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Abstract 

In his m部 terthesis [8]， the :first author has studied the RSA 
signatures with several types of redundancy functions. In this pa-
per， we shall introduce these redundancy functions and investigate 
arithmetic properties of these redundancy functions and the signa-
tures with these redundancy functions. 

2000 Mathematics Subject Classification. Primary llN45j Sec-
ondary llA07， 94A62 

Introduction 

The purpose of this paper is to generalize the digital signatures with redun-
dancy functions introduced in [8] and investigate arithmetic properties of these 
redundancy functions and the signatures with these redundancy functions. 
Firstly， we briefly describe the RSA signature scheme. Let n be the product 
of randomly chosen distinct large primes p and q. Then the message space 
and the cipher text space for the RSA public-key encryption scheme are both 
Z / nZ. The RSA signature scheme can be created by reversing the roles of the 
encryption and the decryption拙 follows.
We denote Alice's public key and secret key by e and d， respectively. Note 
th抗 thepublic key and the secret key satisfy ed三 1mod cp(n). Here ψis the 
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Euler'sψfunction and satisfies I (Z / nZ) X I =ψ(n). 
Alice can sign any message m E (Z / nZ) X by applying her secret key d 

S三 mdε(Z/nZy.

Bob can check the signature by applying Alice's public key e， i.e.， 

se三 mde三 mmodn. 

We will explain the reason why this is a signature. By raising the randomly 
looking number to the power e， one may recover the plain text m. Hence s 
can be considered to the eth root of m and computing eth roots of an integer 
m mod n without the knowledge of d is infeasible. Since Alice is the only one 
who knows d， Bob can verify that Alice must have computed s and thereby 
signed m. We note th抗 anyone who knows Alice's Public key (n， e) can also 
verify this signature s. 
Though the original idea of the RSA signature is the one described as above， 
there are a number of possible attacks. We explain here some of those attacks. 
Firstly， we shall explain the existential forgery. Oscar choo明 ssε(Z/ηZ)X
and claims that s is a RSA signature of Alice. If m = se mod n is a meaningful 
text， one believes that Alice has signed m. This is called an existential forgery. 
Another attack comes from the fact RSA is multiplicative. Let m1， m2ε 
(Z /nZ)X and their signatures are Sl三 mfmod n and S2三 mgmod n. Put 
m = m1 m2 mod n. Then 

s = SlS2三 mfmj=(mlm2)d三 mdmod n. 

Thus s is the signature of the message m. This is called a mult勿licαtiveattαck. 
There are two known methods to protect from these attacks. The first one is 
to use the hash function h and the second one is to use the redundαncy function 

R: Z/nZ→ Z/nZ 

In order to protect from the multiplicαtive attαck， it is important that the 
redundancy function R is noもmultiplica七ive.Moreover it should be expected 
R satisfies the following property. 
For any x， y E Z /nZ， 

R(x)R(y)手R(z)mod n for any zεZ/ηZ. 

In [1]11.2.5， a redundancy function based on the binary expansion of x (0 < 
x < n) w回 proposed.It seems th抗 twoattacks described above no longer 
work for the signature with this redundancy function， but we could not verify 
it mathematically. 
Thus， instead of these usual redundancy functions R : Z /nZー-tZ/nZ， 
the first author introduced other redundancy functions 

R: Z/nZ→ Z/η2Z 
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and studied the security of the signatures with these new redundancy functions. 
1n the following， we shall introduce these redundancy functions and study the 
arithmetic properties of these redundancy functions. 

1. Redundancy functions Rk and arithmetical 

properties 

1n the following， we shall introduce several redundancy functions and inves-
tigate the fundamental prope凶iesof these redundancy functions. 
Let k be組 yfixed natural number三2.. We shall introduce a redundancy 
function Rk : {0，1γ..，n -1}→{O， 1，.・.，nk -1} by putting 

k 

Rk:wト-+Rk(ω) =wτ石工..0ω.

