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Abstract

In this article, we realize Sato hyperfunctions and Fréchet-space-
valued Sato hyperfunctions on a real-analytic manifold by the algebro-
analytic method. Then we prove the equivalence of the above and
the correspondent realized independently by the duality method,
Ito[7]. In several points, we improve the methods of proof of im-
portant theorems. Thereby the method of constructing the theory
becomes clear and evident.
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Introduction

In this article, we mention an improvement of the proof of the theory of
(vector—valued) Sato hyperfunctions on a real-analytic manifold. Although, in
Sato’s original papers[23], [24], [25], he constructed the theory of hyperfunctions
on a real-analytic manifold, there does not yet exist any clear and evident proof
other than Kashiwara-Kawai-Kimura[15] and Ito[7]. Nowadays there exist all
things and methods necessary for such a proof. We have only to pile up these
building-blocks. We do this in this article.

The points of improvement are the following:




18 Yoshifumi Ito

1. We construct the Dolbeault-Grothendieck resolution of the sheaf @ using
the sheaf of locally square integrable functions. Thereby the duality method
can be used in the framework of classical functions.

2. We have succeeded in proving Malgrange’s Theorem completely and in a
clear and evident manner. This method of proof is far reaching and applicable
for all versions of this theorem.

3. We have succeeded in proving Martineau-Harvey’s Theorem for one di-
mensional, complex manifold, namely Silva-K&the-Grothendieck’s Theorem [3],
[19], [27]. Thereby we can prove Sato’s Theorem independently on the dimen-
sion of a manifold.

4. The proof of Proposition 1.5.2 becames clear and evident.

5. The method in this article is used for the first time in the construction of
this theory on real-analytic manifolds.

Here we briefly take a look at the history of the theory of Sato hyperfunctions.

1958-1960, Sato established the theory of hyperfunctions [23], [24], [25]. Har-
vey, Komatsu and Schapira studied this theory on Euclidean Spaces [4], [18],
[26]. Ion-Kawai and Ito constructed the theory of vector-valued Sato hyper-
functions on Euclidean spaces [6], [9], [11]. Ito constructed the theory of vector-
valued Sato hyperfunctions on real-analytic manifolds by Schapira’s method [7].
Ito treated the wider classes of Sato-Fourier hyperfunctions including (vector-
valued ) Sato hyperfunctions as a specialization [12]. Morimoto, Kaneko and
Kashiwara-Kawai-Kimura have written very excellent text books on the theory
of Sato hyperfunctions [21], [13], [15]. : :

Nowadays we have known that Sato hyperfunctions have twofold realization
as classes of elements of the dual space of the space of real-analytic functions
and as “‘boundary values” of holomorphic functions. These two realizations are
mutually independent and equivalent. In this paper we mention the realization
of Sato hyperfunctions as “boundary values” of holomorphic functions. As for
vector-valued Sato hyperfunctions, the situations are similar.

In section 1, we treat the scalar-valued case, and in section 2, we treat the
vector-valued case.

Here we note that “isomorphisms” usually mean topological ones without
explicitimention for the contrary. We also note that we use the term “A-sheaf
F7 if the section module F(Q) of the sheaf F over every open set Q has the
property “A”.

1. Case of Sato hyperfunctions

1.1. The Dolbeault-Grothendieck resolutions of @ . In this subsection
we recall the soft resolutions of the sheaf @ of holomorphic functions over an
n-dimensional, complex manifold X .

If F is a sheaf over X, we define the sheaf F?:? to be the sheaf of differntial
forms of type (p,q) with coefficients in F and denote the Cauchy-Riemann
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operator by 0, where p and ¢ are nonnegative integers. We denote FP = FP:0,
Then we have the following.

Theorem 1.1.1 (The Dolbeault-Grothendieck resolution). The se-
quence of sheaves over X

0— OF —er0 Zyept 8, Zern 4

is exact, where £ denotes the soft nuclear Fréchet sheaf of C*-functions over
X and p 1s a nonnegative integer.

Proof. Since the assertion is local, this easily follows from the Euclidean
case. As for the Euclidean case, we refer the reader to Ito [11], Theorem 1.1.1

(Q.E.D)

Corollary.For an open set Q) in X, we have the following isomorphism :
HY(Q,07) = {f € £M(Q);0f = 0}/{Dg; 9 € 7971 (Q)},

(p>0 and ¢>1).

