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Abstract

In this paper, we define the notion of C~)-pseudoconvex open sets
w1thout using the technical conditions of Kawai[13], [14]. Thereby
C" can be considered as an O-pseudoconvex open set. Further 1t
is proved that an O- pseudoconvex open set is an open set in c"
whose finite part is pseudoconvex open set in C™. We prove that a
domain of O@-holomorphy is an O-pseudoconvex open set. But the
converse is an open problem.

2000 Mathematics Subject Classification. Primary 32F17 ; Sec-
ondary 32E99, 32A45, 46F15

Introduction

In 1969 and 1970, Kawai defined the sheaf @ of infraexponential holomor-
phic functions and proved the Oka-Cartan-Kawai Theorem B for O-pseudocon—
vex open sets in his papers on Fourier hyperfunctions(13], [14]. In his definition
of 6-p§<eudoconvex domains, one technical condition is assumed. Thereby c"
is not O-pseudoconvex. Many authors follow him[4], [5], [6], (7], [8], [9], [10],
11}, [12].

In this paper, we define the notlon of 5—pseudoconvex open sets without
this technical condition. Thereby C" can be considered an O—pseudoconvex
open set. Further we clarify the relation of O-pseudoconvex open sets and
pseudoconvex open sets in C". Namely, an O- pseudoconvex open set 2 is
nothingelse but an open set in C" such that QN C™ is a pseudoconvex open
set in C™. Therefore, when we merely add an pseudoconvex open set in C™ the
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corresponding points at mﬁmty, it does not become an O-pseudoconvex open
set unless it is an open set in C". In this point there exists a difference between
the theory of holomorphic functlons on C" and the theory of mfra.exponentlal
holomorphlc functions on C'. We know that domains of O- holomorphy on
C" are O-pseudoconvex open sets. But the converse is an open problem. It
is also an open problem wether we can prove the Oka-Cartan-Kawai Theorem
B for arbitrary O-pseudoconvex open sets without Kawai’s technical condition
or not.

We improve the proof of a key Lemma for the proof of Runge’s Theorem
for rapidly decreasing holomorphic functions. Using this, we prove Runge’s
Theorem.

Note. While I was writing this paper, I obtained Berenstein and Struppa’s
paper[l]. There they also tried to generalize the notion of O-pseudoconvex
open sets. But their definition is different from ours.

1. The sheaves 0 and O

At first we remember the notion of holomorphic functions. Let C™ be the
n-dimensional complex Euclidean space and € an open set in C™. A smooth
function f(z) on 2 is said to be holomorphic if it satisfies the Cauchy-Riemann
equation f = 0 on 2. We denote by O() the space of all holomorphic
functions on Q. We define the sheaf O of holomorphic functions over C™
to be the sheaf {O();Q is an open set in C"}. For every f(z) € O(f),
sup{|f(z)|; z € K} < oo holds for every compact subset K of Q. If we define a
seminorm || f ||k of O(§2) by the relation || f ||x= sup{|f(2)|;z € K}, O(Q)
becomes a Fréchet space with respect to the topology defined by the family of
seminorms {|| f ||x; K is a compact set in Q}.

We denote by C(€2) the space of all continuous functions on (2.

Next we remember the definition of radial compactification D™ of the n-
dimensional real Euclidean space R™ following Kawai[14], Definition 1.1.1,
where n > 1. '

Definition 1.1(Kawai). We denote by D™ the radial compactification
R™11S% ! which denotes the disjoint union of R™ and the (n — 1)-dimensional
sphere S7! at infinity. When z is a vector in R™ \ {0}, we denote by zoco
the point in S7~! whose representative is z in the identification of S%1 with
(R™\ {0})/R*. Here R™ denotes the set of all positive real numbers. Each
element in RY is considered as a multiplication operator on R™ \ {0}. The
space D™ is endowed with the following natural topology. Namely, (i) if a
point z of D™ belongs to R", a fundamental system of neighborhoods of z is
given by the family of all open spheres in R™ including z. (ii) If a point z of
D™ belongs to S™!, a fundamental system of neighborhoods of z(= yoo) is
given by the family {(C + a) U Cw; Coo 3 yoo}. Here a runs.through all points
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in R™ and C runs through all open cones in R"™ with the vertex at the origin
which contains y € R™ \ {0} and C denotes the set {z00;2z € C}.