Here， for any 0 ::;ω < n， we denote ωnk-l +ωnk-2 +・・・+ω modnk by 

wowo・・・ 0'11人

1n the followi時，we shall consider the conditions of (x， y) when Rk(X)Rk(Y)三
Rk(z) for some z. Firstly， we shall show it is rare to occur R2(X)R2(Y)三 R2(z).
Finally， we shall show that Rk(X)Rk(Y)手Rk(Z)for any kと3.
Consider the c出 ewhen n is組 ynatural number and k = 2. It is obvious 
that (00 O)(x 0 x) = 000 for any xεZ /nZ. Thus， in the following， we shall 
restrict ourselves to non-trivial cases 0 < x， Y < n. 
We call 

(x，y) (1壬x，Y < n) has the double structure 
if 

(x 0 x)(y 0 y)三 z0 z mod n 2 for some z 

Then we have the following fundamental lemma. 

Lernrna 1. (x， y) hαs the double struc如何ザandonlyザ

x.y=αn+n-α， with someα(0 <α < n). 

Proof. Put x . Y =αη 十 b (0三α，b < n). Then we have 

(xn + x)(yn + y) = xy(η2 +2n十 1)
= (αn+ b)(η2 + 2n + 1) 
== (αn + b)(2n + 1) mod n2 

== (α+ 2b)n + b mod n2. 
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Then 

(x， y) has the double structure 仁二〉 α+2b三 b modn 
牛二争 α+b三 o mod n. 

Since 0 <α+ b :S: 2n -2， we have 

nl(α+b)仁二争 α+b=n.

Thus we have shown 

(x， y) has the double structure宇::::}α+b=n.

Thus we have completed the proof. 

Let G be the multiplicative group of residues modulo n -1， i.e.， 
(Zj(n -l)Z)x. If any x with 1三x< n satisfies xln， then we see七hat
Z・(njx)=η三 1mod (n -1). Hence we can define a subset H of G by putting 

H = {x mod n 11壬x< n with xln}. 

We note that IGI =ψ(n-1)加 dIHI = d(n) -1， where 'P is the E叫er'sfunction 
and d is the divisor function. 

Lemma 2. (x，y)加sthe double structu問ザαndonlyザ

x Anαnd y三 x-1mod (n -1). 

Proof. From Lemma 1， we know th剖 (x，y) has the double structure i江fa加n
only i汀fx勾y=α肌η+η 一αwith0 <α<η. We see an十n-α=α(n-1) + 
η三 1mod (n -1). Thus we know if (x， y) has the double structure， then 
u三 x-1mod (n -1). Moreover α労oimplies x A n. 
Conversely，出sumexεG-Handputy三 x-1mod (n-1) with 0 < y < n. 
Then one can write 

xy = b( n -1) + 1 =加 -b + 1 = (b -l)n + n -(b -1) with some 0三b<n. 

From the assumption x (j. H， we see x A n， i.e.， we have b =1= 0，1. Thus we have 
o < b -1 < n， which means tha七(x，y) has the double structure. Hence we 
have shown 

(x， y) has the double structure 
宇=争 zε G-H組 dy三 x-1mod (n -1) 
仁ニ} x An組 dy三 x-1mod (n -1). 

LetK(吋bethe number ofthe pairs (x， y) with 0 < x， y < n which have the 
double structure. Then，企omthe above lemmas， K (n) equals to the number of 
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the elements contained in the set G -H. Hence we have shown the following 
theorem. 

Theorem 1. 
K(η)=ψ(n -1) -d(η) + 1. 

We note that we can estimate the security of the RSA signature with the 
redundancy function R2 from the multiplicative attack by estimating the ratio 
of the following numbers: 

the number of the pairs (x， y) which has the double structu町一 K(η)
the number of all the pairs (x， y) (n -1)2 

1n the following， we shall show 

K(n) 
一一一一一一一→O.
(n -1)2 フ

More precisely， we shall show 

log(K(n)) 唱

log(n -1) 叶

asn一一+αコ.

asn一一+αコ.

Firstly， we have to estimate ψ(n -1). 1t is obvious th抗 forany n > 2， 
ψ(η-1) < n -1. Moreover one can easily show the following: 

Lemma 3. (Hatalova and T. Salat [3]) For αnynど4，

log2 .. n -1 
一一×一一一一一 <r.p(n -1) < n -1 
2 .. log(n -1) 

Proposition 1. K (n) sαtisfies the following inequality 

(n -1) log2 "c  
k(n)>-tn  21og(n-1) -v.. 

