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Abstract

In his master thesis [8], the first author has studied the RSA
signatures with several types of redundancy functions. In this pa-
per, we shall introduce these redundancy functions and investigate
arithmetic properties of these redundancy functions and the signa-
tures with these redundancy functions.
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Introduction

The purpose of this paper is to generalize the digital signatures with redun-
dancy functions introduced in [8] and investigate arithmetic properties of these
redundancy functions and the signatures with these redundancy functions.

Firstly, we briefly describe the RSA signature scheme. Let n be the product
of randomly chosen distinct large primes p and gq. Then the message space
and the cipher text space for the RSA public-key encryption scheme are both
Z [nZ: The RSA signature scheme can be created by reversing the roles of the
encryption and the decryption as follows.

We denote Alice’s public key and secret key by e and d, respectively. Note
that the public key and the secret key satisfy ed = 1 mod ¢(n). Here ¢ is the
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Euler’s ¢ function and satisfies |(Z /nZ)*| = ¢(n).
Alice can sign any message m € (Z/nZ)* by applying her secret key d

s=m? e (Z/nZ)*.

Bob can check the signature by applying Alice’s public key e, i.e.,

s¢ = m? = m mod n.

We will explain the reason why this is a signature. By raising the randomly
looking number to the power e, one may recover the plain text m. Hence s
can be considered to the eth root of m and computing eth roots of an integer
m mod n without the knowledge of d is infeasible. Since Alice is the only one
who knows d, Bob can verify that Alice must have computed s and thereby
signed m. We note that any one who knows Alice’s Public key (n,e) can also
verify this signature s.

Though the original idea of the RSA signature is the one described as above,
there are a number of possible attacks. We explain here some of those attacks.

Firstly, we shall explain the ezistential forgery. Oscar chooses s € (Z /nZ)*
and claims that s is a RSA signature of Alice. If m = s mod n is a meaningful
text, one believes that Alice has signed m. This is called an ezistential forgery.

Another attack comes from the fact RSA is multiplicative. Let m;,ms €
(Z[nZ)* and their signatures are s; = m¢ mod n and sy = mg mod n. Put
m = mims mod n. Then

5 = 5185 = mémd = (mymy)? = m?¢ mod n.

Thus s is the signature of the message m. This is called a multiplicative attack.
There are two known methods to protect from these attacks. The first one is
to use the hash function h and the second one is to use the redundancy function

R:Z/nZ — Z/nZ.

In order to protect from the multiplicative attack, it is important that the
redundancy function R is not multiplicative. Moreover it should be expected
R satisfies the following property.

For any z,y € Z/nZ,

R(x)R(y) # R(z) mod n for any z € Z/nZ.

In [1] 11.2.5, a redundancy function based on the binary expansion of z (0 <
z < n) was proposed. It seems that two attacks described above no longer
work for the signature with this redundancy function, but we could not verify
it mathematically.

Thus, instead of these usual redundancy functions R : Z/nZ — Z[nZ,
the first author introduced other redundancy functions

R:Z[nZ — Z/n*Z
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and studied the security of the signatures with these new redundancy functions.
In the following, we shall introduce these redundancy functions and study the
arithmetic properties of these redundancy functions.

1. Redundancy functions R; and arithmetical
properties

In the following, we shall introduce several redundancy functions and inves-
tigate the fundamental properties of these redundancy functions.
Let k be any fixed natural number > 2. - We shall introduce a redundancy

function Ry : {0,1,---,n — 1} = {0,1,---,n* — 1} by putting
k
—
Ri:ww— Ri(w)=wowo---ow.

Here, for any 0 < w < n, we denote wn*~! +wn*~2 + ... + w mod n* by
wowo---ow.

In the following, we shall consider the conditions of (z,y) when R (z)Ri(y) =
Ry, (z) for some z. Firstly, we shall show it is rare to occur Ra(z)Ra(y) = Ra(2).
Finally, we shall show that Ry(z)Ri(y) Z Ri(z) for any k > 3.

Consider the case when n is any natural number and k = 2. It is obvious
that (0o 0)(zoz) =000 for any z € Z/nZ. Thus, in the following, we shall
restrict ourselves to non-trivial cases 0 < z,y < n.