We denote by C" the space D™ x v/—1R" endowed with the direct product
topology. D™ and S7%! are identified with the subsets of c" by the relations
D" ~ D" x /=1{0} = C" and S%! ~ §7~! x y/=1{0} — C". For a subset
E of C", we denote by 1nt(E) its interior and by cl(E) = E its closure with
respect to the topology of c". Forn =1, we put D = D!'and C = C

Definition 1.2(the sheaf O of slowly increasing holomorphlc func-
tions). We define the sheaf O over C' to be the sheaf {O(Q) s an open
set in C" }, where the section module @(£2) on an open set € in C" is the
space of all holomorphic functions f(z) on £ N C™ such that, for any positive
number £ and for any compact set K in 2, the estimate sup{|f(z)|e(—¢|z|); z €
KNC™} < oo holds. Here e(t) denotes the exponential function e* = exp(t) of
t € C. A function f € O(Q) is also said to be an infraexponential holomorphic
function. B

If we define a seminorm ||f|| k. of @(f2) by the relation

|11l k.= sup{| fle(—¢l2l); z € KN C"},

the space 5(0) becomes an FS-space with respect to the topology defined by

the family of seminorms {||f||k,e; K is a compact set in § and € is a positive

number}. As to the notion of FS-spaces, we refer to Komatsu[15], [16].
Definition 1.3(the sheaf O of rapidly decreasing holomorphic func-

tions). We define the sheaf @ over C" to be the sheaf {O(); Q2 is an open

set in 5'n}, where the section module Q((2) on an open set § in C" is the
space of all holomorphic functions f(z) on N C™ such that, for any com-
pact set K in {2, there exists some positive constant ¢ so that the estimate
sup{|f(z)|e(d]z]);z € KNC"} < oo holds.

Definition 1.4(definition of the space O](U)). Let U be an open set

in C". For n € R, the Banach space O} (U) is defined to be the space
O(U) ={f € CU"NC"; flyncm € O(UNC™),
sup{|f(2)le(-nl2|); 2 € U N C™} < oo}

Let K be a compact set in C". Let O(K) be the space of all rapidly
decreasing holomorphic functions on a certain neighborhood of K.

Let {Un}m>1 be a fundamental system of neighborhoods of K such that
Umn+1 CC Up,, which means that U,,41 has a compact neighborhood in Uy,

with respect to the topology of C". Then we have the isomorphism Q(K) =
limind O} /™ (Uyp,).

" Then O(K) becomes a DFS-space. As to the notion of DFS-spaces, we
refer to Komatsu[15], [16).
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Let © be an open set in C" and {Km}m>1 be an exhaustmg family of
compact subsets of Q2 such that K1y C K, C -+ C K C --- C Q and U K, =
2 holds. Then we have an isomorphism

O(Q) = lim proj O(Kp,).

Then O(2) becomes an FS-space with respect to the projective limit topology
by Lemma A in Ito[7], p.262.
It is easy to see that O|o» = O|on = O.

2. O-subharmonic functions

We recall that a C?-function & in an open set Q in C is called harmonic if
Ah = 40%h/020%Z = 0 in Q.
Let Q be an open set in C. A C2-function h on QN C is called O-harmonic
if the following (i) and (ii) hold:
(i) h is harmonic on 2N C.
(i) For every compact set L in C, h(z) is bounded on LN C.
Definition 2.1. Let Q be an open set in C. A function u defined on 2
and with values in [—o00, +00) is called subharmonic if
(a) u is upper semicontinuous, that is, {2; 2 € Q,u(z) < s} is open for every
real number s.
(b) For every compact set K in € and every continuous function A on K
which is harmonic in the interior of K and is > u on the boundary of
K we have u < h in K.
By our definition the function which is —oo identically is subharmonic. But
sometimes this is excluded in the definition. _
Definition 2.2. Let §2 be an open set in C. A function u deﬁned on QNC
and with values in [—00, +00) is called @-subharmonic if
(i) u is subharmonic in 2N C.
(ii) For every compact set L in €, u is bounded on LN C.
Theorem 2.3. Let Q be an open set in C. Then we have the following.
(1) Ifuis O-subharmonic in Q and ¢ > 0, it follows that cu is O-subharmon-
ic in €.
(2) If a, (x€A) is a family of O-subharmonic functions in Q, then
U = SUp,, Uy 18 O-subharmonic if u is upper semicontinuous and bounded
on LNC for every compact set L in §2, which is always the case if A is
finite. 5
(3) If ur,ug, -+ is a decreasing sequence of O-subharmonic functions in ,
then u = limj_,o u; is also O-subharmonic in Q.
Proof. This follows from Hérmander|3], Theorem 1.6.2, p.16 and the con-
dition (ii) of Definition 2.2. Q.E.D.
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Corollary 2.4. Let () be an open set in C. uy + ug s O-subharmonic in
Q if u; and uy are O-subharmonic in Q. _

Corollary 2.5. Let Q2 be an open set in C. A function u defined in §2 is O-
subharmonic if every point in 1 has a neighborhood where u is O-subharmonic.

