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Abstract
In this article, we construct, by the duality method, the theory of
general Fourier hyperfunctions valued in a locally convex topological
vector space, which is not necessarily a Fréchet space. We realize, by the
duality method, general Fourier analytic-linear mappings and general
Fourier hyperfunctions. We prove analogs of Schwartz's Kernel Theorem

for them. Further we define several operations on them.
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Introduction
The purpose of this article is the establishment of the theory of general Fourier

hyperfunctions valued in a locally convex space which is not necessarily a Fréchet
space by the duality method. This is the most general one of the theories of vector-
valued Sato-Fourier hyperfunctions. Since, in Sato [25], [26] and Kawai [17], the
theory of Sato-Fourier hyperfunctions was established, many authors have tried to
extend this theory to the theory of vector-valued Sato-Fourier hyperfunctions (cf.
Ion-Kawai [3], Ito [5], [6], [7], [8], [9], [10], [11], [12], Ito-Nagamachi [13], [14],
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Junker [15], [16], Nagamachi [21], Nagamachi-Mugibayashi [22].) Until now, the
case of Fréchet-space-valued Sato-Fourier hyperfunctions is considered as a limiting
case, because, except for the case of Fréchet-space-valued ones, we can not prove
the Oka-Cartan Theorem B and Problem A after Proposition 3.5 in this article.

As for the Sato-Fourier hyperfunctions, we can realize them as boundary values
of holomorphic functions only for Fréchet-space-valued ones. In fact, there are some
examples of vector-valued distributions with values in a non-Fréchet space which
cannot be realized as boundary values of vector-valued holomorphic functions (see
Itano [4] and Vogt [28]). Here we note that distributions are special ones of Sato-
Fourier hyperfunctions. By the duality method, we have succeeded in generalizing
this theory to the theory of general Fourier hyperfunctions. By the limit of the
method of tensor product, this generalization may be considered as the final one.

It is known that the presheaf of Fréchet-space-valued Sato-Fourier
hyperfunctions is in fact a flabby sheaf. This fact depends on the pure-
codimensionality of the space R*” with respect to the sheaf EO* of E-valued, slowly
increasing, holomorphic functions or on Problem A.

In the case where E is a general ldcally convex space, we define the space
B*(Q2; E) of general Fourier hyperfunctions on a relatively compact open set 2 in
R*" by the relation B*(Q; E) = Au(Q°'; E)/A8Q; E) , where A4(K; E) denotes
the space of general Fourier analytic-linear mappings on a compact set K in R*". If
we put B} (2; E) = {0} for an open set 2 in R*" which is not relatively compact and

1(2; E)=B*(£; E) for a relatively compact open set Q2 in R*”, we have a presheaf
{B1(Q; E)}. When we talk about general Fourier hyperfunctions, we only concern
with this presheaf. This corresponds to the facts that the spaces of classical functions
on open sets in R” such as integrable functions are presheaves but not sheaves.

Generalized functions are extensions of concepts of classical functions. Then
it was Sato's idea that the property of the spaces of functions being a sheaf could
be taken as a guiding principle. Here we assert that the property of the spaces of
functions being a presheaf can be taken as a guiding principle.

At least at this stage of investigations, we have to concern with this presheaf
in order to study the most general vector-valued Sato-Fourier hyperfunctions. This
presheaf satisfies the condition (S1) of sheaf in Bredon [1] but not the condition
(S2) of sheaf in Bredon [1]. But, by virtue of the condition (S1), we can define the
concept of support of general Fourier hyperfunctions. This theory contains, as special
cases, theories of Sato hyperfunctions, Fourier hyperfunctions, modified Fourier
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hyperfunctions, mixed Fourier hyperfunctions, partial Fourier hyperfunctions, partial
modified Fourier hyperfunctions and partial mixed Fourier hyperfunctions and their
vector-valued versions.

In chapter 1, we define the sheaves O. and A. of partially rapidly decreasing,
holomorphic functions or real-analytic functions, and mention their properties. .

In chapter 2, we introduce the notion of general Fourier analytic-linear
mappings and mention their properties.

In chapter 3, we introduce the notion of general Fourier hyperfunctions valued
in a general locally convex space and mention their properties.

In chapter 4, we mention several operations on general Fourier analytic-linear
mappings and prove Kemel Theorems.

In chapter 5, we mention several operations on general Fourier hyperfunctions.

In chapter 6, we define the Fourier transformation of general Fourier
hyperfunctions. The space of all general Fourier hyperfunctions on the entire ground
space is stable for the Fourier transformation. This is the characteristic property for

general Fourier hyperfunctions considered in this article.

1. The sheaves O« and A.
In this chapter we recall the sheaves O« (resp. A.) of partially rapidly

decreasing, holomorphic functions (resp. real-analytic functions) following Ito [10],
section 2.1, p.224ff.

For a natural number #, we denote by D*"=R*USX! the directional
compactification of R” in the sense of Kawai [17], Definition 1.1.1, p.468. Here
5771 denotes the set of points at infinity. We put R”=D and denote by C" the space
C"x,/—1R" endowed with the direct product topology. We also denote by C"=E"
the directional compactification of C” considered as R*”. That is, C" is identified
with D*". We denote by R"=D the closure of R” in c”.

For a pair n= (n,, n;) of nonnegative integers with | n|=n;+#u, # 0, we denote
by C**=F" the product space C"'x €™ and by R** the product space R"'x R™.
We also denote by C*"=G" and C*"=H" the product spaces C"'x C™ or C"'x cn
respectively. Then we denote by R**=R"xR™ and by R*"=R"'x R™ the closures of
R"™=R"x R™ in the spaces C*" and C*" respectively.

For a triplet n= (n;, n, n3)=(m, n') of nonnegative integers with | » |=
ni+na+ns#0, where n'=(n,, n;), we denote by C*"=K" the product space
CMx CH'= " x "X €™ and by R*"=Y" the closure of the space R""'=R™ X R"XR"
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in the space C*”. Then we have R*"=R" x R*"=R"x R">x R™. At last we denote
by C" the space C"*"2"3=CMx C"x C™. We denote z=(2, 2/, 2")€C'™ so that
2=, -, 2), = @110 s Zngeny) AN 2= (2 1nyp41, s 2)- Here if #,=0, we put
z2=(2, 2’) and if ny=n, n,=n3=0, we put z2=2".

Let F be a subset of C*". Then we denote by int (F) the interior of F and by F°
the closure of F with respect to the topology of C*”.

Definition 1. 1 (The sheaf of O. of partially rapidly decreasing, holomorphic
functions). We define the sheaf O. to be the sheaf {O.(Q2); Q2 is an open set in
C*"}, where the section module O.() on an open set Q2 in C*” is the space of all
holomorphic functions f on 2N C™ such that, for evéry compact set K in 2, there
exists some positive constant § so that f satisfies the condition

sup{|f(2)] exp (8 (12" +2")); 2€K N €™y <oo.

The sheaf O« is a nuclear FS-sheaf. Namely every section module O.(Q) is a
nuclear FS-space for an open set 2 in C*”.

Remark 1. By the above definition, it is easy to see that Ou|cin=(»/O holds,
where 1,0 denotes the sheaf of all holomorphic functions over c'". we put
0=,,0=0x|¢cm for n=(ny, 0, 0), Q=0x|cn for n=(0, n,, 0), Q=0x|¢ns for n=(0,
0, #3), 04=Ou|ctn for n=(0, n)=(0, ny, n3), 0,=Os|crm1n2 for n=(n,, n,, 0) and
O0=0x|ctmm» for n=(n;, 0, n;). These sheaves are specializations of the sheaf O..