(n -1) log2 
(n> 11688) 

41og(n -1) 

Proof. Firstly we note the smaller one of the divisor αof n must satisfies 
the inequality α三v宿.Thus we know 

d(n) -1 < 2ゾ百.

(n -1) log2 
Next， we shall show ~.: I~I .~~ ~ > 2...;'五 (n>11688). 

4log(n -1) 
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We define a function I(η) by putting 

(n -1) log2 .... c 
f(n)=-2Jn  41og(n-1) -y--

(n -1)log2 -8ゾ五iog(n-1) 
41og(n -1) 

PUも
g(n) = (n -1) log2 -8ゾ五log(n-1)_ 

Then 

4log(n -1) 8ゾ五
= log2 _ --'O'~ 一一一一一

Jηη-1  

→ log2 > 0 (n→∞) • 

Now we c加 easilyverify 1(11687) = -0.005日.• • ，/(11688) = 0.00173・・・ and
I'(n) > 0 fl町 n> 11688. Thus we have completed the proof. 

g' (n) 

From this proposition， for any n > 11688， we have 

log(K(n)) > log(n -1) -loglog(n -1) + loglog2 -log4. 

Since i七isobvious th抗 log(K(n))< log(η-1)， we have shown the security of 
the RSA signatures with this redundancy function R2 against the multiplicative 
attack as follows. 

Theorem 2. 
-A
一つ山一一

吋一

O
K
一
ト

F
b

一'h
ぃ、

O

一F
b

l
一O
M
↓
 

Finally we shall consider the cases k > 2. Assume 0 < x， y < n satisfies 

Rk+l(X)Rk+l(ν) == Rk+1 (z) mod nk+1 for some z (0 < z < n). 

Then， from the fact Rk+l(X)三 Rk(X)mod nk， (x， y) also satisfies 

Rk(X)Rk(Y)三 Rk(Z)mod ηk 

N ow we shall show the following lemrna. 

Lemma 4. For αnyO<x，y，z<n， wehαM 

R3(X)R3(Y)戸R3(z)mod n3. 
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Proof. Assume， on the contrary 

R3 (X)R3 (y)三 R3(z)mod n3 for some z. 

Then 

R2(X)R2(Y)三 R2(z)mod n2. 

Hence， from Lemma 1， x， Y satisfies xy =αn + n -a with someα(0 <α< n). 
Therefore 

R3 (X)R3 (y) = (αη+n一α)(η2+n+1)2三 (αn+ηー α)(3n2+ 2n + 1) 
三 (n一α+1)η2 + (n一α)n+nーα
三 (n-α+1) 0 (n一α)0 (n一α)mod n3. 

We see that (n-α+ 1) 0 (n一α)o(n一α)-# z 0 z 0 z， which completes the proof. 

From this lemma and the relations of Rk and Rk+l described as above， we 
see 

Rk(X)Rk(Y) t'-Rk(z) mod nk for any k三3.

Thus we have shown: 

Theorem 3. 

Rk(X)Rk(Y)手Rk(z)mod nk， for αny k三3.

Remark 1. If we use the RSA signature with the redundancy function 
R3ヲittakes about 27 times to generate and verify this signature compared to 
the usual signature. But we think this RSA signature is of interest， because， 
from this theorem， the multiplicative attack can no longer be applied to this 
signature. 