Theorem 2.6. Let §) be an open set in C. Let ¢ be a convez increasing
function on R and set p(—o00) = Ili)rzloo o(z). Then p(u) is O-subharmonic in

Qifuis O-subharmonic in . _

Corollary 2.7. Let Q be an open set in C. Let uj,uz > 0 and assume
that log u; is O-subharmonic in Q(j = 1,2;log0 = —o00). Then log(ui + uz) is
O-subharmonic in 2. _ _

Theorem 2.8. Let Q be an open set in C. Let u be O-subharmonic in
and not —oo identically in any component of . Then u is integrable on all
compact subset of 2N C (we write u|gc € Lio(2N C)), which implies that
u > —oo almost everywhere. 5 _

Theorem 2.9. Let §) be an open set in C. If u is O-subharmonic in §)
and not —oo identically in any component of S, we have

/uAvd)\ >0 (2.1)

ifve C3(QNC) and v > 0. Here d\ denotes the Lebesgue measure.
Theorem 2.10. Let 2 be an open set in C. Let u € L1, .(Q2NC) and
assume that (2.1) holds. Further assume that esssup{u;z € LN C} < oo for
every compact subset L of ). Then there is one and only one O-subharmonic
function U in §) which is equal to u almost everywhere. If ¢ is an integrable
non-negative function of |z| with compact support, we have, for every z € QNC,

(2.2)

o) = 1 /u(z— 62" )p(2")dA(2")
z) = lim :

80 / o(#)dA(Z)

Proof. Since U is E)-subharmonic, U is subharmonic in 2 N C. For small
6, we have

UG) < [ UG- 500N/ [ (a)ir)

U is semicontinuous from above. The upper limit of the right hand side when
0 — 0is < U(z). Hence (2.2) must hold if u = U almost everywhere.

To prove the theorem we first assume that u € C%(Q2 N C) such that
sup{u;z € K N C} < oo for every compact subset K of 2. Then (2.1) can
be integrated by parts and therefore equivalent to Au > 0. Hence

0? , 0 o 02 0
Tl a2 i > 0.
/(87'2 +r ar-i—r 892)u(z+r6 )dg >0
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2m
If we write M (r) = (2r)~? / u(z+re®)dd, it follows that M" (r)+r=1M'(r) >

0, that is, TM'(r) is increaosing. Since rM'(r) — 0 when r — 0, we get
M'(r) > 0. Hence M(0) < M(r) which proves that u is O-subharmonic.

Now choose a function ¢ € C§°(C) with support in the unit disc so that
¢ > 0 and ¢ depends only on |z|. Then

us(z) = / u(z - 62')p(2')dA(2")/ / (2 )AA(Z)

is in C®°((2N C)s) and us — u in L'-norm on compact subsets of 2 when
0 — 0. For sufficiently small 4, ess sup{us(z);z € K N C} < oo for every
compact subset K of 5. It is immediately verified that (2.1) holds in Qs
with u replaced by us. Hence the first part of the proof shows that us is
O-subharmonic, which implies that

/ us(z — e2')p(2)AN(Z')/ / o(2')dA(Z

decreases when € | 0. If we let § — 0, we conclude that u.(z) decreases when
€1 0. Hence U(2) = li_ﬂl’(l) u(2) exists and is @-subharmonic by Hérmander(3],
13

Theorem 1.6.2, p.16. Since u, — u in L] () we conclude that U = u almost
everywhere, which completes the proof. Q.E.D.

We have thus proved that a function u € C? is @-subharmonic in  if and
only if Au > 0 in QN C and the condition (ii) of Definition 2.2 holds. In the
above, when Au > 0 we shall say that u is strictly O-subharmonic in .

Theorem 2.11. Let Q2 be an open set in C. If0 < f € C? and log f is
O-subharmonic in Q, the function log(1 + f) is strictly O-subharmonic in
ezxcept where grad f = Af = 0.

3. (5-p1urisubharmonic functions

_ Definition 3.1. Let 2 be an open set in C". We call a function @ on
O-plurisubharmonic if the following two conditions are satisfied:
(i) ¢ is a plurisubharmonic function on 2 N C™.
(ii) For every compact subset L in 2, ¢ is bounded on LNnC".
Theorem 3.2. Let 2 be an open set in C". Then we have the following:
(1) If u is O-plurisubharmonic in Q and ¢ > 0, it follows that cu is O-
plurisubharmonic in Q. _
(2) If uq, (a € A) is a family of O-plurisubharmonic functions in Q, then
U = SUp, Uq S 6-plum’subharmom'c if u is upper semicontinuous and
bounded on L N C™ for every compact set L in Q, which is always the
case if A is finite.
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(3) If uy,ug,--- is a decreasing sequence of 5-plum’subharmom’c functions
in 2, then u = lim u; is also O-plumsubharmomc in .
j—roo

Proof. It goes in a similar way to Theorem 2.3. Q.E.D.

Corollary 3.3. Let Q be an open set in c". uy +ug 1S O-plumsubharmonzc
in Q if uy and ug are O-plumsubharmomc n Q.

Corollary 3.4. Let ) be an open set in c". 4 function u defined in
Q) is O-plurisubharmonic if every point in Q has a neighborhood where u is
O -plurisubharmonic.