Proof. It follows from Theorem 1.1.1 and Komatsu [18], Theorems I1.2.9
and 11.2.19 (Q.E.D.)

Next we prove one another soft resolution of the sheaf O.

Let L = L 1oc be the soft FS*-sheaf of locally Lo-functions over X. Then we
define the sheaf £P? to be the sheaf {£P7(Q); Q2 is an open set in X}, where,
for an open set  in X, the section module £7:4(2) is the space of all f € LP4(Q)
such that 8f € LP4+1(Q). We put £ = L>®. Then £P? is a soft FS*-sheaf with
respect to the graph topology of the operator 9. Then we have the following:

Theorem 1.1.2 (The Dolbeault-Grothendieck resolution). The se-
- quence of sheaves over X

3 ] 3
0—OF — P0 L0t %0 Sy rm 50

15 exact.
Proof. Since the assertion is local, this easily follows from the Euclidean
case. As for the Euclidean case, we refer the reader to Ito [11], Theorem 1.1.2.

(Q.E.D.)

Corollary. For an open set Q in X, we have the following isomorphism :
HI(Q,07) = {f € LP4(Q);0f = 0}/{dg; 9 € L/~ (Q)},
(p>0 and ¢ > 1)

1.2. The Oka-Cartan Theorem B. In this subsection we prove the Oka-
Cartan Theorem B for the sheaf O by using the soft resolution of Theorem 1.1.2.
Thus we have the following.
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Theorem 1.2.1(The Oka-Cartan Theorem B). For every Stein open
set V in X, we have H*(V,0P) =0, (p > 0 and s > 1).

Proof. This is an immediate consequence of Theorem 1.1.2 and Hormander
[5], Theorem 5.2.4. (Q.E.D.) ~

Corollary. For every Stein open set Q in X, the equation Ou = f has a
solution u € EP9(RQ) for every f € EPIL(Q) such that df = 0. Here p and q
are nonnegative integers. '

Proof. This is an immediate consequence of Corollary to Theorem 1.1.1 and
Corollary to Theorem 1.2.1. (Q.E.D.)

Let M be an n-dimensional, real-analytic manifold countable at infinity and
X 1ts complexification. We define the sheaf O as above and the sheaf A of real-
analytic functions over M is defined by A = O|s. Then we have the following.

Theorem 1.2.2(Grauert). Let Q be an open set in M. Then Q has a
fundamental system of Stein open neighborhoods in X .

Proof. See Grauert [2], Proposition 7. (Q.E.D.)

Then we have the following. _

Theorem 1.2.3(Malgrange). For every subset S of M, we have H* (S, AP) =
0,(p>0 and s > 1).

Proof. We know, by Theorem 1.2.2, that S has a fundamental system of
Stein open neighborhoods. Then it follows, from Theorem 1.2.1 and Schapira
[26], Theorem B42, that, for s > 0, we have

H*(S, A?) = limindgc o H* (R, OF) = 0. (QE.D)

1.3. Malgrange’s Theorem. In this subsection we prove the following.

Theorem 1.3.1 (Malgrange). Let Q be an open set in X. Then we have
H™(Q,0) = 0.

Proof. By virtue of Corollary to Theorem 1.1.2, we have only to prove the
exactness of the sequence '

‘

£o7=1(Q) 25 £07(Q) —» 0

in the notation of Theorem 1.1.2. By virtue of the Serre-Komatsu duality the-
orem for FS*-spaces, it suffices to show the injectiveness and the closedness of

the range of 9" = (9)" in the dual sequence

-
£010) & £09(Q) «— o.