Definition 1. 2 (Topology of O.(K)). If K is a compact set in C*”, then we
endow O.«(K) with the inductive limit topology lim ind,, O}’ (U,,), where {U,} is
a fundamental system of neighborhoods of K satisfying U, DD Up+1 and O3 (U,)
is the Banach space of all functions f (z) which are holomorphic on U,,NC " and
continuous on Uf,in ¢ and satisfy the condition |f(2)|=Cexp(—(|2"[*+|2"])/m),
(z€ U,,nC™), for some positive constant C. We define the norm in 05 (Uy) as
follows:

1 Fllm=sup{|f(2)| exp (2" |+2"|)/m); z€ Unn C"}

The topology of O.(K) is well defined and O.(K) becomes a nuclear DFS-space.

We define the sheaf A. of partially rapidly decreasing, real-analytic functions
over R*" by A.«=Ox|g+. For a compact set K in R*”, we have A.(K)=0«(K). A(K)
is the space of partially rapidly decreasing, real-analytic functions in a neighborhood
of K in R*” and is endowed with the topology of O«(K).

If Q is an open set in R*", let A.(£2) be the space of partially rapidly
decreasing, real-analytic functions on Q equipped with the topology

A(2) =1im proj g o A«(K).
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Here K runs over the family of all compact subsets of . Then A.(£2) is a nuclear
FS-space.

Remark 2. Corresponding to the special cases of O« in Remark 1, we put
A=Rulgm for n=(ny, 0, 0), A=BAs[gn for n=(0, ns, 0), A=As|gm for n=(0, 0,
n3), Bu=Bs|grn for n=(0, n')=(0, n, 1), A,= Aulgrnn2) for n=(n,, n,, 0), and
A=Al gt for n=(n,, 0, n;). If we denote by O, a representative of sheaves O,
0, 0, Oy, 0,, Oy and Os, and A, a representative of 4, 4, fil, Ay, A,, A, and A, then
.‘Aa;Oa | holds for a corresponding special space M ” of R*" )

Now we denote by X” the special case of C*” corresponding to the sheaf O,,.
We denote by Oy and A,p the external tensor products of sheaves O, and Og, and
A, and Ag respectively. As for the notion of external tensor product of sheaves, we
refer to Ito [10], section 1.3, p.222ff, where an external tensor product is called a direct
tensor product. Then we have the following.

Proposition 1.3. We use the notation above. Let O, and Og be the sheaves
of the types as above over X™ and X" respectively. Then we have the following
isomorphisms:

(1) 0gp(2'x Q") = 0,(2') ® 0p(£2"),

(Q'cX™ Q' c X" are open subsets).
(2) Oug(K'x K') = O(K) § 0a(K"),
(KcX™, K'c X" are compact subsets).
(3) Ap(K'x K') = Bo(K') ® Ap(K'),
(K'cM™, K'C M" are compact subsets).
(4) Ogp(Q2'x Q') = 0,(2') & 05(2),
(QCTM™, Q" C M” are open subsets).

Proof. See Ito [10], Proposition 2.1.10, p.229. Q.E.D.

Then we have the following.

Theorem 1.4. For every compact set K in R*" , we have H YK, A)=0.

Proof. See Ito [10], Theorem 2.1.14, p.231. Q.E.D.

Using the theorem above, we can prove the following.

Theorem 1.5. Let K, and K, be two compact sets in R*". Then we have an
exact sequence:

0 — A(K, UK,)) — AdK) @ AdK,)) — A(K; N K,) — 0.
(fr.fo) —fi—f
Proof. See Ito[10], Theorem 2.1.15, p.232. Q.E.D.
At last we have the following.
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Theorem 1.6. For every compact set K in R*", A.(R*") is dense in A«(K).
Proof. See Ito [10], Theorem 2.2.1, p.233. Q.E.D.

2. General Fourier analytic-linear mappings

In this chapter we introduce the notion of general Fourier analytic-linear
mappings.

In the sequel of this article, E is always assumed to be an arbitrary locally
convex, Hausdorff, topological vector space over the complex number field (LCV
for short) as far as the contrary is not explicitly mentioned.

Definition 2.1. Let £ be an open set in C*” and 0.(2; E)=L(0.(); E) (=L,
(0«(£2); E)) the space of all continuous linear mappings of O«(f2) into E equipped
with the topology of uniform convergence on every bounded set in O.(£2). We call
an element of O,(£2; E) a general Fourier analytic-linear mappings on £ valued in
E or a general Fourier analytic-linear mapping on Q. We say that #€0.(R2; E) is
carried by a compact set K in Q if ¥ can be extended to O«(K). Then we call K a
carrier of ». We also say that ¥ € 0.(Q2; E) is carried by an open set w in Q if u is
carried by some compact subset of @. Then @ is said to be a carrier of #. Similarly
we define the spaces O4(K; E)=L(0«(K); E), A+(K; E)=L(A.(K); E) and A\(;
E)=L(A.(Q); E) for a compact set K in C*” or in R*" or for an open set Q2 in
R*", respectively. We also say their elements to be general Fourier analytic-linear
mappings and define the notion of their carriers in a similar way.

Proposition 2.2. Let E be complete. Then we have the following isomorphisms:

(1) 04(2; E)= 0\(Q) ® E, (2 is an open set in C*™).

(2) 04(K; E) = 0+«(K) ® E, (K is a compact set in C*").

(3) Ax(K; E)=A\(K) ® E, (K is a compact set in R*™).

(4) AUQ; E) = A(Q) R E, (Q is an open set in R*").

Proof. See Treves [27], Proposition 50.5, p.522. Q.E.D.

Definition 2.3. Let Q be an open set in C*”. A compact set K in Q is said to
have the Runge property if O.(£2) is dense in O.(K).

Proposition 2.4. Let Q be an open set in C*”". Suppose that a compact set K
in X has the Runge property. Let u €0.(Q; E). Then u is carried by K if and only
if u is carried by all open neighborhood of K.

An element of A.(R*"; E) is said to be a real, general Fourier analytic-linear
mapping.

Theorem 2.5. For an arbitrary family {K;} ;c; of at most countable compact
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sets in R*", we have N ;c;A(K;; E)=A.(N;c[K;; E).
Proof. (i) At first we prove the case [={1, 2}. By virtue of Proposition 1.5, we
have the exact sequence
0 — A(K UK,) — Au«(K)) ® Au(K,) — A(KNK;) — 0.
Thus we have the exact sequence
0 — K, NKy; E) — BuK,; E) ® BiKy; E) A RK,UK;; ).
Thus we have Ker(A)=2«(K;; E)NA«(K,; E)=A.K,NK,; E).

(i) Next we prove the case [={1, 2, .-, m}. We use the induction. The case
m=2 holds good by (i). Assuming that the case m—1 holds good, we prove the case m.
Then we have

N7 Au(K;; B)={NT2AK;; E)} N Au(Kop; E)
= AN 71 K;; E) N BuK,,; BE)=A({N 71K} NK,,; E)
=A«(N74K;; E).
Thus we have the conclusion in this case.
(iii) In the case [={1, 2,3, --*}. Put K=N ;¢ K; and L,,=N7_; K;. Then we have
LoL,D>---2L,D:D>Kand K=Ngj L,. Thus we have algebraic isomorphisms
A+«(K; E) = L(lim ind A«(L,,); E) = lim proj A (L,,; E)
= lim proj N7y A« (K;; E) = N7 A (K;; B).
Thus we have the conclusion. QED

Theorem 2.6. Let u € A.(R*"; E) with u#0. Then there exists the smallest
compact set in R*" which carries u. We call it the support of u and denote it by
supp (u).

