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Abstract

In this article, we consider the mathematical meaning of renor-
malization. We show that divergent integrals can be given finite
values in the case of conditional convergence of extended integrals
by subtracting an infinite quantity. This can be considered as a
kind of renormalization of divergent integrals. Using this method of
renormalization, we define distributional extensions of measurable
functions with nonsummable singuralities.
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Introduction

In the quantum field theory, there are problems of renormalization of di-
vergent integrals such as Feynman integrals[10]. In this article, we consider
the mathematical meaning of renormalization. Using the method of renormal-
ization, we define distributional extensions of measurable functions with non-
summable singuralities. We show that distributional extensions of distributions
defined by these functions can be realized as extended Riemann integrals or
extended Lebesgue integrals in the case of conditional convergence. Further
we show that divergent integrals can be given finite values in the case of con-
ditional convergence of extended integrals by subtracting an infinite quantity.
This can be considered as a kind of renormalization of divergent integrals. Fur-
ther regularizations of divergent integrals in the sense of Gelfand-Shilov[1] can
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be also considered as distributional extensions of distributions defined by lo-
cally integrable functions with nonsummable singularities. Thus we can see
that the method of renormalization gives the definition of distributional exten-
sions beyond singularities of distributions defined by locally integrable functions.
Further the method of renormalization gives the method of obtaining the finite
quantity by subtracting an infinite quantity from a divergent integral which is
not necessarily a distribution. This clarifies the method of renormalization used
by S. Tomonaga and others in the theory of quantum electrodynamics[7]. At
last we give some examples of distributions obtained by the renormalizations of
divergent integrals.

1. Extended Riemann integrals and extended
Lebesgue integrals \

1.1. Extended Riemann integrals. Here we remember the definition of
extended Riemann integrals, [3], [5].

‘Assume n > 1. Let a set E be a Jordan measurable set in R™. Let A be
a directed set and {E,}aca a family of bounded measurable closed sets in E.
Then we say that {E,}aca converges to E if, for every bounded measurable
closed set H in F, there exists some element o in A such that, for every
a € A, a> ay, Eo D H holds. Then we call {Eq}aca an approximating
directed family of E.

Assume that a function f(z) is Jordan measurable on E. A point zp in Eis
defined to be a singular point of f(z) if f(z) is unbounded on every nelghborhood
of Zo. .
Assume that the set S of singular points of f(z) is of Jordan measure zero.
Then f (:v) is 1ntegrable on every bounded measurable closed set included. in
E\S. Then, if, for an approximating directed family {E4}aca of E\S, there
exists the limit / = limy.4(Eq) in the sense of Moore-Smith of directed family
{I(E4)} defined by the integrals

1E) = [ fwye
we call I the extended Riemann integral of f(z). We denote this as

=/f@@.

If the 1ntegral I does not depend on thie choice of an approx1matmg dlrected
family, we say that the 1ntegra1 is absolutely convergent. If the integral T de-
pends on the choice of an approximating directed family, we say the integral is
conditionally convergent.
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Put
f¥(z) = sup(f(2),0), [~ (2) = —inf(f(z),0).
Then the situation of convergence and diverdence of an extended integral is as
in the following Table 1.1.1.

Table 1.1.1. Convergence and divergence
of an extended Riemann integral

conv.=convergent, abs.conv.=absolutely convergent
cond.conv.=conditionally convergent, div.=divergent

[@a | [s@ue | [ e | [ roe
abs.conv. conv. conv. conv.
div. div. conv. div.
div. div. div. _conv.
cond.conv. or div. div. div. div.

0

1 .
Example 1.1.1. We consider the integral / %dx. Since / %dx = —00
1 1

1
and %dm = oo hold, / —dr is conditionally convergent or divergent. In

0
fact we have the following;

v.p/ _dx_el—l>r£ (]_ ldz-I—/ —dz)

= lim ([log |z||=5 + [log [z]};) = lim (loge —loge) = 0.

This is known as the Cauchy principal value(v.p.) of the integral.
Further, we have the following:

T2 1
v.p.l/ —dx = El_l)ril (/ —d -I—/ —dx)

I X } —2e¢ I _ —
= lim (flog|z[| =3 + log a[}2) = lim (log2e — loge) = log2
This is a new principal value.