Here £7:9(Q2) denotes the space of sections with compact support of £P'9 on

Q2. Since _551 is elliptic, its injectivity is an immediate consequence of the
unique continuation property. Now we prove the closedness of its range. This
is surely true if Q is replaced by a Stein open set V containing Q because then
HP(V,0) =0 for p > 1. Here we consider the commutative diagram:
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£o1(Q) £ £09(Q) — 0

il }
LINV) &= L2%(V) 0,

.. .. . =V .
where the map 7 is the natural injection. By the remark above, —0 s of closed
range. Then we have

=0

Im(-8%) = {i~}(Im(=3" ))} N {[Im(=3 )]*"},

where [ ]! is the closure of the set [ ]. In fact, the inclusin Im(—gﬂ) C
{i‘l(Im(—év))} N {[Im(—gﬂ)]d} is evident. Now we show the inverse inclu-
sion. Assume f = —0u € [Im(—_ﬁ_ﬂ)]CI with u € £29(V). Then u is holomor-
phic on V\supp(f) and supp (f) CC Q. Hence u = 0 on the components of
V\supp(f) which are disjoint from supp (f). Hence supp (u) C 2. Namely we
have u € £2%(Q). Thus we have f € Im(—gn). Therefore Im(—ﬁﬂ) is closed.
Namely —3" is of closed range. This completes the proof. (Q.E.D.)
Corollary. Flabby dim O < n.

1.4. Serre’s Duality Theorem. In this subsection we prove Serre’s Du-
ality Theorem.

Theorem 1.4.1. Let Q be an open set in X such that dim H?(Q,0) <
holds (p > 1). Then we have the isomorphism [HP(Q,0)]) = H}~?(Q,0), (0
p < n).

Proof. By virtue-of Corollary to Theorem 1.1.2, cohomology groups H? (2, Q)
and HI'"P(Q,O) are cohomology groups respectively of the complexes.

IA &

0 — £99(Q) 5 £01(Q) 25 - %5 £On(Q) — 0.

(*) 0 ! !

0 £0n(Q) €2 £on-1(Q) &2 - &2 £00(Q) «— 0.
Here the upper complex is composed of FS*-spaces and the lower complex is
composed of DFS*:spaces. Since the ranges of operators 0 in the upper complex
are all closed by virtue of Schwartz’s Lemma (cf.Komatsu [17]), the ranges of
operators —0 = (9)’ in the lower complex are also all closed. Hence we have
the 1somorphism

[HP (Q,0)] = HI7?(Q,0)

by virture of Serre’s Lemma (cf. Komatsu [17]). (Q.E.D.)
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Remark. The conclusion of the theorem works for every open set Q for
which every 0 operator in the diagram (*) is of closed range.

1.5. Martineau-Harvey’s Theorem. In this subsection we prove Martineau-
Harvey’s Theorem.

Theorem 1.5.1 (Martineau-Harvey).Let K be a compact set in X. Fur-
ther assume the following (i) and (ii) :

() H?(K,0)=0,(p> 1).

(i1) Q be a Stein open set with K C Q.
Then we have the following :

(1) Hg(Q,0)=0,(p#n).

(2) If n > 2, we have algebraic isomorphisms
HE(Q,0) = H"HQ\K,0) = O(K)'.
(3) If n =1, we have topological isomorphisms

HE(V,0)= O(V\K)/O(V) = O(K)

Remark. If a compact set K in X has a fundamental system of Stein open
neighborhoods, it satisfies the assumptions in Theorem 1.5.1.

Proof. It goes in a similar way to Ito [11]. From a general theory of rela-
tive cohomology groups (cf. Komatsu [18], Theorem I1.3.2), we have an exact
sequence

0 HY(Q,0) = H(Q,0) - HY(Q\K, 0)
- Hk(2,0) - HY(Q,0) = HY(Q\K,0) - ---

— H(Q,0) = H*(Q,0) - H"(Q\K,0) — - --

Then, we have H?(Q,0) =0, (p > 1), and H%(Q, 0) = 0 by the unique contin-
uation theorem. Hence we have an exact sequence and algebraic isomorphisms

0—0(Q) = O(Q\K) = Hi(2,0) -0,

HY (2,0) = HP7H(Q\K, 0), (p > 2).