" Proof. Among all carriers of #, we have only to consider compact carriers of
u. Let {K,} be the family of all compact carriers of » in M. Then let {Kz} be an
arbitrary totally ordered subfamily of {K,} with KsDKpg (B=f’). Then we can
choose a subsequence {K;} of {Kp} with N;K;=NgKz=K. In fact, let {U;} be a
countable family of open neighborhoods of K with U; DU, D -+ and N;U;=K. Then
we choose K; as the largest compact set among the subfamily of all compact sets
K€ {Kp} contained in U;. Then the projective system {A.(K;; E)} is cofinal with
the projective system {A.(Kp; E)}. Thus, by virtue of Theorem 2.5, we have the
algebraic isomorphisms

N 4A+(Ky; E) = lim proj A«(Kp; E)
= lim proj A«(K;; E) = A:«(K; E).

Then u € A.(K; E). Thus K is a minimal compact carrier of #. Thus, by virtue

of Zorm's Lemma, we have the conclusion. Q.E.D.
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For u, u;, u, € A«(R*"; E), we have
supp (#;+u,) C supp () U supp (u),
supp(Au) Csupp(u), (A€ 0).

Proposition 2.7. For every two compact sets K, and K, in R*" with K,CK,,
there exists a continuous injection iy, x,: A«(K; E) — A(Ky; E).

Proof. (1) Let iy, g,: A+(K;) — A.(K,) be a canonical mapping. Then ‘ig, g,
is evidently continuous and of dense image. Let iy, x,: A«(K;; E) — A«(K;; E) be
its adjoint map. Then ik, g, is evidently a continuous injection. Q.E.D.

Proposition 2.8. Let K, and K, be two compact sets in R*" with Kl CK,.
Further, assume that every connected component of K, intersects K,. Then i, ,
has the dense range in A.(K,; E).

Proof. By the assumptions, the canonical mapping tiKl. K, 18 injective. Thus 7.
(K,) is dense in AL(K,). Then we have the inclusions ,

A(Ki) @ E > L(A«(K)); E) = L(A«(K,); E)
< L(A«(Ky); E) = Au(Ky; E).

Here E denotes the completion of E. Since A%(K;) ® E is dense in A.(Ky; £) =
A+(K,) & E, we have the conclusion. Q.E.D.

Let now 2 be an open subset of R*” and K a compact subset of Q. We call the
“compact envelope of K” (in £2) and denote by K the union of K and the relatively
compact connected components (in £2) of 2\ K. It is again a compact set in .

Corollary 2.9. Let Q be a relatively compact open subset of R*". Let K, K,,
(K, CK,) be two compact subsets of Q2 such that K,:Ii- holds (i=1, 2). Then A.
(Q\K,)*; E) is dense in B.(Q\K,)*; E).

3. General Fourier hyperfunctions
Let E be an LCV. First we consider general Fourier hyperfunctions on a

relatively compact open set in R*”.

Let Q be a relatively compact open subset of R*”. We put

B*(Q; E)=A.(2; E)/ A.(3Q2; E).

Then, since A%(3(2; E) is dense in A.(Q; E), B*(Q; E) is not endowed with any
nontrivial topology.

Definition 3.1. An element of CB*(.Q; E) is called a general Fourier
hyperfunction on Q.

Remark 1. We put B*(Q; E)=B(Q; E) for n=(n,, 0, 0), B*(Q; E)=B(2;
E) for n=(0, n,, 0), B*(£2; E):Q?(Q; E) for n=(0, 0, n,), B*(£; E)=B*Q; E) for
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n=(0, n)=(0, n,, n;), B*(Q2; E)=B°(Q; E) for n=(n,, n,, 0), and B*(2; E)ZGS“(Q;
E) for n=(n,, 0, ns). Here B(Q; E) is the space of all E-valued Sato hyperfunctions
on 2. B(Q; E) is the space of all E-valued Fourier hyperfunctions on €. CE(.Q; E)
is the space of all E-valued modified Fourier hyperfunctions on €. BHQ; E) is the
space of all E-valued mixed Fourier hyperfunctions on Q. B'(Q2; E) is the space
of all E-valued partial Fourier hyperfunctions on Q. Bh(_Q; E) is the space of all
E-valued partial modified Fourier hyperfunctions on Q. B*(£2; E) is the space of
all E-valued partial mixed Fourier hyperfunctions on  which are called general
Fourier hyperfunctions on  in Definition 3.1.

Let K be a compact set in R*” containing £. Then, by virtue of Proposition 2.7,

we have the canonical map
A.(Q; E) — A«(K; E) — A.(K; E)/ Ru(K\Q; E),
whose kernel is the space
A.(Q%; E) N A(K\Q; E)=A.(32; E).
Thus we have the isomorphism
B.(Q; E)=R.(Q; E)/ A.(3Q; E)=A.(K; E) / A«(K\ Q; E).
Let now @ be an open subset of 2. Then the mapping
A2 E) — A«(Q%; E)/ A (Q\Q; E).
defines a mapping
B*(Q; E) — BY(w; E),
which is called the restriction.

If Te B*(Q2; E), we denote by T|, its image in B*(w; E). It is clear that, if £;

C,CQ and TE B*(2,; E), we have |
(Tlg,)la,=Tlg,

Thus we have the following.

Proposition 3.2. Let Q be a relatively compact open set in R*". Then the
collection {B*(w; E); w is an open set in Q} becomes a presheaf (of vector spaces)
over Q.

Proposition 3.3. We use the notation in Proposition 3.2. Let w=N;c;w; be a
union of open subsets w; of Q, (1 €1) and T € B*(w; E) with T|,,=0forall i€l
Then we have T=0.

Proof. By the assumptions, if # € A«(w®; E) is a representative of 7, the image
of urin Au(w®; E)/ Bu(w\w;; E) is zero for all i € I. Thus we have

ur€ Au(@\w;; E) forall i€ 1.

Hence we have
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Ur €N ;e A(@\w;; B)=2.(N;c (0" \w;); E)
= @\ (U e;@)); B)
=A™\ w; E) = A.(dw; E).
Hence we have supp(u;) C d@. Namely 7=0. Q.E.D.

Thus we have seen that the presheaf {B*(w; F); w is an open subset of Q}
satisfies the condition (Sl) of Bredon [1], p.5. But this presheaf does not satisfy the
condition (S2) of Bredon [1], p.6. Thus this presheaf does not become a sheaf. Here
we remember the conditions (S1) and (S2) of Bredon [1], pp.5-6.

Let X be a topological space and A={A(U)} a presheaf of abelian groups on X.
Then we consider two conditions: .

(S1) IfU=U,U,, with U, open in X, and s, t € A(U) are such that s, = t|g,
for all @, then s=t¢.

(S2) Let {U,} be a collection of open sets in X and let U=U U, . If s, €
A(U,) are given such that s, [y,nys = Sglyany, for all a, B, then there
exists an element s € A(U) with s|;,=s, forall a.

Then a presheaf A= {A(U)} of abelian groups becomes a sheaf if and only if
the above two conditions (S1) and (S2) are satisfied.

Proposition 3.4. We use the notation in Proposition 3.2. If w is an open
subset of Q2 and T € B*(w; E), then there exists 7€ B*(Q; E) such that T|w= T.

Proof. Let u; € A+(w®; E) be a representative of T. Then we have up € AL(Q;
E). Thus we define 7€ ‘B*(£2; E) to be the image of u7 in B*(£2; E). Then evidently
we have T|,=T. QE.D.