Example 1.1.2. We consider the integral /

—00

(o ¢]

0
ld:z:. Since/ -1—dm.: -
x oo T

oo 1 oo
and / %dx = o0 hold, / %dx is conditionally convergent or divergent. In

0
fact, we have the following;

> 1 . €1
/ —dxr = lim —dz' + dm)
_x e—>+0,a——>+oo
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_— 3 —€ a
= _dim (flog |z]|=, + log |=[l¢)

= lim (loge —loga+loga —loge) =0.

e—+0,a—+0c0

Further, we have the following:
for p> 0and ¢ > 0,

oC 1 —qe 1 Q 1
/ ~dr = lim (/ —dzx +/ —dr)
—_co T e>+0,a—400 f 0 T e T

= lim  (loglef|=% + [log|z]]2)

¢—+0,a—+00

= lim (log ge —log pa +loga — loge) = log =

e—+40,0—+

1.2. Extended Lebesgue integral. It is known that the function % is
extended-Riemann-integrable on [0, co) and we have

w .
sinz . %sinz T
dx = lim ——dr = —

0 T a—0o0 0 xr . 2

sinz :
But, o is not Lebesgue-integrable on [0, c0). Here we consider the extended

Lebesgue integral. Then _n_a_: is extended-Lebesgue-integrable.

Here let (R) be the fam1ly of Riemann-integrable functions, (ER) the family
of extended-Riemann-integrable functions, (L) the family of Lebesgue-integrable
functions and (EL) the family of extended-Lebesgue-integrable functions. Then
we have the following inclusion relations:

(R) c (ER) C (EL),

(R) c (L) C (EL).

Here we remember the definition of extended Lebesgue integral, 4], [6].

Assume that n > 1 and a set E is measurable in R"®. Let A be a directed
set and {E,}oca the family of bounded measurable subsets of E. Then, we say
that {Fy}aca converges to E, if, for every bounded measurable subset H of E,
there exists some element ag of A such that, for every a € A, a > ag, Eq D H
holds. Then we say that {E, }aca is an approximating directed family of E.

Assume that a function f(z) is measurable on E. We say that a point zo
in E is a singular point of f(z) if f(z) is not integrable on every measurable
neighborhood of zo.

Assume that the set S of all singular points of f(x) is of measure zero. Then
f(x) is integrable on every bounded measurable set included in E\S. Then, if,
for an approximating directed family {Ey}aca of E\S, there exists the limit
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I = limy I(E,) in the sense of Moore-Smith of the directed family {I(E,)}
-defined by the integral

1Ea) = [ fle)s
We say that I is the extended Lebesgue integral of f(z). We denote this as

_ /E f(z)dz.

If the integral I does not depend on the choice of an approximating directed
family, we say that the integral is absolutely convergent. If the integral I de-
pends on the choice of an approximating directed family, we say that the integtal
is conditionally convergent.

Put
f+(CU) = sup(f(z), 0)’ f_ (.’ZI) - = lnf(f(x)’ 0)
Then the situation of convergence and divergence of an extended Lebesgue in-
tegral is as in the following Table 1.2.1.

Table 1.2.1. Convergence and divergence
of an extended Lebesgue integral

conv.=convergent, abs.conv.=absolutely convergent
cond.conv.=conditionally convergent, div.=divergent

[t@a | [s@e | [ oo | [ e
abs.conv. conv. . conv. conv.
div. div. conv. div.
div. div. div. conv.
cond.conv. or div. div. div. div.

If we define the function f(z) by the condition f(z) = S (when z € [0, c0)

is an irrational number) and f(z) = 0 (when z € [0,00) is a rational nember),
f(z) is discontinuous at every point. f(z) is extended-Lebesgue-integrable, but
it is not integrable in any sense of Lebesgue integral and in the extended or
narrow sense of Riemann integral.

2. Distributions

2.1. Definition of distributions. Let {2 be an open set in R™. Let Cg°(Q)
be the set of all complex-valued C'* functions on {2 with compact support. This
is a vector space over C. Let K be an arbitrary compact set in 2. Put

Dk (Q2) = {f € C5°();supp(f) C K}.