We call

(z,y) (1< =z,y<n) has the double structure
if
2

(zoz)(yoy) =202 modn® for some 2.

Then we have the following fundamental lemma.
Lemma 1. (z,y) has the double structure if and only if

z-y=an+n—a, with somea (0<a<n).

Proof. Put z - y=an+b (0<a,b<n). Then we have

(zn+z)(yn+y) = zy(n®>+2n+1)

(an +b)(n? +2n +1)
(an + b)(2n + 1) mod n®
(a+2b)n+b mod n’.

i
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Then

(z,y) has the double structure <= a+2b=b modn
< a+b=0 modn.

Since 0 < a + b < 2n — 2, we have
n|(a+bd) <= a+b=n.
Thus we have shown

(z,y) has the double structure <= a+b=n.

Thus we have completed the proof.

Let G be the multiplicative group of residues modulo n — 1, i.e.,
(Z/(n —1)Z)*. If any z with 1 < z < n satisfies z|n, then we see that
z-(n/z) =n =1 mod (n—1). Hence we can define a subset H of G by putting

H={zmodn|1l<z<n with z|n}.

We note that |G| = ¢(n—1) and |H| = d(n)—1, where ¢ is the Euler’s function
and d is the divisor function.

Lemma 2. (z,y) has the double structure if and only if

z fnand y=2z"! mod (n—1).

Proof. From Lemma 1, we know that (z,y) has the double structure if and
onlyifzy =an+n—-awith0<a<n Weseean+n—a =a(n—1)+
n = 1 mod (n — 1). Thus we know if (z,y) has the double structure, then
y =z~ mod (n — 1). Moreover a # 0 implies z { n.

Conversely, assume z € G—H and put y = 7! mod (n—1) with 0 < y < n.
Then one can write

zy=bn—1)+1=m—-b+1=(b—-1)n+n—(b—1) withsome0<b<n.

From the assumption z ¢ H, we see £ [ n, i.e., we have b # 0,1. Thus we have
0 < b—1 < n, which means that (z,y) has the double structure. Hence we

have shown
(z,y) has the double structure
< 2z€G-H andy=z""'mod (n—1)
< <z )fnand y=z! mod (n-1).

Let K(n) be the number of the pairs (z,y) with 0 < z,y < n which have the
double structure. Then, from the above lemmas, K(n) equals to the number of
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the elements contained in the set G — H. Hence we have shown the following
theorem.

Theorem 1.
K(n)=¢(n—1)—d(n) +1.

We note that we can estimate the security of the RSA signature with the
redundancy function Ry from the multiplicative attack by estimating the ratio
of the following numbers:

the number of the pairs (z,y) which has the double structure  K(n)
the number of all the pairs (z, ) T (n-1)2"

In the following, we shall show

(n—1)?

—» 0, asn — oo.

More precisely, we shall show

log(K (n))

1 .
log(n—l)_) , asm — 00

°

Firstly, we have to estimate ¢(n — 1). It is obvious that for any n > 2,
¢(n —1) < n — 1. Moreover one can easily show the following:

Lemma 3. (Hatalova and T. Salst [3]) For any n > 4,

log2 O 1
2 log(n — 1)

<pn—1)<n-1

Proposition 1. K(n) satisfies the following inequality

K(n) W —2v/n

E‘llog(fs —1)
n — 1)log2

Proof. Firstly we note the smaller one of the divisor a of n must satisfies
the inequality a < y/n. Thus we know

d(n) —1<2yn.

(n—1)log2

o= 1) > 2v/n  (n > 11688).

Next, we shall show
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We define a function f(n) by putting
_(n—1)log2
fn) = 4log(n — 1)

_ (n—1)log2 —8y/nlog(n — 1)
- 4log(n — 1) )

2vn

Put
g(n) = (n —1)log2 — 8y/nlog(n — 1).

Then

/ _ 4log(n—1) 8y/n
g(n) = log2 Jn —1

— log2>0 (n— o0).