In the notation of Proposition 3.2, we define the support of a general Fourier
hyperfunction T on 2 to be the smallest closed subset F of 2 such that T,z =0

“holds. We denote it by supp (7'). Then we have the following.
Proposition 3.5. We use the notation in Proposition 3.2. Let K be a compact
subset of Q and put
x (Q; E)={T € B*(2; E); supp (T) C K}.
Then we have the inclusion
A.(K; E) C Bk (; E).
Proof. By the assumptions, we have the inclusion map
Aw(K; E) — A.(Q%; E)/ Bu(3Q; E)=B*(2; E).

Let u € A.(K; E) and [u] its image in B*(R2; E). We consider the restriction
[#]|gng- Since B*(Q\K; E)=3.(Q°; E)/ A«(Q'\(Q\K); E)=7A.(Q°; E)/
A.(3Q U K; E) holds and u € A.(K; E) C A.(32U K; E) holds, we have [u]|g\x=0.
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Thus we have A«(K;, E) C B¥(2; E). Q.E.D.
In general, we cannot know the inverse inclusion
Bx(2; E)CA(K; E)
holds. But, for some special cases, this inverse inclusion holds good. Namely, we
have the following.
Corollary 3.6. Let M be one of the spaces R", R” and R*" and K be a compact
subset of M. Then we have
(1) Be(M; B)=R (K; E).
@) Be(M; B)=R (K; E).
(3) Bx(M; E)=24(K; E).
Note. I owe the Corollary above to Prof. Nagamachi's suggestion.
In general, in order to prove the inclusion Bx(2; E) C A«(K; E), it is sufficient
to know the following.
Problem A. For two compact sets K; and K, in R*” and put K=K, UK,. Then
is the sequence
Ax(K; E) @ Au(Ky; E) — ALK E) — 0
exact?
If E is a Fréchet space, the answer to the Problem A is affirmative (cf. Ito [10],
Theorem 2.3.6, p.240). But in general, we do not know any answer.
Next we will consider general Fourier hyperfunctions on R*”.
Let {B}(Q; E); 2 is an open set in R*”} be the presheaf over R*” defined as
follows:
If Q is not relatively compact, B}(Q2; E) ={0}.
If Q is relatively compact, B}(Q; E)=B*(2; E).
The restrictions are defined as follows:
B1(2; E) — Bi(w; E)
0 — 0 if Q is not relatively compact with 2 D @,
T— T|, if Q is relatively compact with 2 D w.
This presheaf satisfies the condition (S1) of sheaves but not (S2) (cf. Bredon [1],
pp.5-6).
We denote by £B* the sheaf associated to this presheaf {B}(£2; E); 2 is an open
setin R*"}. It is a sheaf of vector spaces over R*”.
Definition 3.7. The sheaf £B* is called the sheaf of general Fourier
hyperfunctions over R*”.
Then, if Q is an open set in R*" and T€ I'(Q, £B*)= B*(Q; E). Here we use
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the notation B*({2; E) of the section space on 2 in abuse of language. Then T is a
general Fourier hyperfunction on  which is defined in the following way:

Let {(Q;, T;);c} be the set of all families (£2;, T;);; of the covering {£;}
;e of Q and sections T; € B*(£2;; E), (i €I) such that Q;'s are relatively compact
subsets of 2 and 2 =U ;. ;£; holds, and such that T} o, = Tilg; n g/holds forall 7,
J €1.Two such families (Q;, T;) ;< and (2, T;) ;< are defined to be equivalent if

Tilgingr=Tilgino, foralli€l andalli’'e ]’
hold. Then we denote this equivalence as (2;, T;);e; ~ (€2, T;) < - Then we have
the quotient space representation
B*(; E)={(82;, T ier}/~
Thus a general Fourier hyperfunction 7 on (2 is defined to be an equivalence class
(2 T jes)-

Then we propose the following.

Problem B. s the sheaf “B* flabby?

If E is a Fréchet space, the answer to the Problem B is affirmative (cf. Ito [10],
Theorem 2.4.2, p.241). But in general we do not know any answer. If the presheaf
{B*(w; E)=Aw"; E)/ Av(dw; E); w is an open subset of Q} over a relatively
compact open set £ in R*” becomes a sheaf, then we can show that the answer to
the Problem B is affirmative by a similar way to Ito [10], Lemma 1.2.5, p.221. But
this problem is still open for general LCV's E other than Fréchet spaces.

4. Operations on general Fourier analytic-linear mappings and
Kernel Theorems |

In this chapter we now define several operations on general Fourier analytic-
linear mappings.

a) Tensor products and Kernel Theorems. At first we recall the tensor product
of general Fourier analytic-linear mappings following Ito [10]. We use the notation
similar to proposition 1.3.

Theorem 4.1. we have the following canonical isomorphisms:

(1) 05 () & 03(2") = L(0,(2); 05(27) = 05(2'x2"),

(Q' and Q" are open subsets of X" and X" respectively.)

(2) 0, (K') & 03(K") = L(0,(K); 03(K") = 0yg (K'xK"),

(K" and K" are compact subsets of X" and X" respectively.)

(3) A(K) & Rp(K") = L(R K'); Bp(K") = Byg(K'xK"),

(K" and K” are compact subsets of M and M” respectively.)
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(4) B Q) & Rg(2) = L(BL(Q); Rp(2)) = Fipg(2' 2,
(" and 2" are open subsets of M and M" respectively.)
Proof. See Ito [10], Theorem 3.1.1, p.243. Q.E.D.
We note that these statements establish analogs of Schwartz's Kernel Theorem
in each case of Sato-Fourier analytic functionals.
Next we consider tensor products of general Fourier analytic-linear mappings.
Theorem 4.2. We use the notations in Theorem 4.1. Further assume that E,
and E, be two complete LCV's and put E=E, @ ,E,, where w stands for the e-
or - topology in the sense of Tréves [27]. Then we have the following canonical
isomorphisms:
(1) O(2'; E))  ,04(2'; E) = 0,(2' x2'; E),
(Q' and Q" are open subsets in X”* and X" respectively.)
(2) O,(K'; E)) & ,05(K'; E;) = Op(K'xK’; E),
(K" and K" are compact subsets in X and X" respectively.)
(3) A(K's Ey) & B(K's Ey) = Bpg(K'<K; ),
(K and K" are compact subsets in X and X" respectively.)
@) Ry Q'; Ey) 8 oAy Ey) = Ry %2 E),
(Q and Q" are open subsets in X and X" respectively.)
Proof. It goes in a similar way to Ito [10], Theorem 3.1.3, p.244. Q.E.D.
We note that the statements in Theorem 4.2 establish analogs of Schwartz's
Kernel Theorem in each case of general Fourier analytic-linear mappings.
With the help of Theorem 4.2, we have the following definitions of tensor
products of general Fourier analytic-linear mappings of each type.
Definition 4.3. We use the notation in Theorem 4.2. Let ,=¢,®e, € 0,(2’;
E)) and u,= ¢, ® e, € 04(2"; E,), where ¢, € 0,(2') and ¢, € 04(2") and ¢,€E;
(1=1, 2). Then we define #, ® ,u, by the following relation:
U B Uy = (019 0;) ®(e,® ,e,),
ie.,
(1, ® L,u)([1®F) =0, (f1) 02 (f2)(e1 ® ,e),
for f; €0, (2") and f, € Oy (2").
In all other cases we define tensor products of general Fourier analytic-linear
mappings similarly.
In all real cases, we have
- Supp (#,®tz) C Supp(#;) X supp ().
Here we note that, as far as we are concerned with finite sums of finite tensor
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products of general Fourier analytic-linear mappings, we need not assume the
completeness of LCV's E|, E, and E.

b) Convolution. In this section we define convolutions of general Fourier
analytic-linear mappings. For the rest of this chapter, we assume E, E, and E, be
LCV's.