39
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We define the seminorms px,m on Dk () by the relation

prm(f)= sup [D*f(z)], 0<m < co.
|s|<m,z€K

Here we put

o8l
D?f(z) = mf(xhzz, “++, Tn),

S:(Sl,“-,sn), Sj 20,(.7:172,"'9”)’

|s| = X318
Then, being endowed with the topology defined by the family of seminorms
{pkm; K CCQ,m =0,1,2,---}, Dg(2) becomes a locally convex space. Let
K; and K» be two compact sets in Q with K; C K. Then Dk, () C Dx,(R2)
holds and the topology of Dk, () coincides with the relative topology induced
from that of Dk, (). Thus we define D(Q) as the strict inductive limit

D(2) = lim indKCQ,DI{(Q) =UxkcaDk(Q).

Then D(?) is a locally convex space.

Then we say a continuous linear functional on D(2) to be a distribution.
We denote the set of all distributions on € by D'(€2). Then this is a locally
convex space. For T € D/(2), we denote the value of the distribution T at a
test function ¢ € D(QQ) by T'(p) =< T, ¢ >.

Let f(x) be a complex-valued function on f2. Then we say f(z) to be a
locally integrable function on 2 if, for every compact set K in 3, it satisfies the
condition

/ |f(z)|dz < oo.
K

Example 2.1.1. Let f(z) be a locally integrable function on 2. We define
a linear functional T on D(2) by the relation

Ty(p) = /ﬂ f@)p(x)dz, (9 € DE)).

Then Ty becomes a distribution on Q.

Example 2.1.2. The function -i: is locally intagrable on 2 = {z € R;x 7$
0}. Put
1
flz)=< (z #0),
a, (z=0).

1
Here a is an arbitrary constant. Then f(z) is an extension of — over the space
R. But f(z) is not locally integrable on R.
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T}/, is a distribution on Q2. But we cannot define any distribution on R such
as Tf. ‘

Example 2.1.3. Let m be a completely additive complex-valued measure
on Q. Then we define a linear functional T;,, on D(2) by the relation

Ton(p) = /Q o(z)m(dz), (¢ € D().

Then T,, is a distribution on €.
For example, for a fixed point a € R, we define T5, on R by the relation

Ts, (@) = ¥(a), (¢ € D(Y)).

We denote this by &, simply. This is a Dirac measure concentrated at a € R.
For a = 0 € R, we denote 6y = 0.

2.2. Operations on distributions.

(A) Multiplication by a function. Let 2 be an open set in R™. For
a € C*®(Q) and T € D'(2), we define the product o' € D'(Q2) by the relation

(@T)(¢) = T(eyp), (¢ € D()).

Multiplication by a function a7 should be considered as a conjugate operator
of an operator of multiplication by the function o on D(f2). The operator of
multiplication by a function a should be considered as a differential operator of
order 0 mentioned in the next clause.

(B) Differentiation. Let  be an open set in R®. For T' € D'(Q), we
define a partial derivative 8T/0z;, (1 < j < n) by the relation

or, | Oy
g-l;;(cp) = 'T(a_x‘,‘-)’ (v € D).

~ Let p=(p1,-+,Pn) be an n-tuple of nonnegarive integers. Then we define
a partial differential operator 67 by the relation

P = ol /oz - - OxPr,
Cpl=pit e+ P
Then we have the relation
(B°T)(9) = (-1)P'T("p), (¢ € D(Q)).
Thus, for a general differential operator with constant or function coefficients
P(0/0z) = Elmsmap(c')/az)p, a, € C

or
P(z,0/0z) = Xjp<map(2)(8/0)?, ap(z) € C=(S1),
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we have the relations, for P(0/0x)T or P(x,0/0x)T, _
P(8/0)T(p) = T(P(-0/0z)¢), (v € D)),

or

P(x 8/0x)T(p) = T(*P(,0/0z)¢), (v € D(Q)),

Here ¢ P(z, 8/0z) is the formally conjugate operator of P(z,8/0x), and we define
it by the relation

tP(z,0/0z)p = Bjpj<m(—1)P/(8/82)" (ap(x)¢)
for ¢ € D(Q2).

3. Restriction and extensions of distributions

Let ©; and » be two open sets in R with ; C Q2. Then, D({}) is a
subspace of D({2). Let T € D'(Q2). The restriction T|n, = S of T to () is
defined by the relation

S(p) =T(#), (¢ € D(h)).

Then S € D'(2,).