Theorem 3.5. Let §) be an open set in C". Let @ be a conver in-
creasing function on R and set p(—o0) = zliylzloo o(z). Then p(u) is O-

plurisubharmonic in Q) if u is 6-plurz’subharmom’c in Q.

Corollary 3.6. Let 2 be an open set in C". Let u1, u2 > 0 and assume that
log u; is O-plurisubharmonic in 2 (j = 1,2;log0 = —o0). Then log(u; + u2)
is 6-plum'subharmom’c in Q.

Theorem 3.7. Assume that 0 < ¢ € C°(C™), ¢ =0, (|2| > 1), depends
only on |z1|, -+ ,|2a| and [@(2)dA(z) = 1, where dX is the Lebesque measure.

Let u be O-plurisubharmonic in §). Put

Ue(2) = / u(z - eC)p(Q)dN(Q)-

Then uc(z) is O-plurisubharmonic and ue € C® where d(z,(CQNC") > ¢,
and u. | u where € | 0 (we asuume that u is not identically —o0).

Proof. In Theorem 2.10, that u. decreases when ¢ | 0 was proved in the
case n = 1.

Iteration of this result shows that u. is decreasing also if n > 1, and from
the case n = 1 we also immediately find that v < u,. Since hm u. < u in view

of the upper semicontinuity of u, we conclude that u. | u When el 0.
That u, is O-plurisubharmonic follows immediately from the case n = 1.
Conversely Theorem 3.2 shows immediately that the limit of a decreasing
sequence of O-plurisubharmonic functions is O-plurisubharmonic. Q.E.D.

4. Domains of (5-holomorphy

At first we remember the notion of domains of holomorphy following Defi-
nition 2.5.1 of Hérmander|[3], p.36 and some of their properties.

Definition 4.1. An open set  in C" is called a domain of holomorphy if
there exist no open sets {2; and €y in C™ with the following properties:

(@) 0#Q C N

(b) Q2 is connected and not contained in .

(c) For every u € O(Q2) there is a function uy € O(2;) (necessarily uniquely
determined) such that u = ug in ;.
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Definition 4.2. Let Q be an open set in C™ and K a compact set in §2.
Then Kgq is said to be an O()-hull of K and defined to be the set Ko =
{z;2 € ,1(2)] < sup|f] if f € OQ)}.

Let D be an open polydisc in C™ with center at 0. Put A5 (2) = sup{r; {z}+
rD C Q}. Let f € O() and assume |f(z)| < AB(2),(z € K). Let u € O(R).

Then, for every ¢ € Kgq, Z(z — ()*0%u(()/a! converges where z belongs to

24
the polydisc {¢} + |f(¢)|D.

Let ¢ be an arbitrary continuous function in C™ such that é > 0 except 0
and 6(tz) = |t|6(2),(t € C,z € C™). We put §(z,CN) = infyecqnd(z — w).
Then §(z, CQ) is a continuous function of z.

Theorem 4.3. Let Q be a domain of holomorphy. Let f € O(Q) and
assume |f(z)| < 6(2,CRN),(z € K), where K is a compact subset of Q . Then
we have |f(2)| < 8(2,CN), (z € Kq). In particular, if f is a constant, we have

inf 4(z—-w)= inf (2 —w).
zeK,weC 26Kq,weCh

Theorem 4.4. Let ) be an open set in C™. Then the following (1)~(4)
are equivalent:

(1) Let Q be a domain of holomorphy.

(2) If K cC Q, we have Kq cc Q and

sup | f(2)|/6(z,CQ) = sup |f(2)|/6(z,CQ), (f € O(R))
z€K 2€Kq

(3) If K cC Q, we have Kq CC Q.

(4) There exists a function f € O(§) which cannot be continued analytically
beyond 2, that is, it is not possible to find Q; and Qg satisfying the
following (a) and (b):

(a) 0#91 CQ‘ZHQ.
(b) Q2 is connected and not contained in 2, and f2 € O(§22) so that
f=f2in. _

Now we give the definition of domains of @-holomorphy.

Definition 4.5. An open set in C" is said to be a domain of 5-holomorphy

if the following two condetions (i) and (ii) are satisfied:

(i) 2N C™ is a domain of holomorphy in C™.

(ii) There are no open sets §2; and §2; in C" with the following three
properties:

(a) 0#91 CszQ.

(b) €5 is connected and not contained in Q.

(c) For every u € O(f) there is a function ug € O(£;) (necessarily
uniquely deteremined) such that u = ug in ;.
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5. O-pseudoconvex domains

Let €2 be a domain of E)-holomorphy. Then QN C™ is a domain of holomor-
phy. Let 20 € QN C™ and w € C™. Choose r so small that D = {2y + Tw;7 €
C,ri<r}canc”.

Let f(7) be an analytic polynomial such that — log 6(zo+7w, CQ) < Ref(7),
|7| = r. Then there exists an analytic polynomial F' in C™ such that

F(zp + Tw) = f(7).
Then our hypothesis can be written
le= P3| < 6(z,(CQ) N C™), (z € BD).