We can show the following Proposition by simple calculations, so that we omit
the proof. ‘ -

Proposition 4.4. Let u€ O'(C™; E), that is, u is assumed to be an analytic-
linear mapping with a compact carrier in c. Let f € 0,(X™), where O, stands
for O, O, O, Oy, Oy, Oy or O« and X" stands for a corresponding special space of
c” respegtively. We define u * f by the formula

(u* ) @) =u,(f (z-y)).
Then u*f€0,(X"; E).

Definition 4.5 (The sheaf of slowly increasing, holomorphic functions).
We define O* to be the sheafification of the presheaf {O*(Q2); £2 is an open set in
C*"}, where the section module O*(£2) on an open set  in C*" is the space of all
holomorphic functions fon QN C "l such that, for any positive number & and for any
compact set K in £, the estimate

sup {[f (2)| exp(—e (1’| +2"])); zEKN C"}< o0
holds.

As special cases of the sheaf O* in the above definition, we have the sheaves
0=0"|gm, 0=0%cr, O=0%|¢m, O*=0%|ctx With #n'= (ny, #3), 0*=0% o with
n'=(n;, n,), and 0"=0%|c0r with n"=(n,, #;). We denote by O a representative of
sheaves O, 5, 5 o*, 0°, 0% and O* over the corrésponding specialization X" of
C*”. Then we have the following.

Proposition 4.6. Let u€ O (C"; E) and f € 0%(X"), we define uxf by the
Sformula

(uxf)(2)=u,(f(z—y)).
Then u*f € 0°(X"; E).

We have real analogs of these propositions. We denote by M” the closure of R”!
in X" and we put 4,=0, |3y and B*=0%p.

Propo‘sition 4.7. Let ue A (R™; E) and f €A, (M"). If we define u*f by the
formula :

(uxf)@x)=u,(f(x~y)),
then uxf€a,(M"; E).
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Proposition 4.8. Let €A (R™; E) and f € A*(M"). If we define uf by the

formula
(u+f)(x) = u, (f (x=y)),
then u+f € A*(M"; E).

Theorem 4.9. Let u€ 0,(X"; E;) and ve 0,(X"; E,), one of which has a
compact carrier in C'". Here O, stands for O, 0, O, Oy, Oy, Oy or O« Then there
exists a general Fourier analytic-linear mapping called a convolution product of
u and v and denoted by u *,v such that

(ux ) (f(2) = (ug ® ,0,)(f(E+7)),
forall f€0,X™),

and u*,v = v*,u holds. Here w stands for the &- or 7t- topology.

Proof. It goes similarly to Ito [10], Theorem 3.2.5, p.246. Q.E.D.

By the definition of the carrier of a general Fourier analytic-linear mapping, we
see that, if € 0,(X"; E,) and v€ O(C™; E,) are carried by compact sets K in X"
and L in C" respectively, then u %, is carried by K+L. Here we denote by K+L the
set [KNC™+L]°! for a compact set K in X" and a compact set L in c™ where [ 1
denotes the closure of the set[ ]in X™.

Theorem 4.10. Let u€ A,(M"; E,) and vER,(M"; E,), one of which has
a compact support in R Then there exists a general Fourier analytic-linear
mapping called the convolution product of u and v and denoted by u * ,v such that

(u* ) (f ()= (e ®,v,) (f(E+7)),
forf€Aa,(M").
Then we have u * V=0*,u and
supp (u *,v) C supp (#) +supp (v).

Here the sum in the right hand side has the same meaning as in the complex case
above.

Proof. It goes similarly to Ito [10], Theorem 3.2.6, p.246. Q.E.D.

¢) Multiplication by a slowly increasing, holomorphic function or a real-
analytic function. Let  be an open set in X*. If f€ 0%(Q2) and € 0,(2; E), we
define fu € O, (Q; E) by the formula _

(fu)(g)=u(fg), for all g€ 0y(£).

Thus O, (2; E) is an 0*(2)-module.

For a compact set K in X" (or in M") and an open set Q in M", we can define
an O%(K)-(resp. A%(K)-, resp. A%(£2)-) module structure of O,(K; E) (resp. A,(K; E),
resp. A, (Q; E)) in a similar way.




22 Yoshifumi Ito

For a real general Fourier analytic-linear mapping # and a slowly increasing,

real-analytic function f, we have
supp(fu) C supp(u).

d) Differentiation. In this section we define the operation of differentiation of
general Fourier analytic-linear mappings by a method similar to Ito [10], section 3.4,
p.247ff. ’

Proposition 4.11. Let Q be an open set in X" and u€ 0,(2; E). Then the
general Fourier analytic-linear mapping v defined by the formula

v(f)=-u(df/9x;) or —u(3f/3y;),
Jor f €0,(Q),
belongs to 0,(2; E).

We define the derivative du/dx; or du/dy; as folows:

du/dx;=v or du/dy; =v.

By the definition above, we know that a general Fourier analytic-linear mapping
is infinitely differentiable in the sense of general Fourier analytic-linear mappings
and the partial differentiation of a general Fourier analytic-linear mapping does not
depend on the order of differentiation. Namely the equalities

3%u/dx; 9%, = 3°u/3x,3x;, etc.
are valid. We can define, for a 2|n|- tuple of nonnegative integers p=(p;, p,, ",
Do) '

Pu(f)=(1"u@’f), for € 0,(),
where 97 denotes a partial differential operator
b= alﬁl/axlln aytz’z axﬁlﬂl—l 8y’|’f|’"'.
If we put

9/92;=(1/2)(3/3x;— i3/3y),

9/02;=(1/2)(3/0x;+19/9y),
then we have, for ¥ € O,(Q; E),

du/9z;(f)=-u(df/3z),
du/9z;(f)=-u(df/9z;)=0,
for all f€0,(R).
Proposition 4.12. Let K be a compact set in X" and u€ O, (K; E). Then the
general Fourier analytic-linear mapping v defined by the formula
v(f)=-u(@f/3x;) or —u(3f/9y)),
for f€0,(K),
belongs to O,(K; E).
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We define the derivative du/dx; or du/dy; as follows:
Qu/dx;=v or du/9y;=v.
The remarks and the notation following Proposition 4.11 are also applicable for
this case.
Proposition 4.13. Let K be a compact set in M" and u€ A, (K; E). Then the
general Fourier analytic-linear mapping v defined by the formula
v(f)=-u@f/3x)), for f€ A, (K),
belongs to A, (K; E).
We define the derivative du/dx; as follows:
ou/dx;=v.
The similar remarks and the notation following Proposition 4.11 are also
applicable for this case. '
Proposition 4.14. Let Q be an open set in M" and u € A,(Q; E). Then the
general Fourier analytic-linear mapping v defined by the formula
v(f)=-u(df/9x)), for fE€ A, (Q),
belongs to A,(Q; E).
We define the derivative du#/dx; as follows:
’ ou/9x;=v.
The similar remarks and the notation following Proposition 4.11 are also
applicable for this case.
By the facts above and those in section ¢), we can define a general differential
operator with constant or variable coefficients:
P@/3x,3/3y) =25 2,9", a,€C,
P(@/32) =X y5,,a,(3/92), a,€C,
P@/3x)=Z <,a,(0/3x), a,€C,
P(x,y,9/0x,3/3y)=Z 5<,na,(2)37,
where a,(2) € 0%(2) or 0“(K),
P(z,8/32) =L <,,a,(2)(3/32)?,
where a,(z) € 0%(2) or 0%(K),
P(x,8/3x)=Z 55, @, (x) (3 /3x)?,
‘ where a,(x) € A%(K) or A%(£2).
Now we give a topological characterization of differentiation.
For a complex vector h=h'+ih"=(hy, h3, ==, hoyy-1) Ti(hys Ray =, Bopy)
considered as a real vector (k;, hy, =+, h,),), We define the translation operator z), by

the formula
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Tf(2) = f(z—h), for f€0,(Q).
Then the translation of general Fourier analytic-linear mapping # € 0,(Q2; E) is
defined by the formula
‘ tpu(f)=u(r_,f).