If, for S € D'(), there exists a T' € D'(§2z) such that T'|g, = S holds, then
we call T an extension of S to €2s.

Put @ = R\{0}. Then Q is an open set in R. Then we can define a

distribution T3/, € D’'(£2) by using a locally integrable function ;Ul— on €). But,

1 ' .
even if we extend — to a function f(z) on R in any way, f(z) does not become

a locally integrable function on R. Therefore we cannot define a distribution 7'
on R such as T = Ty. Then, if we use the Cauchy principal value of divergent

1
integral, we can define the distribution v.p.; on R by using the relation, for
every ¢ € D(R),

< V.p. l,cp >= lim Mdnr: = v.p./ @d:c.

0 Jjgze T —o0 T

We call this the Cauchy principal value. Then we have

1 1
p=lo=Ti/p = =-
x z

1 ) . .
Namely, the Cauchy principal value v.p.; is a distributional extension of a
1 1
locally integrable function - o0 Q onto R. In this sense, we call v-p.— a

o . .1
renormalization of a singular function —.
x
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Here we remember the notion of Cauchy principal value of a divergent inte-
gral. For ¢ € D(R), we have the following;

v.p./_ ‘pi )dz = lim (fp(—x)dx

0 iz>e T

_ nm{/_:@dﬁfe 22 40

e—+0
_ A ) o(z)
-t [ [
~ lim_ * olz) —m¢(~x) dr — / > so(fv) —xso(—x) da.

This is the Cauchy principal value of a divergent integral and a regularization
of a divergent integral in the sense of Gelfand and Shilov][1].

The divergent integral in this case is the case of conditional convergence of
the extended Riemann integral or the extended Lebesgue integral. Therefore
this converges to a different value according to an approximating sequence of
convergence.

For example, we have

v [ Bhte= i) [ €D [
:lim[/_e‘p—f—zdwrlw@dz]—hm o)y,

1
~<vagie> -, [ 2

— 1 ; 1—e : B /
=<v.p.,¢ > = lim [p(z) log |z]| 25 + lim /_ 4 (z) log ||dz.
Here we have the following;:
: e _ 1 B o
Jim [o(z) log |z]] =3 = lim (¢(—€)loge — p(-2¢)log 2)
= lim (~p(~2€) log2 + (p(~€) — o(~2¢)) log e) = —p(0) log2.

Further we have the following:

—€ —€
| / & (@) log|eldz] < C / |log ] dz
—2¢ —2¢

2¢
= C/ |log z|dx = C[z — zlog z]**
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= C(e — elog e — 2¢log2) — 0, (¢ — +0).
Therefore, we have

—€
. / _
El_1>r_rF10 ./;25 o' (z)log |z|dz =0

Therefore, we have

1 1 1
< v.p. 150 ® >=< V.p. 1 > +log 2¢p(0) =< VP, P >+ < (log2)8,¢ > .
1
Therefore we have VP € D'(R) and

1 1
VP = VP + (log 2)é(x).

Thus we have 1

1 .
VP1E|Q:T1/x: T

1. NPT - . .1
vpy_isa distributional extension of a locally integrable function Zon Q2 onto
. 1. e : : .1
R. In this sense, VP s also a renormalization of the singular function =

1
Thus we cannot extend the singular function — onto R as a locally intagrable

function. But we can extend this onto R as a dlstrlbutlon and what is more
such an extension is not unique. This is a general property of distributional
extensions. We call a distributional extension of a locally integrable singular
function a renormalization. We wish to study several examples of these phe-
nomena and their aspects.

As for the extendability of distributions, there is Komatsu’s Work[8] Here
we remember its outline.

Let © be an open set in R and € be an open set including .

We consider what is the condition for a distribution on 2 to be extendable to
a distribution on ). Especially, as a sufficient condition that a locally integrable
function f(z) defined on one side of a hypersurface can be extended beyond
the hypersurface as a distribution, we may consider the growth condition of
the absolute value~of f(z) as x approaches to the hypersurface. Lét S be the
boundary of Q in . Assume that S has a certain dgree of smoothness.
X Proposition 3.1(Komatsul[8], p.90). We use the notation above. If T €

D'(Q) can be extended to T € D'(Q) , T has the extension T € D'(Q) which

vanishes on Q\Q.
_ By the proposition above we assert the existence of such a special extension
T. But we say nothing about the existence of another extensions.