We also have the long exact sequence of cohomology groups with compact sup- -
port (cf. Komatsu [18]), Theorem II.3.15):

0— HY(Q\K,0) = HX(Q,0) - H°(K,0)

— HYO\K,0) —» HX(Q,0) - HY(K,0) - -
— HP(Q\K,0) —» H?(Q,0) —» H?(K,0) — - --
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Here HP(K,0) = 0,(p > 1) by the assumption on K. From Theorem 1.4.1 and
the fact H?(Q,0) = 0,(p > 1), we also have H?(Q,0) = 0, (p # n). Therefore
we obtain an exact sequence and topological isomorphisms:

When n =1,

0= O(K) = HYQ\K,0) = H}Y(Q,0) =0,
when n > 2,

HL(Q\K,0) = O(K),
HP(Q\K,0) = HF(Q,0) =0, (p # 1,n),

HMMQ\K,0) = HYQ,0).

'Now we consider the following dual complexes :
0 — LOOQ\K) 22 £OVQ\K) 2 ... 225 £On=1(Q\K) —s (4)
0 ! 0

0 — LO7(Q\K) " £On=1(Q\K) "2 .. 22 L0V (Q\K) — (#%)

(#) 58 L0 (Q\K) —s 0
!

(k%) 222 LO0(Q\K) — 0.

Then, since HZ (Q\K,0) =0, (p # 1,n), the range of —8; = (Jp—j1)" is closed
for j # 0,n — 1. However J,,—1 is of closed range by the Malgrange Theorem.
Hence, by the Serre-Komatsu duality theorem, —dy is of closed range.

In order to prove the closedness of the range of —d,_,, we consider the
following diagram:

—Q\K

0 — LOMQ\K) €= £0n-1(Q\K)
i {

=0

-3, _,
0 — £Om(Q) & LommL(Q),




24 Yoshifumi Ito

where the map 7 is the natural injection.

We conclude that 5? is of closed range because H!(Q2, 0) = 0: Thus —52_1 is
of closed range by the Serre-Komatsu duality theorem. Therefore Im (—Efflf) =

i‘l(Im(—gﬁ_l)) is closed by the continuity of the map ¢. Therefore all __5].
are of closed range. Hence, by the Serre-Komatsu duality theorem, we have the
isomorphisms

[HP(Q\K,0)]' = HI""(Q\K,0), (0<p<n).

If n =1, by the Serre duality theorem, we have the dual complexes:

0 — O(Q) — OQ\K) — HL(Q,0) — 0

7 1
0+— HY(Q,0) +— HYQ\K,0) +— O(K) +— 0.
Therefore we have topological isomorphisms '
| [Hk(Q,0)] = [Coker(O(Q) — O(Q\K)))
= Ker(Hj(si\I(, 0) — HX(Q,0)) = O(K).

Thus we have topological isomorphisms

Hg(9,0) = 0O(Q\K)\O(Q) = O(K)'.

This proves (3). » v
If n > 2, since FS*- or DFS*-spaces are reflexive, we have

OQ\K) = H}Q\K,0) = H(Q,0) = 0(Q).
Hence we have the isomorphism
0(Q) = O(Q\K).

Thus we have

HL(Q, 0) = 0(Q\K)/O(Q) = 0.
Further, for p > 2,p # n, we have
0= [HPH(,0)1 = [H2PH(Q\K, O)
~ HP-L(Q\K,0) = HE.(2,0).

Thus we have

HE(Q,0) =0, (p#n).
This proves (1).
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In the case p = n, we have algebraic isomorphisms
Hp(Q,0) = HHQ\K,0) = [H{Q\K, 0)]' = O(K)'.

This proves (2) (Q.E.D)

Here we mention the important facts used in the proof of Theorem 1.5.1 in
the following.

Proposition 1.5.2. Assume n > 2. Let K and Q2 be as in Theorem 1.5.1.
Then we have (topological ) isomorphisms :

(1) H}(Q\K,0) = H(K, O),

(2) H2(Q\K,0) = HE(2,0), (p > 2).

1.6. Sato’s Theorem. In this subsection we prove the pure-codimensionality
of M with respect to @. Then we realize Sato hyperfunctions as “boundary val-
ues” of holomorphic functions or as relative cohomology classes of holomorphic
functions.

Theorem 1.6.1 (Sato’s Theorem).

(1) M is purely n-codimensional with respect to the sheaf O. Namely, we
have H4,(O0) =0, (p # n). '

(2) The presheaf {H(V,0);8 is an open set in M} over M is a flabby
sheaf. Here the section module Hg(V,O) is the relative cohomology group with
coefficients in the sheaf @ and V is an open set in X which contains 0 as its
closed subset. We denote this sheaf by H7 (O)=Dist™(M,0).