Since O(2 N C™)-hull of D contains D by the maximum principle, then, by
Theorem 4.3, we have

le"F@| < 6(2,(CR)NC™), (2 € D).

That is,

—logd(20 + 7w, (CN) N C™) < Ref(1),|7| < 7.
The same conclusion is obvious if w = 0. Hence — log é(z + 7w, (CQ) N C™) is,
for fixed z € C™ and w € C™, a subharmonic function of 7 where it is defined.

Let €2 be an open set in C". Then we have the assertion:
sup(— log 6(2 (CcQ)NC™),|Im z| ) is @-plurisubharmonic in € if and

only if Q2 is (’)-pseudoconvex inC".
In the sequel, we show this fact. _
We denote by P({2) the set of all O-plurisubharmonic functions on Q.

Let K be a compact subset of 2. We define P(€)-hull of K by the set R’g :

”5 ={ze€ QN C™;u(z) <supu,u € 13(9)}~
K

Definition 5.1. Let 2 be an open set in (~7n.~Then Q is called an O-
pseudoconvex open set if there exists a continuous O-plurisubharmonic func-
tion u in 2 such that

Qe={2,2€QNC™ u(z) <c} cCcN

for every ¢ € R. We also say such _an open set ) an (’)-pseudoconvex domain.
For example, the open sets C" and D™ x v—-1{y € R";|y| < a} are o-

pseudoconvex open sets (a > 0). The latter is also O-pseudoconvex in the
sense of Kawai [13], [14].

Theorem 5.2. Let 2 be an open set in C". Then the following (1) ~ (4)
are equivalent.




10 Yoshifumi Ito

(1) Q is O-pseudoconvez.

(2) sup{—logd(z, (CN) N C™),|Im z|2} is O-plurisubharmonic in Q if we
puté(z, (CQNC™) = inf,c canC™ d(z—w), where 6(z) is a continuous
function in C™ such that §(tz) = |t|6(z),(t € C,z € C™), and §(0) = 0,
0(z) > 0,(z #0).

(3) There exists a continuous 6-plum’subharmom’c function u in Q such that
Q. = int({z;z2 € QN C",u(z) < c}*) CC Q for every c € R.

(4) K cc Qif K cc Q.

Proof. By Definition 5.1, (1) and (3) are equivalent. Now we prove the
equivalence of conditions (2), (3) and (4). If (2) is fulfilled, we only have to
set u(z) = sup{—logd(z, (CN) NC™), |Im 2|?} to get a function satisfying (3).
That (3) implies (4) is obvious, so we need only prove that (4) implies (2).

Let 20 € 2NC™,0 # w € C™. Choose r > 0 so that D = {29 + Tw; |7| <
r} CQNC™. Let f(7) be an analytic polynomial such that

sup{—logé(zo + Tw, (CQ) N C™), |Im(z0 + Tw)|*} < Ref(7),|7| =T
Then we show that
inf{6(z0 + Tw, (CQ) N C™), e~ Mm(zo+Tw)*} 5 |=F(7) (5.1)
for |7| < r. That is, we show that
8(zo + Tw, (CQ)NC™) > |e~ ),
e~mzo+Tw)? > |g=f(7)],

To do so, we take any vector a € C™,d(a) < 1, and consider for 0 < A < 1 the
mapping ‘ :
T = 2o+ 71w+ dae D |7 <.

We denote by D, its range.

Put B, = {2z + Tw;|Im(20 + Tw)|?> < Ref(7),|r] < r}. Then we have
B.NDy=D. If weput A ={\0< A< 1,DyNB, C N}, Aisan open
subset of [0,1]. In order to show A = [0,1], we show that A is closed. Put
K={zn+mw+ /\ae‘f(f);lrl =7,0 < A <1} NB,. Then K is a compact
sebset of QN C™. Let u € P(QNC™) and A € A. Here P(2N C™) denotes
the set of all plurisubharmonic functions on 2 N C™. Then 7 — u(2p + 7w +
Aae~f(7)) is subharmonic in a neighborhood of the disc |7| < r. Then we have
u(zo + Tw + )\ae_f(’)) <supguif |7| <rzo+71W+ Aae=f () € B,.. Then we
have Dy N B, C KQ for every A € A. Thus A is closed, for KQ is relatively
compact in 2N C" by (4) because KE ¢ KP nNC"cQancCcr, KQ ccC Q2 and
KE is compact in C™. Here K{ is defined by the relation

KE ={22€QnC",u(z) <supuforallu e P(Q NnC™)}.
K
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Thus D1 N B, C . That is, zp + 7w + ae~ M e QN C" if §(a) < 1,|7| < 7
and 29 + 7w + ae~ (" € B,.. So that,

8(z0 + Tw,CANC™) > e~ FM)]
if |7| <1204+ 7w +ae f(M e B,, or
sup{—log é(2p + 7w, (CQ) N C"), |Im(zo + *rw)lz} < Ref(r),(I7] £ 7).