Proposition 3.2(Komatsu[8], p.90). We use the notation above. Then
T € D'() can be extended to T € D'(Q) if and only if T is extendable in a
certain neighborhood of each x of the boundary S of €.
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Namely, the extendability of T' depends only on the behavior in a certain
neighborhood of S, but it does not depend on the choice of Q. y

Theorem 3.3(Komatsu(8], p.91). T € D'(Q) can be extended to T €
D'(Q) if and only if, for every point x of the boundary S of Q, there exists its
compact neighborhood K in Q such that we have the following :

There exist some constants m and C, and we have the following estimate:

|<T,o>|<C sup |D%(z),
|

al<m,r

(v € D(Q), supp(p) C K).

Proposition 3.4(Komatsu[8], p.91). Let f(z) be a locally integrable func-
tion defined on Ry = {z € R;x > 0}. Then, if for anyn € N, there exist ¢ > 0
and 6 > 0 such that we have the estimate

fl) >cx™, (0< 2z <),

Ty cannot be extended as a distribution beyond the origin.

In general, we have the following.

Theorem 3.5(Komatsu[8], p.92). Let V' be an open set in R™~! and S
a hypersurface defined by the relation x = v(z'), using a continuous function
v(x') on V. Put Q= {z=(2,z,);2 € ¥, z,, > v(z')}. Let f(z) be a locally
integrable function on Q. Then, Ty can be extended as a distribution beyond S
if the following conditions are satisfied:

For any compact set K' C SV, there exist some constants L and C such that
we have the estimate

sup |f(a',2n)| < Clan —v(a") ™"
z'€K’

Example 3.6. Put Q = {z € R;z > 0} and Q) = R. Put f(z) = %, (z > 0).
Then f(x) is locally integrable on 2. But, even if we extend f(z) to a measurable
function on €2 in any way, we cannot extend f(z) to a locally integrable function

. -1 1 ~
on ). But, if, as a renormalization of f = 2 z # 0, we define v.p.—m— € D'(Q),

then we have V.p.%lg = %, (z > 0). Namely, f(z) = —;;, (x > 0) can be

extended to a distribution on .

Example 3.7. Put f(z) = 2™, (z > 0) for m > 2. Then f(z) can-
not be extended to a locally integrable function on R. But Ty € D'(z > 0)
can be extended to Pf.z=™ € D'(R). namely, Pf.z™™ is a renormalization of
™™, (x> 0).
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Example 3.8. Put f(z) = 1, (z > 0). Then f(z) is a locally integrable
function on 2 > 0. Using Heaviside function H (z):

1, > 0),
H(z) = {0, 20,

we extend f(z) to the function f(xr) = H(z) on R. Then T € D'(R) is.an
extension of Ty € D’((0,00)) and we have supp(T}) C [0,0) and Tl (0,000 =
Tf =1, (CC > 0) '

Example 3.9. Let © and Q be as in Example 3.6. Assume f(z) € L. ()
satifies the condition: For some integer p > 1 and constants ¢ > 0 and 6 > 0,
f() ~ cx7®, (0 < z < 6). Then f(x) cannot be extended to any f(z) €
Lloc(Q) But using Cauchy’s principal value v.p.f or Hadamard’s finite parts
Pf.f, (p >2), f(z) can be extended as a distribution.

4. Convergence of extended integrals and renor-
malizations .

Here the integral of a function can be considered as the Riemann integral or
the Lebesgue integral. We may consider either one of them according to a given

function.
0 1
1
—dx = —o0, / 1dac:oo
17z 0o T

Since we have
the integral / —dx converges conditionally or diverges according as a choice

of an approximating directed family. Here we consider the case of conditional
convergence. Until now, we are not especially interested in such a kind of
integral because we have considered it as a divergent integral. We found out it
is the case of conditional convergence and it has different values according to
the choices of approximating families. The well-known Cauchy’s principal value
is its special case. Namely, we have the following,.

