G|H 2 Z/TLZ},
Og(n) = #{z € G|z|=n},
hag(n) = #{zeGlz" =1},

where sg(n) and hg(n) are called the Sylow number and the Frobenius number.
We note that the Sylow number and the Frobenius number are related to the
classical theorems on finite groups of Sylow and Frobenius, respectively.

According to [4] and [9], we shall call the following generating functions of
the above arithmetic functions the zeta functions of the finite group G:

G = 3,
s(Gs) = 32,
(a(Cs) = 30,

3
Il
-

where (5(G, s) and (g (G, s) are called the zeta functzon of Sylow type and zeta
function of Frobenius type, respectively.

Equivalence relation on finite groups

We note that {(G, s) and {s(G,s) are finite sums and that in particuler,

Cg(G S Z

:ceG

Then from the fact hg(n Z Oc(d), we have
d|n

Ca(G,s) = (s(G,9)((s),

where ((s) is the Riemann zeta function. Firstly we shall show the following
elementary proposition.
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Proposition 1. For all groups Gy and Gz, the following conditions are
equivalent :

(1) C(Gls 3) = C(GZa S),

(2) CS(GI,S) = CS(G25S)’

(3) CH(Gla 3) = (H(G% 3)9

(4) sg,(n) = 8g,(n) for anyn > 1,
(5) Og,(n) = Og,(n) for anyn > 1,
(6) ha,(n) = hg,(n) for any n > 1.

PROOF. It is obvious that (4) = (1), (5) == (2) and (6) = (3).

From the fact Og(n) = ¢(n)sc(n), one sees (4) <= (5).

Cu(G,s) = {s(G, s){(s) implies the equivalence (2) <= (3).

ha(n) = dEIT; Oc(d) and the Mobius inversion formula Og(n) = ;l,; © (z) ha(d)
imply the equivalence (5) <= (6). :

¢(G,r) = (L,2",...,N")*(sc(1),8¢(2);. - -,5c(N)), where N = |G}, implies

1

sa(l) 11 1 \Y/ G0
s6(2) 1 2 - N (G
s6(N) ] gN-1 ... NN ¢(G,N —1)

Hence ¢(G1,8) = ((G?2,s) implies sg, (n) = sg,(n) for any 1 <n < N. Since
3G, (n) = sg,(n) =0 for any n > N, we see (1) = (4).
Similarly one can easily verify (2) = (5), which completes the proof.

As in [4], we will call G; and Gy are of the same order type when G and G2
satisfy one of the above relations (1),...,(6), i.e., all of the relations, in which
case we write G; ~ Ga. It is obvious that ~ is an equivalence relation on the
set of all the finite groups and G1 & G2 => G ~ Ga, but the converse is not
true in general. \

Let G be an abelian p—group,

G = (Z/pZ)" x (Z/p*Z)" x --- x (Z/p* Z)T",

where 1 < e; < eg < --- < e,. Evaluating logp(hc(pw)) we have shown in [4]
that hg(p®) determine e;,...,e, and f1,...,fr uniquely. Hence Gi ~ Gy =
G1 & G2 when G1 and G3 are finite abelian p—groups. Consequently we have
shown Gy ~ Gy <= G1 = G2 when G} and G; are abelian groups (for details
see Proposition 4 of [4]). Here we shall prove the following more precise result
on abelian p—groups.
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Proposition 2. Let G; and G are finite abelian p—groups. Then ¢s(G1,-1) =
Cs(Ga,—1) implies G1 &2 Ga.

PROOF. Let G 2 (Z/p*Z)N* x (Z/p**Z)f2 x --- x (Z/p*~Z)*~. For the sake
of simplicity, we denote hg(p*) = p*®). Then by the definition of hq, one sees
a(l) < a(2) <--- < a(er) and a(k) = a(e,) for any k > e,. Then we have

(s(G,-1) = ) Oc(p*)p*

= Y (ha(*) —he(@* )P +1
=1
= 1—p+ pa(1)+1 _ pa(1)+2 + pa(2)+2 _ pa.(2)+3 + pa(3)+3

+ oo — per+a(er—1) + pe,.+a,(é,.).

Evaluate {s(G,—1) mod p,p?,p3,..., we see a(1),a(2),...,a(e) are determined
by ¢s(G,—1). Thus we have

(5(Gry—1) = (s(C2y—1) <= hg, (p*) = ha, (p*) for any &k >0
= G1~Ge
<= (1 = Ga(see Proposition 4 of [4]).

Let m(G) be the arithmetic mean of the order of all the elements £ € G. Then
one can easily verify that :
o CS(Ga —1)

™C) = G0

where (¢(G,0) = |G|. Hence we have the following corollary.

Corollary 1. Let Gy and G2 are finite abelian p—groups. If |G| = |Ga|
and m(G1) = m(Gz), then we have G1 = Gs.

Arithmetically equivalent fields

Let k; and k2 be algebraic number fields of finite degree. We denote the
Dedekind zeta functions of k; and k2 by , (s) and (i, (), respectively. Then
ki and kg are called arithmetically equivalent when (i, (s) = Ck,(8), in which
case we write k; ~ ko. It is obvious that if k1 and k2 are conjugate over @,
then (x,(8) = (r,(S). We note that the first example of k1 and k2 which are
arithmetically equivalent but not conjugate over @ was given by F. Gassmann
[2] in 1926. |

Let K be a Galois extension of Q with k; C K and k2 C K. We denote the
Galois group Gal(K/Q) by G and the corresponding subgroups Gal(K/k,) and
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Gal(K/k2) by G1 and Gy, respectively. Then the following proposition is well
known.