This proves (2). Q.E.D.

Since the supremum of a family of (5—plurisubharmonic functions is O-
plurisubharmonic if it is continuous, we obtain the following Theorem 5.3 from
the condition (2) of Theorem 5.2.

Theorem 5.3. Let Q, be an 6-pseud0convem open set for every o in an
indez set A. Then the interior Q of Nac a8l is also O-pseudoconve.

Theorem 5.4. Let §) be an open set in C If, to every point in Qj‘,
there is a neighborhood w such that w N Q is O-pseudoconvez, then 2 is O-
pseudoconvez.

Proof. Let zp € 0f). Let w be a neighborhood of 2y according to the hypoth-
esis. Then we have (2, (CQ)NC™) = §(2,C(2Nw)NC™) for all z sufficiently
close to z9. sup{—logé(z,(C) N C™),[Im 2|2} is O-plurisubharmonic in a
neighborhood of every point on 6Q2. Then there exists a closed subset F' of
such that sup{—logé(z, (C) N C™), |Im z|?} is O-plurisubharmonic in Q\F.

There exists a continuous function ¢ € ﬁ(én) (for example, a convex in-
creasing function of [Im z|?) such that ¢(z) > sup{—log é(z, (CQ)NC™), [Im 2|?},
(z € F) and ¢(z) = o0, (|Im z| = 00). Then we have

u(z) = sup{yp(z), sup{— log(é(z, (CR) N C™), |Im z|*}} € P(N),

for u = ¢ in a neighborhood of F' and the supremum of two 6-plurisubharmonic
functions is O-plurlsubharmomc u satisfies the condition (3) of Theorem 5.2,
which proves that Q is O-pseudoconvex Q.E.D.

Theorem 5.5. Let Q be an O-pseudoconve:z: open setin C". Let K be a
compact subset of Q and w an open neighborhood of K P = K. Then we have
0(z) € C°(QNC™) so that the following three conditions are satisfied:

(1) 8(z) is strictly @-plurisubharmonic, i.e. strictly plurisubharmonic in

QN C™ and bounded on LN C™ for every compact subset L of .

(2)0<00on KNC™and 0 >0 on (ANCw)NC™.

(3) For everyce R, {z€ QNC™;6(z) < c} cC Q.

Proof. At first we construct a continuous (7)-p1urisubharmonic function v
satisfying (1), (2).

Since €2 is an O-pseudoconvex open set, there exists a continuous O-
plurisubharmonic function ug on  so that (3) is satisfied. If necessary, adding
ug a certain constant, we may assume that ug < 0 on K N C".
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Put
K' =cl({z € QN C™up(2) < 2}).

L=cl({ze Q2NC™up(z) £0})NCw.

These sets are both compact. For every 2z € L, we can choose w € }3(9) such
that w > 0 at points of C" in a certain neighborhood of z and w < 0 on
K NC™. By Theorem 3.7 and by using a mollifier, we can obtain a continuous
O-plurisubharmonic function w; such that w; < 0 on KN C™ and w; > 0
for points of C™ in a certain neighborhood of 2. Since L is compact, by using
Borel-Lebesgue’s Lemma and the fact that the supremum of a finite number
of O-plurisubharmonic functions is an O-plurisubharmonic function, we can
construct a continuous O-plurisubharmonic function ws in a neighborhood of
K’ so that ws > 0 for points of C™ in a certain neighborhood of L and ws < 0
on KN C". Let M be the maximum of we on K’ NC™. For z€ QNC", we
put
v(z) = sup{wa(z), Mug(2)}, (if uo(2) < 2),

v(z) = Mug(2), (if up(2) > 1).

When 1 < ug(2) < 2, both definitions are identical. Therefore v is a continuous
O-plurisubharmonic function and evidently satisfies conditions (2), (3). We put

Q. = int({z € QN C™;v(2) < c}).

By using the notation in Theorem 3.7, we put
v;i(2) = / v(Q)p((z — ¢)/e)e™HMdA(Q) + €lIm 2, (j = 0,1,2,---).
C"nﬂj+1

Then, if we choose ¢ sufficiently small depending on j, we have v; € C*(C")
such that v; > v at points of C™ in a certain neighborhood of cl(€2;) and it is
strictly E)—plurisubharmonic. We can choose € so small that vg < 0,v; < 0 on
Kandv;<v+1(j=12---) on C"NQ;. Now, we take a convex function
x € C(R) such that x(¢) = 0 for t < 0 and x'(t) > 0 for ¢ > 0. Then

x(vj + 1 — j) is a strictly O-plurisubharmonic function in a neighborhood of
cl(£2;)\2,-1. Hence, choosing aj,as, - one by one, we have

Um = Vo + XT"a;x(v; + 1 — )

so that u, > v for every point of C" in a neighborhood of cl(2,,) and it
is a strictly 6-plurisubharmonic function. For I,m > j, we have u,, = u
on C" N Q;. Therefore, we have § = lim,, u, so that it is a strictly O-
plurisubharmonic function. Since 8 =v9 < 0on C"NK and 8 > von QNC",
we have the properties (1)~(3). Q.E.D.