Example 4.1 We have:

1 : 1
V.p. —dr = lim —dx
17T 40 Jeczj<1 ¥

[ ‘1
= lim {/ —de‘+/ —dz}
e~+0° /1 T e T
— 3 —€ 1
= Jim (ogell5 + loglell}
- Jim oz ~1oge =0
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Now, exchanging the choice of an approximating family, we have thr following.
Example 4.2 We have:

1 1 ) —2¢ 1 1 1
V.D KIE :B:el—l>r£0(_/;1 5d$+1 de)

= lim ([log |z|| 3 + [log =)
= EEIEO(Iog 2¢ —log €) = log 2.
Example 4.3. Let a > 0 and b > 0. Then we have:

1 be 1
1 1 1
V-p°a,b/1 Edm: lim 1 de+/ de)
- - a

€e—+0 p
= lim ({log |z[|=3* + [log |z[l;.)
= lim (logbe — logae) = log
"eirilo og be — log ae) = oga.

Example 4.4. Let a >0, 5> 0, p > 0 and ¢ > 0. Then we have:
o 1 —be qt
/ —dz= lim (/ L ld:c)

0o L €—+40,t—+oc0 —pt T ae T

. . —be qt
N e—>+g){1£ri>+oo([log le —pt + [log Im”ae

= e—++%>1,§—1+ +oo(log be — log pt + log gt — log ae)
bq

a—p.

1 oo
/ ldx,/ L
1 -0 T

are the indefinite form such as co —00. But, by subtracting a divergent quantity
to +co from them, we can have some finite quantity of them. It is considered
as such an idea that S. Tomonaga and others used in the procedure of renor-
malization in the quantum electrodynamics|7]. Further the integrals

1 o'}
/ldz,/ Liz
oz o I

are infinite quantities. Then adding to them, respectively, minus infinite quan-

tities o o
/ 1, / i
_1$ —oox

—loe b _
_logp—!-loga = log

Therefore, the integrals
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and doing the procedure of renormalizations as above, we complete exactly the
scheme co — 0o = finite quantity. Using such a method of renormalization of
divergent integrals, we study, in section 3, that we can define the renormaliza-

tions V.p.— OF V.p.g — 28 distributions of a locally integrable function = (z #0).
. 1 1 ’ . .
Further, the renormalizations v.p.— or V.p.l-:; of a locally integrable function
T

=, (z > 0) can be understood by the idea of renormalization as above.

Example 4.5 We have:

/_11 sgzz()z) = 61_530(/—6 —d:z:+/ — dz)

3 14, o 1
—€ m - 4 - 1+ — .
lim ([m]—l [ :IZ]E) éh +O( € 1 6) 0

Example 4.6 We have:
For a real number q,

1 —€ s
/ sgn(:z) = lim (/ —dx+/ —5d:v)
-1 . €e—+40 /(1+ae) x

14 ae

= lim (= ] 1+ %]:cl/(iH-ae)) Jim ("— +1-1+ )=a

—+40"'x
Example 4.7 We have:

1 —€
/ —x—hm(/ ——d:c+/ — dz)
i e—+0

IR T 1 —€ 1 Iy - 13 . 1 1 1 1
_61_1'1110([—-ﬁ]_1+[—2x2]€)—€£ri10( 22 2 2 2¢?

Example 4.8 We have:
For a real number a,

) .
1

/ —§dx: lim (/ —§d:c+/ — dr)
1 X e—+0 1 T /(14+2a¢€2)1/2 X

+

e 1
= 61_1)1’_1;10([ 2$2] + [ 21,2]5/(14_2“52)1/2)
. 1 1 1 142,
_61_1_)1'_1;_10( 22+§—§+——262 )"a,,
Example 4.9 We have:

For n > 1,

1 —€ 1 1 )
= lim —dx
/1 :172”+1 e—++0( 2n+1 xpentl )
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el_l)r_r'_lo([_ znxzn]—l [ 2nx2n] )

= lim ( 1 + ! 1 ——) =0.
T es40° 2ne2m  2n 2ne2n

Example 4.10 We have:
For n > 1 and a real number a,

R | € 1 1 1
———dz = lim dx+/ ——dzx

[1 x2n+l e_.+o( 1 rentl /(142nae2n)1/2n xr2n+l )

— —e 1 4

- el»rgrlo([_ 272:102"]—1 = 2nx2n ¢/(1+2nacmyi/an)

1 1 1 1+ 2nae*”
= 1‘ — — e — ——— j—
6_1)1110( 2ne2n + 2n 2n + 2ne2n )

Example 4.11 We have:

Forn > 1,
sgn(a:) —¢ 1

s 1 e -1 L

B el—lg—lo([(Zn - 1):r2"”1]_1 + [(2n — 1):02"—1]6)

= lim ( —1 b1 1 + 1 ) =
T et (2n—1Den-1 T 2n—1 2n-1 (2n-— Dezn—1’ ~

EXample 4.12 We have:
_For n > 1 and a real number a,

—€ 1
1
/ (@) lm(/ —E;l—der/ —-dz)
_1 r2n e—+0 x /(14+(2n—1)ae2n—1)1/(2n—1) T

1 — -1 1
+[W]E/(l+(2n 1ae2n—1)1/(3n— 1))

0.