2. On the structure of K(n) and H 

In this section， we shall consider the arithmetic prope此iesof K(n)加 dH
more precisely. Though we don't use this property later， we think it is worth 
for studying the structure of H here. Firstly， we shall consider the special c出 e
n = 2r. Here we shall give a table of the numbers K(2r) for small r. 
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T (2r - 1):t K(2r) 
2 9 。
3 49 3 

4 225 4 

5 961 25 

6 3969 30 
7 16129 119 
8 65025 120 

9 261121 423 

10 1046529 590 
11 4190209 1925 

12 16769025 1716 
13 67092481 8177 

14 268402689 10570 
15 1073676289 26985 
16 4294836225 32752 

17 17179607041 131053 

Table 1: Calculations of the number K(2r) using UBASIC86 

From this table， we see r1K(2つforsmall r. Actually， we c組 showK(2r) 
has the following property. 
We shall define the mapsσ 叩 dσ-1on K(2r) by putting 

σ= f x ~:~ ~_" ~:_~，x ~ 2r~~__ 1! 
-1 x←-+ 2(x -2rc-1) + 1 (2r-1三z三2r- 1) 

r y~ ~ (ド 2いモN)
σ1 = ~ 
I y~ザ +2r-1 (ν= 2k+間 N)

Since 

σ(x)σ-1(:ν)=均，

we can define a m叩 don K(2r)， by putting 

δ: (x，y)←→(σ(x)， (J-1(y)). 
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Example of δfor the case r = 6. 

σ 
(000101，100110)→(001010，010011) 
a/" ""a 

(100010，001101) (010100，101001) 
a，¥ a /a  
(010001，011010)←(101000，110100) 

In [8]， the first author proved this map has the order r using only the 
elementary argument， i.e.， he proved that，.for any 0 < d(1) < d(2)三円

。d(り((x，y))-1-δd(2)((X，y)) 
and 

ar((x，y)) = (x，y). 

In this paper， we shall give another proof based on the structure of the 
group G. From the definition， we see that， for加 yn = 2r， 

H = {x mod n(= 2r)l1三 x< n and xJn} = {1，2，4ぃ.，2r-lmod 2r}. 

Thus H is the subgroup (2) of G = (ZjnZ)X for this c剖 en = 2r • We can 
verify the map a on K(2r) is nothing but dividing the set G -H into the cossets 
of H in G. Since IHI(= the order of 2 mod 2r) = r， we have shown rIK(2r). 
Let f be a prime. Consider the case n = fr. Then， in the same way as 
above， we see H = (f) < G and IHI (= the order of f mod fT) = r阻 drIK(fr). 
Conversely， we shall show that H < G implies n = fr for some prime 
f. Assume H < G. Let f be the smallest prime which divides n. From the 
condition fln， we see f mod nεH. The assumption H < G implies加 ypowers 
of f mod n must be contained in H. If n is not the power of primes， then there 
exist r > 0 with fTln but fr+l A n and fr+l <η. Thus r+1 mod n ~ H， which 
is the contradiction. 

Therefore we have shown the following theorem. 

Theorem 4. lt句ththe abave notαtion， 

H<G牛=今 n= r with some prime f. 
Moreover，ω巴hαverIK(fr). 

3. Other redundancy functions 

In the following， we shall investigate other redundancy functions. Let t be a 
fixed non-negative integer. We define a redundancy function R(tol) by putting 
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R(tol) :{0， 1 ，...， n-1} → {O， I ， --vd-1} ， ω ト~ R(tol) (ω) = t.ωoω. 

Here we denote twn +ωmod n2 by tωoω. We shall call 

(x， y) has the (t 01) structure， if 

R(tol) (x )R(tol) (y)三 R(凶 )(z)mod n2 for some z (0 < z <η). 

Let K(tol) (n) be the number of the elements (x， y) which have the (t 0 1) 
structure. Let us denote xy =αn + b with 0壬α，b < n， then we see 

R(tol) (x )R(tOl) (υ)三 (αn+ b)(2tn + 1)三 (α 十2tb)n十bmod n 2 • 

Thus 

(x， y) has the (t 0 1) structure牛=今α+tb三omod n. 
Since 0 <α，b < n， we see 

α+ tb三 Omodn牛=争α+tb=η，2n，・..，tη. 

Thus we can estimate 

K(tol)(n)三tn

and 
log(K(tol) (n)) 

limsup '~'f ¥wA'，¥';' :::; ~ for any fixed t. 
n→∞ log(n -1)2 -= 2 

We note that the redundancy function R2 investigated in Section 1 is the special 
case R(lol)・Ingeneral， we have the following weak but generalized results. 