(3) The sheaf M3 (O) is isomorphic to the sheaf B of Sato hyperfunctions
realized by the duality method in Ito 7], Definition 4.2 applied to the case E =

C.

Remark. The symbol Dist” (M, Q) is due to Sato [25].

Proof. (1) We have to prove the vanishing of the derived sheaf H%,(O) for
p # n. This is local in nature. Thus, it is sufficient to prove H5(V,0) =0, (p #
n) for every relatively compact open set Q in M. Thus, let Q be a relatively
compact open set in M. Then, by the excision theorem, we may assume that V
is an open set in X which contains Q¢!. Consider the following exact sequence
of relative cohomology groups ‘

o — HEo(V,0) — HE(V,0) = HL(V,0)

— HYP (v, 0) — -

By Theorem 1.5.1, we may conclude that Hio(V,0) = H5..(V,0) = 0, (p # n).
So that, we have HL(V,0) = 0,(p # n — 1,n). Therefore, we have the exact
sequence :

0 — HE YV, 0) — H3o(V,0)
— Hia (V,0) — HG(V,0) — 0.
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By Theorem 1.5.1, we have the isomorphisms
2, (V,0) = A(0Q), HE.(V,0) = AQ).
Since the natural mapping |
A(0Q) — A(QY)

is injective, we have Hp~'(V, 0) = 0. Therefore, we have H;(V,0) = 0, (p # n).

(2) By (1) and Komatsu [18], Theorem II. 3. 24, we have the conclusion.

(3) It follows in a similar way to Ito [11], Theorem 1.6.1. (Q.E.D.)

Corollary. Let Q be an arbitrary open set in M and V a Stein open neigh-
borhood of . Then we have the following :

(1) If n > 2,HA(V,0) = H* 1 (V\Q,0).

(2) If n=1,HA(V,0) = O(V\Q)/O(V).

Thus we have realized Sato hyperfunctions as “boundary values” of holo-
morphic functions or as relative cohomology classes of holomorphic functions.
They are equivalent to those which are realized by the duality method in Ito
[7], [12].

2. Case of vector-valued Sato hyperfunctions

2.1. The Dolbeault-Grothendieck resolution of £0. In this section
we mention the theory of vector-valued Sato hyperfunctions on a real-analytic
manifold countable at infinity.

Let M be an n-dimensional real-anlytic manifold countable at infinity and
X its complexification. Let E be a Fréchet space.

We define the sheaf £© of E-valued holomorphic functions over X to be the
sheaf {O(Q; E);Q is an open set in X}, where, for an open set Q in X, the
section module O(; F) is the space of all F-valued holomorphic functions on
Q. '

We also define the sheaf & of E-valued C*°-functions over X to be the sheaf
{€(S; E); Q is an open set in X}, where, for an open set  in X, the section
module £(£; F) is the space of all E-valued C*-functions on Q. Then we have
the following.

Proposition 2.1.1. The sheaf € is soft. ‘

Proof. Since € is obviously an &-module and £ =%& is a soft sheaf, we
have the conclusion by virtue of Bredon [1], Chapter II, Theorem 9.12, p.50.
(Q.E.D.) '

Then we have the following. A

Theorem 2.1.2(The Dolbeault-Grothendieck resolution of FOF).
The sequence of sheaves over X

B ) 9
0 —For —Fepd 2 Bepd 2,0 2y Eepn
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15 ezact, (p > 0).
Proof. Since E is a Fréchet space and the sheaf £ is a unclear Fréchet sheaf,
this follows from Theorem 1.1.1 and Ion-Kawai [6], Theorem 1.10, p.9. (Q.E.D.)
"Corollary. For an open set  in X, we have the following isomorphism:

(p>0 and ¢>1).

Proof. It follows from Theorem 2.1.2 and Komatsu [18], Theorems II.2.9
and 11.2.19. (Q.E.D.)

2.2. The Oka-Cartan Theorem B. In this subsection we prove the Oka-
Cartan Theorem B for the sheaf £0 .

Theorem 2.2.1 (The Oka-Cartan Theorem B). For every Stein open
set Q in X, we have HY(Q,POP) =0,(p > 0 and ¢ > 1).