= (g et

-1 1 1 1+ (2n ~ 1)ae?"!

- 61_1)120( (2n — 1)e2n-1 Yo 1 w1 (2n — 1)e2n-1 )=a
Example 4.13 We have:
Forn > 1,
v o0 1 ’ —€ 1 q 1
/_Oo o e_,+og,r,2_++oo(/_p e +/£ Z2nt19%)
1 1
— li _ 7€ —
e—++0,;;r,{;l—>+oo([ 2m:2"]_” +1 2nx2"]5)
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R U e S . . g
. emH0pgotoo. 2ne2n  npPn dng2n | Qpe2n’ T

Example 4.14 We have:
For n > 1 and a real number aq,

D | 1 1 1
——dr = lim ——dx — _dx
x/—‘OC I2n+1 E—*+0,P»q—'+00(/;p .'L'2n+1 + //(1+2na62n)1/2n $2n+1 )

, 1, 1,
.~ 6_,4_@!;,[’3_,_*_00([— an2n]—17 [_‘2n$2n]c/(1+2na52”)1/2")
B im 1, 1 1 1+ 2nae?” ) =
" eoH0,pg—too 2me2n | 2pp2n 2pg2n 2ne2n N
Example 4.15 We have:
Forn > 1,
* sgn(x) € 71
/;oo x2n dr = é-++0§;ir,{;l—>+oo(/ _d +_/ :1;277' dI)
= Jdm 175 + [y 19)
" eot0,pgotoo (2n — 1)1:2" =P Y2n — 1)x2n-1
im (] 1
T e—+0,p,g—00 (2n 1)e?n—1 (2n— 1)p?n—1
1
! ) =0.

T@n—Dg@n 1 | @n=Dent

Example 4.16 We have:
For n > 1 and a real number a,

oo —€ q 1
/ sgn(z) dr — lim (/ —dx-{-/ ——dx)
oo XM €—=+0,p,q—+00 2 /(1+(2n—1)ae?n—1)1/(2n—1) %"
_ lim ([_—]—€ + [_;]q )
T o t0,p,+00 (2n - 1)z?n-1 (2n — 1)z2n—1'¢/(1+@n—1D)aen—Hl/Gn=D)
_ lim ( -1 + 1
T e 40,p,g—+00 (2n —1)e2n-1 * (2n — 1)p?n—1
1 14+ (2n - 1)a62n_1) —a

- (2n — 1)g2~—1 (2n — 1)e2n—1
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5. Reguralizations and renormalizations of di-
vergent integrals

Assume that a function f(z) is defined on R and it is locally integrable
everywhere except a point zo and it has the nonsummable singularity at zo.
Then we cannot extend the function f(z) to R as a locally integrable function.
But we can extend the distribution Ty defined by f(x) to R as a distribution Tf.
We say Tf'to be a renormalization of f or Ty. We can consider several methods
of such renormalizations. Here we mention the method of regularization of
divergent integrals by Gelfand-Shilov[1].

Here we put D = D(R). Then, for an arbitrary ¢(z) € D, the integral

/ f(@)e(a)de,

in general, diverges. But, if ¢(z) vanishes in a neighborhood of xy, this integral
converges. Using this fact, we can define Ty € D’ suitably so that, for every
@ € D vanishing in a neighborhood of zy, we have

<Tp0>= [ H)e(ade.

Gelfand-Shilov say such a Tf € D’ to be a regularization of the divergent inte-
gral or a regularization of f(z). This is an extension to R of the distribution
Tr € D'(2) on Q = R\{zo} defined by f(z). In this sense, the method of
regularization of f(x) is one method of renormalizaton of f(z) in our definition.