Theorem 5.6. Let Q and Q' be two open sets in C" andC™" respectively.
Let f be an analytic map from QNC™ into V' NC™ so that, for every compact
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subset L of Q, f(LNC™) is relatively compact in Q. If u € ﬁ(Q’), then we
have f*u € P(f).

Theorem 5.7. Let (2 be an open set in C" such that QNC™ is a domain of
holomorphy. Then sup{—logé(z,C(2N C™)), |Im z|?} is O-plurisubharmonic
and continuous. o N

Theorem 5.8. Let ) be an open set in C . Then §Q is an O-pseudoconvez
open set if and only if QN C™ is a pseudoconver open set in C™.

Theorem 5.9. If Qq is a pseudoconvez open set in C™, then Q = int(cl(Qp))
is an (’)-pseudoconvea: open set. Here int(cl(€2)) is defined with respect to the
topology of c".

Theorem 5.10. A domain of 6-holomorphy QinC" isan @-pseudaconvez
open set.

Conversely, we propose the following Problem A.

Problem A. Is an O- pseudoconvex open set in C" is a domain of O-
‘holomorphy?

6. Runge’s Theorem

In this chapter we prove Runge’s Theorem. This theorem was first proved in
Kawai[14], Theorem 2.2, p.474. In this paper, the proof of Theorem 5.5, which
is one of the key Lemmas for proving the following Theorem 6.1, is improved
by the method of Hérmander({3], Theorem 2.6.1, p.48.

Theorem 6.1. Let K and L(K C L) be two compact subsets of C" such
that the following two conditions are satisfied:

(i) K and L has fundamental systems of O-pseudoconvex open neighbor-

hoods.

(ii) L is contained in the open set U = int({z + /=1y € C™;|y| < a}%)

in C". Here a denotes a sufficiently small positive number.
Then Q(L) is dense in O(K).

Corollary 6.2. Let K and L(K C L) be two arbitrary compact sets in D",
Then A(L) is dense in A(K). Especially A(D™) is dense in A(K).

With some preparations we prove Theorem 6. 1 step by step.

Definition 6.3. Let W be an open set in C" and n € R. We define the
space OIOC(W) to be the space of all holomorphic functions on W N C™ such
that, for an arbitrary compact subset K of W,

/K L IfPel=lzaA < oo

holds. Here dA denotes the Lebesgue measure in C".
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We define the space LJ ;,.(W) to be the space of all f € Lg,10.(W N'C™)
such that, for an arbitrary compact subset K of W,

2e(—n|z])dX < o0
[ lfPet=niz)

holds.

Of;’L(W) becomes an FS-space and L3 ;,.(W) becomes an FS*-space. OIOC
(W) is a closed subspace of L3 ,,.(W). The dual space of L3 10.(W) is realized

as Ly J(W). Here we define the space Ly ¢(W) to be the space of all f €
L, 1OC(W N C™) such that

2e(n|zdX < oo
/K el

holds and supp(f) is a compact subset of W.
For 7' < 7 the inclusion relations @3 (W) ¢ ©@37(W) and L3 (W) C
Lg,loc(w) hold.

Lemma 6.4. Let K be a compact set in C and {W;} a fundamental
system of neighborhoods of K with W; DD Wj,1. Then we have a topological
isomorphism

OK) ~ hmmd O ~1/’(Wj).

loc

Proof. By the fact following definition 1.4, the topology of O(K) is defined
by the inductive limit topology hm ind O, 13 (W;). But, for j =1,2,3,---, we

J

have continuous inclusions
O (W) = Q1T (W),

QLM W;) = 0V (Wyy).

=~ loc

Hence we have a topological isomorphism

O(K) = limind O, /7 (W,) ~ lim ind 0>~ (W;). QED.
J

Lemma 6.5. Let W be an open set in C" such that, for a certain posztwe
constant a, |Im z| < a holds for every z € Wne". Let n <n. Then Ofgf: (W)
is dense in QTN (W).

Proof. Let f € O*7 (W). By the assumptin on W, we have f(z) exp(—2z2/v)

= loc

€ (92’"( W), (v =1,2,3,---). Here we put 22 = 22 + ... + 22. On the other

loc
hand, for an arbitrary compact set K in W, we have

Vv—00

lim [ 1F- fe(=2%/v)Pe(=nl2])dA = 0
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by the Lebesgue convergence theorem. Hence, cﬁgg’ (W) is dense in Q37 (W).
Q.E.D. _

Proof of Theorem 6.1. Let {V;} and {W;} be fundamental systems of O-
pseudoconvex open neighborhoods of K and L respectively. Further assume
that V, CC Wj,‘/j.q.l CcC ‘/j,Wj+1 CcC Wj,(j = 1,2,'--). Then @(L) and
O(K) are DFS-spaces and

O(L) = limind O (W;),

loc

O(K) = limind Q7.7 (V;)

hold. Therefore, we here use the following Lemma.