Then the linear operator ¥ — 7, u is the transpose of the linear operator f — 7_, f
for the two pairs {0,(£2; E), 0,(2)} and {0,(r_,(Q); E), O,(r_,(2))}.

Let ¢;=(8) 1<ps2y b€ the 2 |n|-dimensional fundamental vector. Put h=h;ey;_;
and k=k; e,;. Then, for a holomorphic function f € O, (£2), we have, as usual,

of _ Lm T-wf—f

ox; hi-0 hj

of .. T-xf-f
9y; ——kl;!{-no ki

Then we have the following.
Theorem 4.15. Let Q be an open set in X". For u€ 0,(2; E), we have

QU _ fiy T=hU—U
ox; hji-o hj

g;li =k1}£no‘t' k’:lj u,
where h=h;ey;_y and k=Fk;ey; and ¢;=(53)1<ps2iy/-
In a similar way, we have the following.
Theorem 4.16. Let K be a compact set in X". For u € O,(K; E), then we have

QU _ tiy Tt —u
axj k-0 h;j

oU _ 1. T-rU—U
ayi_klfuflri ki >

where h=hj€2]‘_1 andk=kje2j and ej=(6jk)1§k§2|n[.
Theorem 4.17. Let K be a compact set in M". Put e;=(5j) 5=y and
h=h;e;. Then, for u€ A,(K; E), we have

u = lim T-rU— U
axj hj—0 h}

Theorem 4.18. Let Q2 be an open set in M" and h as in Theorem 4.17. Then,
forue R, (2; E), we have

U _ lim Toalh =Y
ox; hi-0  hj

Theorem 4.19. We use the notation in Theorem 4.2. Let u® ,v€ 0,(Q’; E;)
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8,03(Q2"; Ey), 0,(K'; E\)8,0p(K"; Ey), Bo(K'; E\)@,Rp(K'; Ey) or Ay(€';
E)®,Rs(Q"; Ey). Let p=@', 0°), p'=b1. D2, **» Do) and p'=01 141> D2imi+2s
“*, Damieinny) be @ 2(iml+inl)-tuple, a 2iml-tuple and a 2\nl-tuple of nonnegative
integers or p=(', p"), =1, D2, =, Diw) ANA D'=Piis1, Pimisze " Piimitint)) @
(Iml+nl)-tuple, a |\ml-tuple and a \nl-tuple of nonnegative integers, respectively.
Then we have
?(u® ,v) = 0% u) ® (37 v).

Theorem 4.20. In the usual notation, let uc 0,(X"; E) or A,(M"; E). Let

&) be the Dirac measure at h and 5= ). Then we have
S*u=u, Syy*u=t,u, 3°8+u=0u,

where 3° means a differential operator of order |p!.

Thus for a differential polynomial

P=Xa,d?, a,€C,
we have
Pu=PS+u=(Z a,8?)+u.

Theorem 4.21. Let E, and E, be complete. Let u € O,(X"; E,) and v€ 0,(X";
E,) or ue A, (M", E,) and vE R, (M"; E,), one of which has a compact carrier in
C" or R"™ respectively. Then we have

T, (u*,0)= (T u)* ,0=ux*,(T,0)
and
o (u * ,v)=@u) * yo=ux,%).

¢) Indefinite integrals of general Fourier analytic-linear mappings. In this
section we mention indefinite integrals of general Fourier analytic-linear mappings.

At first we recall the following.

Lemma 4.22. Let F be the projection F:C'"" — C"™' such as F(z,, -,

2)=(21, . 2;, ", 2y)), where z; denotes the omission of z;. Let V=int([V,x--
X V1 4my X V1Y) be a product tubular domain in X" such that Vi={z;€C; | z;1<
a;}, (j=1, =, my), V;={z;€ C; Imzgjl<a;}, (j=n+1, -, n;+ny), and

V'={Z"€ C™; lImZ"I<a(1+Re 2"1)}, for sufficiently small a>0 and a;>0, (j=1, 2,
o, mytmy). Put Vi=int([F(V'N "), Then we have
(1) For every f€,,0,(V), there exists g €,,0, (V) such that
() D;g=f, where D;=09/9z;,
(i1) For any compact subset K of V and for some constant 3>0, there exist
some compact subset H of V and some constant 5'>0 such that
sup{lg(2)1e®?; ze KnC'"}
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< sup{lf(2)1e®'?; ze Hh C™}.
Thus the mapping f— g is continuous.

2) If €40, (V) and D;f =0, then there exists g€ |,,|_IO,1(Vj) such that

f(2)=g(F(2)).

Proof. See Ito[10], Lemma 3.5.1, p.251. Q.E.D.

Theorem 4.23. Let V be as in Lemma 4.22. Then, for any ve,,0,(V; E),
there exists u € ,,0,(V; E) such that du/3z;=v. Such two solutions u, and u, are
different one another by an arbitrary general Fourier analytic linear mapping in
ni-10:(F(V); E), where F is the same projection as defined in Lemma 4.22.

Proof. It goes similarly to Ito[10], Theorem 3.5.2, p.251. Q.E.D.

Lemma 4.24. Let K be a compact set in X" such that int(KNC I"') 1S a convex
tubular domain and K has a fundamental system of open neighborhoods of the
type of V in Lemma 4.22. Put K'=F(K), where F is the same as in Lemma 4.22.
Then we have

(1) D; (1,0, (K))=/,,0, (K).

(2) If £ €10, (K) and D; f =0, then there exists g€ ,_10, (K’) such that

f(2)=g(F(2)).

Proof. See Ito [10], Lemma 3.5.3, p.252. Q.E.D.

Theorem 4.25. Let K be a compact set in X" such as in Lemma 4.24. Then,
for any vE ,,0,(K; E), there exists u € ,0,(K; E) such that du/dz;=v. Such
two solutions u, and u, are different one another by an arbitrary general Fourier
analytic-linear mapping in ,,,,_iO;(F (K); E).

Lemma 4.26. Let K be a compact set in M" of the type K, %X K, X R™x R"3
where Kj-=[—aj, aj], (aj>0), (j=1, -+, ny). Put Kj=17’(10, where F is the
restriction to R"™ of F in Lemma 4.22. Then we have

(1) D; (,yB,(K))= R (K), where D;=3/9x;.

(2) If f€4B.(K) and D; f =0, then there exists gelm_lﬂa(Kj) such that

f(0)=g(F ).

Theorem 4.27. Let K be as in Lemma 4.26. Then, for any ve A, (K; E),
there exists u €, A, (K; E) such that du/dx;=v. Such two solutions u, and u, are
different one another by an arbitrary general Fourier analytic-linear mapping in
|,,|_1'A;(F(K); E), where F is as in Lemma 4.26.

f) Analytic diffeomorphism. If X" is an n#-dimensional, complex Euclidean
space and if 2| and Q, are two open sets in X", w=@(2) denotes a complex-analytic
diffeomorphism of 2, onto £,. If X" is C”* or C” and if €, and £, are two open sets
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in X", w=9&(z2) denotes a regular, complex, inhomogeneous linear transformation
of 2, onto Q,. If X" is one of C*", C*", C*" and C*” and if Q, and Q, are
corresponding two open sets in X”, w=¢(2) is a product diffeomorphism of those in
the above which maps £2, onto £,.