Example 5.1. Let a and b be two arbitrary positive numbers and put

flx) = %, (z # 0). Then if we put

<Tf,¢>=/_—a$dx+/_b Mdlﬁﬁ-/w@ﬂ, (¢ € D),

b

~ . " 1 N
- Ty € D' is a regularization of f(z) = e (x # 0) or a renormalization of f(z).
This defines many kinds of distributions according to the choices of a and b.
Namely there are an infinite number of regularizations or renormalizations of

f@) ==, @#0)
Now we show the existence of regularizations. For simplicity we put zo = 0.
Proposition 5.2(Gelfand-Shilov[l], p.11). If, for a function f(z) on
R", there ezxists some integer m > 0 such that f(x)r™ is locally integrable,

there ezists a reqularization of f(z). Here we put r = |z| = /x5 + --- z2.
In this case a regularization Ty of f(r) can be defined by the following
relation:

3s0(0)

< Ty >= / F(@){o@) — [p(0) + 2%, 4
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+ 6’;;”;0) %19(1 _ r)}dz, (¢ € D).

Here we put
_J1, (r<Y,
6(1-r) = {o, (r>1).

Proposition 5.3(Gelfand-Shilov[1], p;ll). If T‘}) is a special solution of
the problem of regularization of f(x), the general solution f“f of the problem of
reqularization of f(zx) can be obtained by adding T}? a distribution with support
in {(Bo = 0} . .

Example 5.4. Let a regularization of f(z) = %, (x # 0) be given by

Example 5.1. Then the difference of two arbitrary regularizations of f(z) is
cb(x). Here c is a constant. ’
Proposition 5.5(Gelfand-Shilov(1], p.12). Assume that a function f (x)
satisfies the condition ‘
f(z) 2 F(r)
in a certain neighborhood of the origin in a certain solid angle with its verter at
the origin. Here F(r) increases faster than any power of 1/r as r approaces to

0. Then there is no reqularization of f(z).
After all, if f(z) has an at most countable number of isolated singularities

and there are a finite number of singularities in every bounded intervals, there
eists a regularization of f(z).
Such a function f(z) can be always represented as

f(@) = Zfi(z)

such that each f(z) has only one singular point. Therefore the case of an at
most countable number of isolated singularities is essentially the same as the
mentioned above.

6. Examples

In this section we mention several examples of the method of renormalization
by way of regularizations of divergent integrals of Gelfand-Shilov[1].
Example 6.1. We consider the function

A {0, (z <0),

T+ = z*, (z>0).

Here —1 < A < 0. Then :vi is locally integrable on R. But Ami‘l is not locally -

integrable on R. Then we consider a regularization of the divergent integral

/ P lg(@)dz, (¢ € D).
0
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If we defferentiate 2} in D', we have, for ¢ € D,
o0
@)o0)=-@he) == [ Py
[o o]
= — lim z o' (z)dz.

e—+0 €

Here we have

(@10 = = Jim (I (o(a) + O = [ X0 (ola) + O

€

Here if we put C = —¢(0), the first term — 0 as ¢ — 0. Hence we have

(@0 = lim, [ 20 (o) - p(0)de

- /0 A (p(x) — p(0))dz = (A2, ).
Hence we have
@) =}

as a distribution. This is a regularization of the function Az}~
Example 6.2. 'We consider the function

log:c+:{0’ (z<0),

logz, (z>0).
Then we have, for ¢ € D,

* p(z) = (081 ~2)
xr

/ ___ .
(loga1)',¢) = lim, |

[ emen-a,
0 x

The restriction of (logz4)’ to (0,00) coincides with i.‘
Example 6.3. We have

——dl(;i|x| = v.p.l.

8

Namely, we have, for p € D,

(FEEL ) = ~(oglal (@) = - [ loglaly/ ()

-—00
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= — lim log |z|¢'(z)dz = lim f@dz
€10 J|g>e . €40 Jiz>e T
(o o] .
o) , 1
= V.D. —d:l?: P .
v.p /_ e (v-p-—, )

This can also be regularizéd by the relation
dlog|z| > o(z) — (-
( gl I,w):/O p@) —p(=2)

dz T

Example 6.4. If we put

log(z +i0) = yl_i»r&o log(z + iy),

we have 1
(log(z +i0))' = V.p.— — inb(z).
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