Theorem 5. l:t弓ththe αbove notation，ωe hαM 

limsm log(K(叫 )(n))<1 
n→∞y log(n -1)2 -= 2' 

In [8]， the first author investigated the c加 est = 2 and 3 more precisely and' 
conjectured that， for組 yodd n， 

-m log(K(削)(η))ニ 1fbr the C節回 t= 2 and 3. 
n→∞ log(n -1)2 2 

In the later， we shall investigate these results more precisely. 
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Next， we shall consider the case t = -1. Since we de五nedR(t01) only for 
non-negative t， we shall modify the defini~ion of the map R(-101) as follows 

R( -101) : {1γ.. ，n -1}→{If-vn2-1}，ω叶 R(ー101)(ω) = (n-ω) 0ω. 

We call (x，y) has the (-101) structure， if 

((n -x) 0 x)((n -y) 0 y)三 (n-z) 0 z mod n2 for some z (0 < z <η). 

We have 

((n -x) 0 x)((η - y) 0 y)三勾(-2n+ 1)三 (α-2b)n十bmod n 2 • 

Combining this congruence relation and the condition 0三α，b< n， we see that 
(x， y) has the (-101) structure if and only if 

α-b三 Omodn牛=争 α=b. 

Therefore we have 

K(ー101)(n)= #{(x，y)lxy =α(n + 1) (1三α<.n)}.

Put d = (x， n + 1). Then 1 < d < n + 1 and， for組 yd， x， y can be written 
x = dxo and y = ((n + l)jd)yo with unique Xo and抑， which satisfy 

(xo， (n + l)jd) = 1組 d0 <抑 <d.

Thus we have 

{..， n+1 { n+1¥ _，¥ 
K(一川(n) = 2二 ( #{xo 11三Xoくすーや0，1.; '-) = 1} ) 

x (#{YoI1三yo< d}) 

=ぶパザ)(d -1)一
"""' {n+1¥. """' (n+1¥ 

= )， rp I -，-I a - )， ψl一一了一 I-n
dl(n+1) 、ノ dl(n+1) 、ノ

= (ψ* i)(n + 1) -2n -1. 

Here i is the arithmetic function such that i(k) = k for組 ynatural number k， 
and * is the convolution of the arithrnetic functions ψand i. Using the obvious 
relation ψ(x)y :S xy， we c組 roughlyestimate 

K(一川(n) 三 玄 ψ(n+ 1) -2n-1 
dl(n+1) 

= d(η+ 1)ψ(η+ 1) -2n-1 

< 2¥1信芋τ(n+ 1) -2η-1. 
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Hence we c加 easilyshow the following theorem. 

Theorem 6. With theαbove notation，ωe hαve 

。d-
d
t

<一
η

一2
竹
り
一

2
1

ト一

η

K
一州

F
D
で
E
1

0

一時∞
配

日

Next， ，we shall investigate the case t = O. In the same way as above， we 
denote 

K(OOl)(N) = #{(x，y) I (Oox)(Ooy)三 (00z)}. 

Writing xy = an + b with 0壬α，b< n， we see (x， y) has the (001) structure if 
and only ifα= O. Thus we see 

K(Ool)(n) = #{xlxy = b (1壬b< n)} 

= L d(b) 
1くb<n

= nlogn + (2γ-l)n + O(ゾ五).

Here γis the Euler's constαηt defined by 

戸 lim(1 + ~ + . . . + ~ -log n) 
n-→C泊~ 'fι 

R : x I-t 0 0 x mod n. 

Therefore we have the following consequence: 

Theorem 7. 
1:ー logK(Ool)(η) 1 
-…-n→';;0 log(n -1)2 -2' 

Remark 2. Let (n， e) be the public key system of Alice. Then Alice can 
divide the plain text into x with x :s J五.Then Alice can define the redundancy 
function R of usual bit length by putting 

Thus， substituting n toゾ石inTheorem 7， we can estimate the security of this 
redundancy function R from the multiplicative attack. 