Then, for # € 0,(Q,; E), we define $*u € 0,(Q,; E) by the formula

@ u)(N)=u((f-@ )T, for fE0,(Q)),
where |J| is the absolute value of the Jacobian J of the mapping @ .

If K, and K, are two compact sets in X” and if w=¢(2) is a complex-analytic
diffeomorphism of the above form which maps a certain neighborhood in X” of K;
onto a certain neighborhood in X” of K, such that @(K,)= K,, then, for u € O:, (Ky; E),
we define @*w € 0,(K,; E) by the formula

@ u)(H)=u((f- @) |J), for fEO, (K)).

If K, and K, are two compact sets in M”, this is a special case of the above.

But, in this case, we have .
supp(®*u)=® " (supp(u)), for u € 0,(K,; E).

At last, if M" is R”, and if 2, and Q, are two open sets in M", y=@(x) denotes
a real-analytic diffeomorphism of Q, onto Q,. If M"* is R” or R” and if 0, and Q,
are two open sets in M”, y=¢@(x) denotes a regular, real, inhomogeneous linear
transformation of Q, onto Q,. If M” is R*”, R*", R*" or R*" and if Q, and Q,
are two open sets in M”, y=@(x) denotes a product diffeomorphism of those of
the two types above which maps 2, onto £,. Then, for u € A,(2,; E), we define
@*ue A, (Q,; E) by the formula

@ u)(f)=u((f D)), for FER,(K).
Then we have
supp(®*u) =&~ (supp(u)), for u € A, (2,; E).

5. Operations on general Fourier hyperfunctions

In this chapter we define several operations on general Fourier hyperfunctions.

a) Tensor products. In this paragraph, we assume that E, and E, are two
complete LCV's and put E=F; ® ., E5, where @ stands for the &- or 7-topology in
the sense of Tréves [27]. Let M” be one of R”, R”, ﬁ”, R*” R*", R*" and R*". Let
both {F(Q; E,); 2 is an open set in M"} and {G(£2; E,); Q is an open set in M"}
denote one of the presheaves {B(Q; E;)}, {B(RQ:; E))}, {ﬁ(!); E))}, {B*(2; E))},
(BYQ; E))}, (B E)} and {B*(2; E}, (=1, 2). |

Let 2, and £, be relatively compact, open sets in M” and M” respectively.
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Let T, € F(Qy; E;) and T,€ G(2,; E,). Let T,€A,(Q5'; E;) and T, AL(Q;
E,) so that Tll!)l:Tl and T2|92=T2, where T|o, denotes the image of T,
in F(Q2,; E,) and T,|,, denotes the image of T, in G(2,; E,). Then we have
T,®,T,€R,,(Q25'xQ5'; E). Then we can see that T1®w72|91x92 does not
depend on the choice of representatives T and T, of T} and T, respectively. Thus
T 1®sz| Q1xQy 18 an E-valued general Fourier hyperfunction on 2, xQ, which
depends only on T; and T5. We denote this by 7;® ,T, and call it the tensor product
of T; and Ty. T;® ,T, has the properties of tensor products of vectors. Then we
have
supp(7;®, T3) Csupp (1) X supp(Ty).

Here we note that, as far as we are concerned with finite sums of finite tensor
products of general Fourier hyperfunctions, we need not assume the completeness of
LCV'sE,, E,.

b) Convolution. Let M” be one of R”, R”, R”, R*” R*" R*" and R*". Let
{F(Q; E,); 2 is an open set in M"} be the presheaf of E,-valued general Fourier
hyperfunctions over M".

If M" is compact, F(M"; E,)=2A,(M"; E,). Thus, in this case, we have nothing
special to do with convolution products of general Fourier hyperfunctions.

If M" is not compact, let M” be the radial compactification of M”. Then M”
is one of R"XR", ﬁ”xﬁ”, I?”Xﬁ”, R*XR"<R” and R*<R"xR". Then F(M™; E,) is
the space of the type ﬂ;ﬂ(M . E,). Then if Q, is relatively compact open set in M”*,
then Q, is an open set in M?”. Thus, by virtue of Proposition 3.4, we have, for every
TE F(Q,; E,), a prolongation T € F (M™; E,) of Tsothat T l,=T.

Then, for € A'(Q2,; E,), (2, is an open set in R™ N M™), we can define

u*Tlg' = u*a)T |.Q'
for an open set Q' in M” such that (Q,+(CQ2,)NR™N (2’ NR"™)= holds. In
particular, if ¥ € A'({0}), u* defines a morphism of the presheaf {F(Q,; E,)}. We
call ¥ € A'({0}) a local operator of F(M™"; E,).

c¢) Multiplication by a slowly increasing real-analytic function. Let M” be
one of R”, R", 13”, R*", R*", R"" and R*". Let {F(Q; E); Q is an open set in M"} be
one of the presheaves {B((2; E)}, {B(Q; E)}, {B(Q; E)}, {B*(2; E)}, {BY(Q; E)},
{BY@; E)}, and {B*(Q; E)}.

Let Q be a relatively compact, open set in M”. If T€ B(Q2; E) and f € A%(Q°),
then we shall define £ T as follows. Let T € A,(Q; E) such that T|,=T holds. Then
fTER,(Q E). Then we can see that fT|, does not depend on the choice of the
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representative 7. Thus £ T| o is an E-valued general Fourier hyperfunction in F(£2; E)
which depend only on fand T and which we denote by fT.

d) Differentiation. Let M” and Q and F(£2; E) be as in section c). If T€ F(Q2;
E), let T€A,(Q; E) such that T|,=T holds. Then, using Proposition 4.12, we
define 97/9x; as follows: ~

aT/3x;=(T/3x)ly.

By this definition, we know that an E-valued general Fourier hyperfunction is
infinitely differentiable in the sense of E-valued general Fourier hyperfunctions and
the partial differentiation of an E-valued general Fourier hyperfunction does not
depend on the order of differentiation.

By the above facts and those in section c) of this chapter, we can define a
general differential operator with constant or variable coefficients:

P@Q/3x)=Z ps, a,(3/3x), a, €C,
and
P(x,3/3x)=Z | i<,y @, (%) (3/32)?,
where a,(x) € A% (K) or A%(2), (2 is relatively compact) and (3/3x)” denotes
(3/3x)P=8"/ax ax%2 - 3xil!,
=102 s D)

Theorem 5.1. Let E,, E, and M™, M” and Q,, Q, and F(Q,; E,), G(Q; E,)
be as in section a) of this chapter. Then, for T, € F(Q,; E,) and T, € G(2,; E,),
we have :
0/30%(T;®,T,)=((3/30)° T))®,((3/3x)"'T,),
where p=(p', p°), p', p” are an (Iml+Inl)-tuple, an \m\-tuple and an \nl-tuple of
nonnegative integers, respectively.

Theorem 5.2. Let A’ (Q,; E,) and F(Q2,; E,) be as in section b) of this chapter
for an open set Q,CR™ and a relatively compact, open set Q,CM". If Q' is an
open set in M" such that (Q,+(CQ)NR™N(Q NR™)=2 holds, then we have,
forue A'(Q,; E,) and TE F(Q,; E,),

(8/80° (uxT)lg =((3/3%) u) *, Tlg =u*(3/39° Tlg,
and
((3/0x)*?0)*T|g, =(3/3x)" Tlg,,
where & is the Dirac measure.