Now we can easily verify f(11687) = —0.00553- - -, £(11688) = 0.00173-- - and
f'(n) > 0 for n > 11688. Thus we have completed the proof.

From this proposition, for any n > 11688, we have
log(K (n)) > log(n — 1) — loglog(n — 1) + loglog 2 — log 4.

Since it is obvious that log(K(n)) < log(n — 1), we have shown the security of
the RSA signatures with this redundancy function Ry against the multiplicative
attack as follows.

Theorem 2.
log K (n) 1

oo log(n — 12 2°
Finally we shall consider the cases k > 2. Assume 0 < z,y < n satisfies
Riy1(2)Rey1(y) = Riy1(2) mod nF*! for some z (0 < z < n).
Then, from the fact Ri41(z) = Ri(z) mod nF, (z,y) also satisfies
Ry (z)Ri(y) = Ri(z) mod n*.
Now we shall show the following lemma.
Lemma 4. For any 0 < z,y,z < n, we have

Rs(z)R3(y) # Rs(z) mod n3.
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Proof. Assume, on thé contrary
R3(z)R3(y) = R3(2) mod n® for some z.

Then

Ry(z)R3(y) = Ra(2) mod n?.
Hence, from Lemma 1, z,y satisfies zy = an +n — a with some a (0 < a < n).
Therefore

R3(z)R3(y) (an+n—a)n?+n+1)2=(an+n—a)(3n?+2n+1)
(n—a+)n’+(n—-an+n—a

(n—a+1)o(n—a)o(n—a) mod nd.

mene

We see that (n —a+1)o(n—a)o(n—a) # zozoz, which completes the proof.

From this lemma and the relations of R}, an‘d Ry described as above, we
see .
Ry (z)Ri(y) # Ri(2) mod n* for any k > 3.

Thus we have shown:

Theorem 3.

Ry (z)Ri(y) Z Ri(2) mod n*, for any k > 3.

Remark 1. If we use the RSA signature with the redundancy function
Rg3, it takes about 27 times to generate and verify this signature compared to
the usual signature. But we think this RSA signature is of interest, because,
from this theorem, the multiplicative attack can no longer be applied to this
signature.

2. On the structure of K(n) and H

In this section, we shall consider the arithmetic properties of K(n) and H
more precisely. Though we don’t use this property later, we think it is worth
for studying the structure of H here. Firstly, we shall consider the special case
n = 2". Here we shall give a table of the numbers K (2") for small r.
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R K@)
2 9 0
3 19 3
4 225 4
5 961 25
6 3969 30
7 16129 119
8 65025 120
9 261121 423

‘ 10 1046529 590
11 4190209 1925
12| 16769025 1716
13| 67002481 8177
14 | 268402680 | 10570
15 | 1073676280 | 26985
16 | 4294836225 | 32752
17 | 17179607041 | 131053

Table 1: Calculations of the number K (2") using UBASIC86

From this table, we see r|K(2") for small r. Actually, we can show K(2")
has the following property.
We shall define the maps ¢ and 0! on K(27) by putting

[z 2z 1<z<2r1-1)
“lz—2z—-2"1)+1 (2 1<z<2 —1)
y»—)% (y=2k,keN)

-1
;yHy—2—+2r-l (y=2k+1,k€N)

Since
a(z)o " (y) = zy,
we can define a map & on K (27), by putting

G : (z,y) — (0(z),07(¥))-
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Example of 6 for the case r = 6.

o
(000101,100110) — (001010, 010011)
&, G
(100010, 001101) (010100, 101001)
2N & G

(010001,011010) + (101000, 110100)

In [8], the first author proved this map has the order r using only the
elementary argument, i.e., he proved that,.for any 0 < d(1) < d(2) <,

&0 ((z,y)) # P ((2,y))

and
&r((x: y)) = (.’L‘, y)-
In this paper, we shall give another proof based on the structure of the
group G. From the definition, we see that, for any n = 27,

H = {z mod n(=2")|1 <z <n and z|n} = {1,2,4,...,2"* mod 2"}

Thus H is the subgroup (2) of G = (Z/nZ)* for this case n = 27. We can
verify the map & on K (2") is nothing but dividing the set G — H into the cossets
of H in G. Since |H|(= the order of 2 mod 2") = r, we have shown r|K(2").