Proof. By virtue of the Oka-Cartan Theorem B for the sheaf @, we have

H(Q,0%) =0,(p>0 and ¢ >1).

Thus the complex obtained from Theorem 1.1.1

e0(Q) 2y er1 () 2. s ern(9) — 0

is exact. Since EP'7(Q)’ s are unclear Fréchet spaces and E is a Fréchet space,
the complex

e E) L e (@ E) L 2 e (@ E) — 0
1s also exact by virtue of the isomorphism
EPIQ; E) = EPY(Q)QE
and lon-Kawai [6], Theorem 1.10, p.9. Hence we obtain
HYQ,POPY=0,(p>0 and ¢ > 1).

This completes the proof. (Q.E.D.)

Corollary. We use the notation in Theorem 2.2.1. Then the equation du =
f has a solution u € EP9(Q; E) for every f € EP 9L (Q; E) such that 9f = 0.
Here p and ¢ are nonnegative integers.

Proof. It follows from Theorem 2.2.1 and Corollary to Theorem 2.1.2.

(QE.D)

2.3. The Malgrange Theorem. In this subsection we prove the Mal-
grange Theorem. »
Theorem 2.3.1. Let  be an open set in X. Then we have H™*(Q,£0) = 0.
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Proof. By virture of Theorem 1.1.1 and 1.3.1, we have an exact sequence

£0n=1(Q) =25 £9m(Q) — 0.

Thus, by Treves [28], Proposition 43.9, we have the exact sequence

Y MGE S £97(Q)HE — 0

or
£9=1(Q; B) B £97(Q; B) — 0.

This completes the proof. (Q.E.D.)
Corollary. Flabby dim £O < n.

2.4. The Serre Duality Theorem. In this subsection we prove the Serre
Duality Theorem.

Theorem 2.4.1. Let Q be an open set in X such that [H?(Q2,0)]
H!?(Q,0),(0 < p < n) holds. Then we have the isomorphism HP(Q,F0)
L(HP™?(2,0);B), (0< p < 7).

Proof. Since we can easily obtain the isomorphism H?(Q,f0) = H? (Q, O)QF,
we have the following isomorphisms by the assumption :

IR

H?(Q,P0) = H? (Q,0)&E

> [H7-7(Q,0)/&F = L(H 7 (Q, ov); E). (Q.E.D.)

2.5. The Martineau-Harvey Theorem. In this subsection we prove the -
Martineau-Harvey Theorem.

Theorem 2.5.1. Let K and Q be as in Theorem 1.5.1. Then we have the
following : ‘

(1) Hy (2,50) = 0,(p # n).

(2) If n > 2, we have algebraic isomorphisms

HE(Q,P0) = HY(Q\K,P0) = L(O(K); E).
(3) If n = 1, we have topological isomorphisms
Hig (V,PO) = O(Q\K; E)/O(Q; E) = L(O(K); E).
Proof. It goes in a similar way to Theorem 1.5.1.

From a general theory of relative cohomology groups (cf. Komatsu [18],
Theorem 11.3.2), we have an exact sequence

0 — Hy(2,20) — H°(9Q,20) — H°(Q\K,F0)
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— HY (Q,50) — HY(Q,E0) — HY(Q\K EO) — - -
— HJ(2,50) — H™(2,50) — B (Q\K,PO) — - .

Then, we have H?(Q,0) = 0,(p > 1), and HY(Q,F0) = 0 by the unique
continuation theorem. Hence we have an exact sequence and algebraic isomor-
phisms

0 — O(E) — O(Q\K; E) — HL(Q,F0) — 0,
HY (9,50) = HP~Y(Q\K F0), (p > 2).