¢) Indefinite integrals. We use the notation in section c) of this chapter. Then
we have the following. 4

Theorem 5.3. Let M", Q and F(Q; E) be as in section c) of this chapter.
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Then, for every T€ F(£2; E), there exists SE€ F(Q2; E) such that 3S/3x;=T.
Such two solutions S; and S, are different one another by an arbitrary E-valued
general Fourier hyperfunction in F(F(Q); E), where F means a natural extension
to M" of a projection of R™ on R™ ™" such as Flxy, =+, %)=y, =, %}, =", X1,
denoting by frj- the omission of the coordinate x;.

Proof. Let K be a compact set in M” of the type in Lemma 4.26 which contains
Q as its subset. Then, by virtue of Proposition 3.4, there exists T € A, (K: E) such
that T|,= T holds. Then, by virtue of Theorem 4.27, we have S € A,(K; E) such that
8S/ ox;= T.Then S=S |o € F(2; E) satisfies the equation 3.5/ ox;=T. The latter
assertion follows also from Theorem 4.27. Q.E.D.

f) Analytic diffeomorphism. Let M”, Q and F(Q; E) be as in section c¢) of
this chapter. If Q, and £, are relatively compact, open sets, then y=@®(x) denotes
a complex-analytic diffeomorphism of the form as in section f) of chapter 4 which
maps a certain neighborhood in X” of Q5 onto a certain neighborhood in X" of Q4
such that @(2)=Q4. Then, for T€ F(Qy; E), let T € A,(Q5; E) with T|p,=T.
Then, using the result in the paragraph f) in chapter 4, we define *T €4, (QS: E).
Then we can see that @*T lo, does not depend on the choice of representatives T.
Thus @*T | o, 18 an E-valued general Fourier hyperfunction on £, which depends
only on T. We denote this by @*T. Then we have

supp(®*T)=@ ' (supp(T)), for TE F(Q,; E).

6. Fourier transformation of general Fourier hyperfunctions

In this chapter we introduce the notion of the Fourier transformation of
E-valued mixed Fourier hyperfunctions on R*”, where n=(n,, n,) is a pair of
nonnegative integers with |n|=n,+n, #0. Then the Fourier transformation of each
type of Fourier hyperfunctions can be treated as a special case of that for E-valued
mixed Fourier hyperfunctions.

Proposition 6.1. If we define F,¢ by the formula

(F1o)E)=] , exp(=i<x, £) p@)dx

for € A(R™), where <x, E>=x,E,+ - + x,&,, then F; gives a topological
isomorphism of A(R™) onto itself |

Proof. See Kawai [17], Proposition 3.2.4, p.483. Q.E.D.

Proposition 6.2. If we define Fy ¢ by the formula

(F20) (@)=, exp(=i<x, £>) p(n)dx
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forp€E fil(ﬁ"), then F, gives a topological isomorphism of 55(17") onto itself.
Proof. See Saburi [23], Theorem 5.1.2, p.80, [24], Theorem 4.1.1, p.255 and
Nagamachi-Mugibayashi [22]. Q.E.D.
Generalizing Propositions 6.1 and 6.2, we obtain
Proposition 6.3. If we define Ff by the formula

(FR)E)=] , exp(=i<x, £>) @) dx

for B,(R*™), where <x, E>=x,E 1+ -+ + x,,,&,,, then F gives a topological
isomorphism of A4(R*™) onto itself

Proof. This follows from the fact that F=F; ® F, holds. Q.E.D.
‘ Proposition 6.4. Let P(X) be a polynomial of \n| indeterminates. Then we
have the following:

(1) P(3/3&)(Fp)=F(P(-ix) p(x)).

(2) PE)(Fp)=F(P( 22 (9 ().

i
(3) Fle*¢)=(Fo)(F¢).
4) F(ed)=(Fp)*(F¢).
Here ¢ and ¢ are in A,(R"").
Definition 6.5. Let T be an element in B*(R*"; E)=A,(R*"; E). Then we
define the Fourier transformation F* of B*(R*"; E) by the formula
(F*T)(¢)=T(F¢), for every ¢ € A (R*™").
We also define the inverse Fourier transformation F* of ‘B#(R#’”; E) by the formula
(F*T)(9)=T(F ), for every ¢ € A,(R*").
Here we define F¢ by the formula
Fo &=, exp(i<x, £>)p(x)dx.

Then we have the relation.
F*F*=F*F*=identity.

In the sequel, we denote F=F*.

Definition 6.6. Let 7€ A'(R"™; E), whose support is a compact set K in R™'.
Then we define the Fourier-Borel transform f(éf) of T by the formula

T(&)=T,(exp(i<x, £>)).

Then we have the following.

Proposition 6.7. For T€ A'(R™; E) whose support is a compact set K in R™
the Fourier-Borel transform T(E) of T belongs to A*(R*"; E) and T (&) can be
extended to the whole space C™ as an E-valued holomorphic function given by
T(&)= T, (exp(i<x, £>)) such that T(&)e O*(int[R" xiB°1*; E), where B° means
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the polar set of a closed convex hull B of K.

Corollary. Let T be as in Prposition 6.7. Then we have FT=(T)"
considering T as an element in Ay(R*"; E), where (1) is defined by the formula
(1) &) =T(-9).

Proof. We have, for every p € A,(R*"), _

(FD@=T(], exp(~i<x, £>) p(&) d€)

=[ | Texp(-i<x, £2)p(&) d&=(D)"(9).
This completes the proof. Q.E.D.

Here we study Fourier transforms of convolutions and multiplications in the

case of E-valued mixed Fourier hyperfunctions in a similar way to Ito [10], section
- 5.3, p.562f.

Theorem 6.8. Let SEA'(R™) and T Ay(R*™"; E). Let a(x) € A*(R*") be the
Fourier-Borel transform of a real analytic functional whose support is a compact
set in R™. Then we have

(1) FS*T)=(FS)-(FT).

(2) F@)=2x) " (Fa)*(FT)).

Proof. It suffices to prove (1). Indeed, if (1) is proved, the same formula then is
true with F replacing F in (1):

F(S*T)=27)" (FS-FT).
Thus we have
SxT=F ()" FS-FT).
But FS may be replaced by a(x) and FT by T. Then S has to be replaced by Fa and
T by FT. Thus we obtain (2), .
In order to prove (1), we observe that we have, for ¢ € A,(R*"),
] F(S*T)(9)=(S*T)(F¢)=T(SF¢).
Here S is defined by the formula
< S, f>=<§, j:’ >
where we put f (x)=f(—x). But we have
(S*Fe)()=<S,, Fo(x+5)>

=<8, [, exp(-i<x+y, £2)p(€) d&>
:fmn\ exp(—i<x, £>)<S,, exp(—i<y, £>)>¢(£) d§

=F(FS-9).
Thus we obtain
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F(S*T)(@)=T(F(FS-0))=(FT)(FS 9)=(FS-FT)(9).
This completes the proof. Q.E.D.
Theorem 6.9. Let P(X) be a polynomial of |n| indeterminates. Then we have,
for every TE A'y(R*"; E) and for every vector pE R™

(1) P@/3&E)YFT=F(P(—ix)T).

1 9
() P)FT= FPCT 30D
(3) F(ryT)=exp(—i<x,E>)FT.
Proof. It suffices to observe that

P(@/3x)T=[P(@/9x)01xT, 1, T=3,*T. QE.D.
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