Let £ be a prime. Consider the case n = ¢". Then, in the same way as
above, we see H = (£) < G and |H|(= the order of £ mod £") = r and r|K (¢£").

Conversely, we shall show that H < G implies n = £” for some prime
£. Assume H < G. Let £ be the smallest prime which divides n. From the
condition £|n, we see £ mod n € H. The assumption H < G implies any powers
of £ mod n must be contained in H. If n is not the power of primes, then there
exist 7 > 0 with £"|n but ¢! fn and ¢! < n. Thus £"+! mod n ¢ H, which
is the contradiction.

Therefore we have shown the following theorem.

Theorem 4. With the above notation, .
H < G < n =" with some prime £.

Moreover, we have r|K(£).

3. Other redundancy functions

In the following, we shall investigate other redundancy functions. Let ¢ be a
fixed non-negative integer. We define a redundancy function R;.1) by putting
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Rio1) : {0,1,---,n =1} > {0,1,---,n* =1} , w = Rgo1)(w) = t-wow.
Here we denote tﬁm + w mod n? by tw o w. We shall call
(z,y) has the (to 1) structure, if

Ryt01) (%) R101)(y) = Rto1)(2) mod n? for some z (0 < z < n).

Let K(;01)(n) be the number of the elements (x,y) which have the (t o 1)
structure. Let us denote zy = an + b with 0 < a,b < n, then we see

Rt01)(2) R(t01) (¥) = (an +b)(2tn + 1) = (a + 2tb)n + b mod n?.

Thus
(z,y) has the (t o 1) structure <= a + tb = 0 mod n.

Since 0 < a,b < n, we see
a+tb=0modn <= a+th=n,2n,...,tn.

Thus we can estimate
K(to1)(n) < tn

. log(K (so1) (1))

: O8£S (£01) (T 1

h,?i,solip —W S "2- for any fixed ¢.
We note that the redundancy function R, investigated in Section 1 is the special
case R(101)- In general, we have the following weak but generalized results.

Theorem 5. With the above notation, we have

. log(K(t01)(n))
imsup ———————=—

1
< —
nooo log(n—1)2 — 2’

In [8], the first author investigated the cases ¢t = 2 and 3 more precisely and’

conjectured that, for any odd n,

log(K 4o
lim le for the cases t = 2 and 3.

n—oo log(n — 1)2 2

In the later, we shall investigate these results more precisely.
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Next, we shall consider the case t = —1. Since we defined Ry:.1) only for
non-negative ¢, we shall modify the definition of the map R(_;o1) as follows

Ri_iony : {1,---,n—1} = {1,---,n* -1} , we R(_1o1)(w) = (n —w) ow.
We call (z,y) has the (=10 1) structure, if
(n—z)ox)((n—y)oy) = (n—2)o0zmodn?® for some z (0 < z < n).
We have
(n—z)oz)((n—y)oy) =zy(~2n+1) = (a — 2b)n + b mod n’.

Combining this congruence relation and the condition 0 < a,b < n, we see that
(z,y) has the (—1 o 1) structure if and only if

a—b=0modn<=a=0>».
Therefore we have
K(—lol)(n) =#{(z,y)lrzy=a(n +1) 1 <a<n)}.

Put d = (z,n+1). Then 1 < d < n+ 1 and, for any d, =,y can be written
z =dzo and y = ((n + 1)/d)yo with unique zo and yo, which satisfy

(zo,(n+1)/d) =1and 0<yo <d.
Thus we have

K(_101)(n) = z (#{xo |1<zp< ?;—1, (zo, n—}l) = 1})

d|(n+1), 1<d<n+1
x (#{yo|1 < yo < d})

= Z @(n—g—l)(d—l)—n

d|(n+1)
n+1 n+1
- D) )
d|(n+1) d|(n+1)

= (e*i)(n+1)—2n-1

Here 7 is the arithmetic function such that ¢(k) = k for any natural number k,
and * is the convolution of the arithmetic functions ¢ and 7. Using the obvious
relation ¢(z)y < zy, we can roughly estimate

K iopm) < > pn+1)—2n-1
d|(n+1)
dn+1)pn+1)—2n-1

2vn+1(n+1)—2n—1.