Lemma 6.6. Assume E = limind E,, and F = limind F,, are DFS-spaces
and E is a subspace of F. If, for every m(= 1,2,3,---), E,, is dense in F,,,
then E is dense in F.

Therefore we have only to prove the following:

(1) “For sufficiently large 7, Qf;;l/ J (W;) is dense in Q?;:l/ J (V3).”
But, since Qf;;z/ 7(W;) is a subspace of Q“;‘;l/ J (W;), we have only to prove
the following:

(2) “For sufficiently large 7, Qf;;w J (W;) is dense in Qi’;l/ J (V).

In the sequel, we assume for j to be sufficiently large so that.W; C U holds
and put W; = W,V; =V and 1/j = €. Then we prove the assertion (2). But,
by the Hahn-Banach Theorem, (2) is equivalent to the following assertion:

(3) “If u € O*25(V)' is equal to 0 on Q> (W), then p = 0”.

loc

On the other hand, since @%2(V) is a subspace of L3 50c(V), there exists

u € L5 .(V) by the Hahn-Banach Theorem such that p is represented as
< pyv >= / vdA, (v € OBZE(V)).
vnC™

Here, since W C U, we consider the function
he(z) = H cosh(2ez;/n).
j=1

Then, for sufficiently small € > 0 there exist positive constants C and C’ such
that

Cexp(—2¢lz]) < |he(2)|71 < C' eXp(—%E-IzI), (zeWneCn)

holds. We assume that we choose a in the assumption of Theorem 6.1 so that
this inequality holds. Then we have

u/he(2) € L7 2 (V).
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Now we define the space O*(W; %lz] + 2log(1 + |2|?)) to be the space of all
v € O(W NC™) such that

/ Ivlze(—flzl —2log(1 + |2|?))dA < o0
wnC™ 2

holds. Then, for every v € O*(W; §|z| + 2log(1 + |2|?)), we have v/h.(z) €

=< loc

2log(1 +|2[)),

O*~2(W). Hence, by the assumption on u, we have, for v € O*(W; -§|z| +

/VnC’" v(u/he(z))dA = /WOC" (v/he(2))udA = 0.

Here we put T = cl{supp(u)}. Then, by Theorem 5.5, there exist some open
neighborhood V' of T which is relatively compact in V and some strictly C°°-
plurisubharmonic function 8(z) on W N C™ such that the following (4) and (5)
hold:

(4)8(z) <0onTNC".

(5) 8(z) > 0 in a neighborhood N of V' N C™.

Here we remember the Hormander Theorem.

Theorem 6.7(Hoérmander). Let §) be an open set in C™ with C?-pseudoc-
onvez boundary. Let ¢, 9 € C?(Q°) be two strictly plurisubharmonic functions
in Q. Let u € L271(Q, —¢) and u = 0 where ¢ > 0. We assume < u,v >=0
for an arbitrary v such that Bv = 0 and v € LYY (Q, ¢ + MpT) for a certain
A > 0. Here we put ¢t = sup(4,0). Then there ezists f € LY .(Q) such that

we have
afI,JK

.7
/ S Tin 1k Franmfe()dA < / [ul?e()dA
Q I,LK<5,kJ1,j I,kKazja-Ek = o

and f =0 where 1 > 0. Here the first equality in (x) is the definition of 9'.
Proof. See, Hormander[2], Proposition 2.3.2, p.109. Q.E.D.

Then there exists f € LY (W N C™; —§|z|) by Theorem 6.7 such that we

have u/h. = & f and supp(f) C {z € W N C™;8(z) < 0). Here we choose x €
Ce®(WNC™), sothat 0 < x(2) < 1,x(2) = 1on TNC™, x(2) = 0 on (V'NN)°N
C",supp(dx) C N and sup |8x| < oo hold. Then, for every v € Q¥ *(V),

loc

we have yvhe € Lo(W —|z| + 2log(1 + |2[2)), B(xvhe) € LYY (W; 2 512l) and
supp(d(xvhe)) C N. Hence, for every v € O%*(V), we have

loc

df=(-1)P'%) g dzf AdzE = (¥)

< pyv >= vﬂd)\z/ vhe ) (w/he )dA
pos=[ [ lwhe)(u/R)
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= vhe)d fd) = d(xvhe) - fdA = 0.

/WnC"(X ) - (xvhe) - f

But, since Qi’;“(V) is dense in Q?;;E(V) by Lemma 6.5, we have u = 0.
Q.E.D.
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