If n = 1, we have an exact sequence

0— 0(Q) — O(O\K) — Hj(2,0) — 0

by the proof of Theorem 1.5.1. Since we have O(Q; E) = O(Q)QFE and O(Q\K ;
E) = O(Q\K)®E, we have an exact sequence

0— O(Q)E — O(Q\K)QE — Hi(Q,0)QE — 0.
Therefore we have an exact sequence
0— O E) — O(Q\K; BE) — HL(Q,0)QE — 0.
Thus we have isomorphisms |
HL(Q,F0) = O(Q\K; E)/O(Q; E)

> i (Q,0)QE = O(K)QE = L(O(K); E).
This proves (3). ' v
Now we prove (1). Assume n > 2. Then we have H?(V,EOQ) = HP(V,0)&, E, (0 <
p < n) for an open set V in X. Thus we have isomorphisms

O(Q\K; E) = O(Q\K)QE = O(Q)QE = O(Q; E).

Therefore we have H1 (Q,0) = 0.
For p > 2,p # n, we have

HE (9,50) = HP-Y(Q\K FO) = HP7YQ\K,0)QE =0

by Theorem 1.5.1.

Now assume n = 1. Then we have the conclusion by virtue of the long exact
sequence of relative cohomology groups, the Oka-Cartan Theorem B and the
Malgrange Theorem. This proves (1).

Now we prove (2). Assume n > 2. Then, by virtue of Proposition 1.5.2 and
Thedrem 2.4.1, we have algebraic isomorphisms

HE(Q,50) = H~1(Q\K,F0)
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= L(H}(Q\K,0); )
This completes the proof. (Q.E.D,)

IR

L(O(K);E).

2.6 The Sato Theorem. In this subsection we prove the pure-codimensionality
of M with respect to 0. Then we realize E-valued Sato hyperfunctions as
“boundary values” of E-valued holomorphic functions or as relative cohomolo-
gy classes of E-valued holomorphic functions.

Theorem 2.6.1 (the Sato Theorem).

(1) M is purely n-codimensional with respect to EQ. Namely we have H%, (EO) =
0,(p#n).

(2) The presheaf {HE(V,E0);Q is an open set in M} over M is a flabby
sheaf. Here the section module H{{(V,EO) 15 the relative cohomology group with
coefficients in the sheaf FOQ and V is an open set in X which contains Q as its
closed subset. We denote this sheaf by H3, (FO)=Dist"(M,F ).

(3) The sheaf H3y (EO) is isomorphic to the sheaf EB of E-valued Sato hy-
perfunctions defined in Ito [7), Definition 4.2. :

Remark. The symbol Dist”(M,£0) is due to Sato [25].

Proof. (1) We have to prove the vanishing of the derived sheaf #%,(£O) for

p # n. This is local in nature. Thus, it is sufficient to prove H5(V,f0) = 0, (p #
n) for every relatively compact open set ©Q in M. Thus, let Q be a relatively
compact open set in M. Then, by the excision theorem, we may assume that V'
is an open set in X which contains Q°!. Consider the following exact sequence
of relative cohomology groups

o — HEN(V,PO) — HE, (V,EO) — HE(V,FO)

— HYH (VEO) — -

By Theorem 2.5.1, we may conclude that Ho(V,£0) = HE., (V,FO) =0, (p #
n). So that, we have HE(V,PO) = 0,(p # n — 1,n). Therefore, we have the
exact sequence

0 — HE™H(V,PO) — H3o(V,FO)

— HZ.. (VEO) — HE(V,FO) — 0.
By Theorem 2.5.1, we have the isomorphisms
H2,(V,EO) = L(A(OQ); E), HE.(V,PO) = L(A(Q);E).
Since the natural mapping
L(A(0Q); E) — L(A(Q); E)

is injective, we have Hp™'(V,E0) = 0. Therefore, we have HE(V,EO) = 0,{p #

(2) By (1) and Komatsu [18], Theorem I1.3.24, we have the conclusion.
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(3) It follows in a similar way to Ito [11], Theorem 1.6.1. (Q.E.D.)

Corollary. Let Q be an arbitrary open set in M and V a Stein open neigh-
borhood of 2. Then we have the following :

(1) If n > 2, HE(V,FO) = H*-1(V\Q,F0O).

(2) If n=1,H4{(V,EO) =2 O(V\Q; E)/O(V; E).

Thus we have realized E-valued Sato hyperfunctions as “boundary values”
of E-valued holomorphic functions or as relative cohomology classes of E-valued
holomorphic functions. They are equivalent to those which are realized by the
duality method in Ito [7], [12].

[
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[ 10
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