Proposition 3. The following conditions are equivalent:

(1) k1 and ko are arithmetically equivalent.

(2) For every prime p, the collection of degrees of the prime ideal factors p
in k1 equals to the collection of degrees of the prime ideal factors in ks.

(3)  For every element 0 € G, #[C, NG1] = #[C, N Gy], where C, is the
class of conjugate elements of o in G.

Following [6], we will say that G; and G2 are Gassmann equivalent in G
when G1,G2 < G satisfy the condition (3) of Proposition 3, in which case we
will write Gy ~g G2. We will write Gy ~c G2 when G; and G3 are conjugate
in G.

For any H < G, we will denote the family of all the conjugate subgroups of
H in G by [H], i:e.,

[H] = {cHo |0 € G}.

Put
-C(G) = {[H]|H < G}.

Suppose G1 € [Hi], G2 € [Hz] and G1 ~g G2. From the fact ~o==~g, any
G} € [Hi] and G} € [H?] satisfy G} ~c G5. Thus we may consider ~¢ to be
an equivalence relation on C(G), that is,

[H1] ~g [Ho] <> Hy ~g Hs.

Let G(N) be the set of all the finite groups of order N. It is well known that
any H € G(N) can be considered as a subgroup of the symmetric group Sy by
the left regular representation. For the sake of the completeness, we will recall
the definition of the left regular representation.

Let X = {z1,...,Zn} be an ordering of all the eléments in H. Then zz; =
Zz(k) for k (1 <k < N) determines a regular representation

exie— (o T ay ) €5

and (pX(H) < SN.

The regular representation may depend on the ordering X as follows. Let ¥ =
{v1,...,y~n} be another ordering of the elements in H, ie., Yx = Zox) (1 < k<
N) for some o € Sy. Then we have

TYk = TTo(k) = Ta(o(k)) = Yo—la(or) (1 <k < N).
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So for any = € H, the regular representation satisfies
(py(:B) = a“lcpx(:z:)a € Sn.

Thus we have py(H) = 0~ lpx(H)o, which means that with respect to the
ordering of the elements, the regular representation determines a map from
G(N) to the set of conjugacy classes C(Sn). We will denote this map by ¢, ie.,

p(H) = [px (H));

where X = {z1,...,Zn} is an ordering of the elements of H.

It is obvious that H; & H, when @(H;) = ¢(Hz) € C(Sn). Conversely
we can see that @(Hy) = @(Hz) when H; & Hy as follows. Let % be an
isomorphism from H; to Ha. Take the orderings X ={z4,...,zn} of Hy and
Y = {¥(z1),...,¥(xn)} of Ha. Put zz) = Zz(k) for 1 < k < N. Then
Y(x)Y(z) = P(xxk) = zb(a:m(k)) implies px (H1) = ¢y (H2). Thus we have

shown
o(Hy) = [px (H1)] = [py (H2)] = p(Hz)-

Hence we have shown that ¢ induces the following injective mé,p

@ :{G(N)/ =2} — C(Sn).

Let H be the isomorphism class of H in {G(N)/ 2¢}. Since 2==>~, ~ may be
considered as an equivalence relation on {G(N)/ =}, ie.,

HlNﬁgﬁ'Hl NHz.

Let X be an ordering of H € G(N). When |z| = m, one knows ¢x (z) is of type
m+m+---+min Sy. Thus we have

Op(m)  if there exist x € H with |z| = m, '
#[Co Npx (H)] = and o is of type m+m+ -+ +m,
0 otherwise.

Hence

[H1] ~e [He] = O, (n) = Om,(n) for any n 20
<= H] ~ HQ.

Theorem. With the above notations, the map
¢ :{G(N)/ =} — C(5N)

is injective and

Sa(Hl) ~G ¢(g2) — Hl ~ Hp.
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Let K be a Galois extension of Q with Galois group Gal(K/Q) = Sn. Let
F(N) be the set of intermediate fields of K corresponding to the set of subgroups
¢(G(N)). Then we have the following corollaries.

Corollary 2. Let Hy,H, € G(N) and X; be some orderings fori = 1,2.
We denote the fized fields of px,(H1) and px,(H2) by ky and kz (€ F(N)),
respectively. Then

k1 and ko are conjugate over Q@ < ¢x,(H1) ~c ox,(Ha) in Sy
< @(H;) = p(H)
<= H; 2 H,,

and )
kl ~ kz <~ ¥x; (Hl) ~G X, (Hz) mn SN

<— H;~ Hs.-

Corollary 3. Let Hy, H» € G(N) and ky and ky are corresponding subgroups
of Sy as above. Then

G (8) = Cra(8) = ((Hu,8) = ((H2,s)
<= (s(H1,8) = (s(Hz,9)
< (u(Hi1,s) = Cu(Ha,s).

Remark. It is interesting to consider the difference between = and ~ in
G(N), because the difference is exactly the number of arithmetical equivalent
fields which are not conjugate over Q as in the above sense. Let p be an odd
prime. In the papers [4] and [8], we have estimated the number

a(n) = #{{H ~ (Z/pZ)"}/ =}.

Since our estimate for a(n) is not good enough, it is expected that sharper
estimates can be obtained with methods like in [7].
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