Finally， we will study the redundancy function K(制 )(η)again. Write xy = 
αn + b with 0 <α， b < n. Then we know th抗 (x，y) has the (201) structure if 
and only ifα+ 2b = n or 2n. In the following， we shall estimate K(201)(n) as 
follows. 
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(I) Firstly， we shall treat the caseα+ 2b = n. Then we have 

(2x) (2y) = 4(αη+ b) 

= 4αn+2(n一α)

= 2(2n -1)α+ (2n -1) + 1 

= 1 mod (2n-1). 

We note that 0 < 2η-1 -2x ， 2n -1 -2y < 2n -1 and 

(2n -1-2x)(2n -1 -2y)三 1mod (2n -1). 

Since 2x is even and 2n -1 -2x is odd， we see the number of even numbers 
o < 2x < 2n -1 with (2x，2n -1) = 1 equals to the number of odd numbers 
o < 2y + 1 < 2n + 1 with (2y + 1，2η+ 1) = 1. Thus the number of (x，y) with 
(2x) (2y)三 1mod (2n -1) satisfies 

ψ(2n -1) 
#{(川)I (2x)(2y)三 1mod (2n -1)}三一 2

(II) Next， we shall treat the c部 eα+2b = 2n. Then we have 

2xy 2(αn+b) 

- 2αn+(2n一α)

= (2n -1)α+ (2η1) + 1 
== 1 mod (2n -1). 

Thus， in the s釧 eway as in (I)， the number of the pairs (x， y) with 2x戸
1 mod (2n -1) satisfies 

ψ(2n -1) 
#{(x，y) I (2x)ν三 1mod (2n -1)}三一-T一・

Thus we have shown K(201)(n) ~ψ(2n -1) and proved the following thecト
rem. 

Theorem 8. 

K(201) (η)三ψ(2n-1) ~ 2(n -1) for αny n三2.

Moreover， for any 0 < x < n， we may expect the inverse of 2x mod (2n -1) 
distributes uniformly in the interval 0 and 2n -1. Thus we will give the 
following conjecture: 
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1;~ K(201)(n) _ 1 
…一一
叫ヤ ψ(2n -1) 2 

Here we will give a table of the numbers K(201)(n) (n = 2r) for small r 
which suppo凶sthis conjecture. 

n= 2r ψ(2n -1) ψ(2η-1)/2 K(201)(n) 
2 6 3 3 

3 8 4 4 

4 30 15 17 

5 36 15 14 
6 126 63 75 
7 128 64 66 
8 432 216 213 
9 600 300 286 

10 1936 968 999 
11 1728 864 924 
12 8190 4095 4093 

13 10584 5292 5294 
14 27000 13500 13699 
15 32768 16384 16262 

16 131070 65535 65661 

Table 2: Calculations of K(201) (2r) using UBASIC86 

Remark 3. In [8]， we have shown that K(3ol)(n) satisfies the a阻n凶1al蜘10略go叩u
results as above and formulated similar c∞on吋je町ct加ur問efor a加nyodd η. 

4. Numerical data 

In the following， we shall give the numerical data to generate and verify the 
signature with the redundancy function R2・Weused a text m of the bit length 
7.39KB組 dused the Timing of Mathematica 4.1. In. the following "Normal" 
is the time(second) which took to generate and verify the signature S of the 
text m. "Redundancy" is the time(second) which took to generate and verify 
the sigr凶 ureof the text ml = R2(m). Le七(n，e) be the RSA signature system 
with ed三 1mod ψ(η2). Then We know the complexity to sign the normal 
text m is O((10gn)2 .logd)， while the complexity to sign the text with R2 is 
O((log(n2))2 .logd). Thus we c組 expectthe time to generate and verify the 
signature with the redundancy function R2 takes about 4 ，-v 8 times as出e
usual one. In practice， it took about 2 ，-v 3 times as follows. 
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The bit length Generation Verification 
of p and q Normal Rβdundancy Normal Redundancy 
106 0.312(sec.) 0.516 0.313(sec.) 0.469 
212 0.531 1.219 0.562 1.266 
318 0.781 2.172 0.781 2.156 
425 1.156 3.359 1.172 3.328 

Table 3: Practical time to generate組 dveriちT，using Mathematica 4.1 
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