IN



18 Hiroharu Yasui and Shin-ichi Katayama

Hence we can easily show the following theorem.

Theorem 6. With the above notation, we have

i Iog(K(—lol)(n))
im sup

3
A i Gl A L
nosoo log(n—1)2 — 4

Next, we shall investigate the case ¢t = 0. In the same way as above, we
denote
Koo1)(N) = #{(z,y) | (00z)(00y) = (002)}.

Writing zy = an + b with 0 < a,b < n, we see (z,y) has the (0o 1) structure if
and only if a = 0. Thus we see

Koy (n) = #{zlzy=0b(1<b<n)}
= Y db)
1<b<n
= nlogn + (2y — 1)n+ O(v/n).

Here «y is the Fuler’s constant defined by

. 1 1
'y—nli)ngo(l-i-§+---+;—logn).

Therefore we have the following consequence:

Theorem 7.
i log K(go1y(n) 1
im ————— = —.
n—0co log(n - 1)2 2

Remark 2. Let (n,e) be the public key system of Alice. Then Alice can
divide the plain text into z with z < y/n. Then Alice can define the redundancy
function R of usual bit length by putting

R:z+— 0oz modn.

Thus, substituting n to v/n in Theorem 7, we can estimate the security of this
redundancy function R from the multiplicative attack.

Finally, we will study the redundancy function K(3.1)(n) again. Write zy =
an + b with 0 < a,b < n. Then we know that (z,y) has the (2 o 1) structure if
and only if a+ 2b = n or 2n. In the following, we shall estimate K(3,1)(n) as
follows.
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(I) Firstly, we shall treat the case a + 2b = n. Then we have

(2z)(2y) = 4(an+b)

= 4dan+2(n—a)
= 22n-1a+(2n—-1)+1
= 1mod (2n—1).

Wenotethat 0<2n—1—-2z, 2n—1—-2y < 2n—1 and
2n—-1-2z)(2n—1-2y) =1 mod (2n —1).

Since 2z is even and 2n — 1 — 2z is odd, we see the number of even numbers
0 < 2z < 2n — 1 with (2z,2n — 1) = 1 equals to the number of odd numbers
0<2y+1<2n+1with (2y+1,2n+ 1) = 1. Thus the number of (z,y) with
(22)(2y) = 1 mod (2n — 1) satisfies

#{(z,) | (22)(2y) =1 mod (2n — 1)} < _@%—_12.

(IT) Next, we shall treat the case a + 2b = 2n. Then we have

2(an +b)

2an + (2n — a)
2n—-1a+(2n-1)+1
1 mod (2n — 1).

Il

2zy

Il

Il

Thus, in the same way as in (I), the number of the pairs (z,y) with 2zy =
1 mod (2n — 1) satisfies

#{(z,y) | 2x)y=1mod 2n—1)} < ‘P(znT"l)

Thus we have shown K(301)(n) < ¢(2n — 1) and proved the following theo-
rem.

Theorem 8.

K201y (n) < 9(2n — 1) < 2(n — 1) for anyn > 2.

Moreover, for any 0 < z < n, we may expect the inverse of 2z mod (2n—1)
distributes uniformly in the interval 0 and 2n — 1. Thus we will give the
following conjecture:
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Conjecture.
li K(201) (TL) 1
im ———~ =—.
n—oo (2n — 1) 2

Here we will give a table of the numbers K(s0)(n) (n = 27) for small r
which supports this conjecture.

n=2" | p(2n—1) | p(2n—1)/2 | K20.1)(n)

2 6 3 3

3 8 4 4

4 30 15 17

5 36 15 14

6 126 63 75

7 128 64 66

8 432 216 213
9 600 300 286
10 1936 968 999
11 1728 864 924
12 8190 4095 4093
13 10584 5292 5294
14 27000 13500 13699
15 32768 16384 16262
16 131070 65535 65661

Table 2: Calculations of K(2,1)(2") using UBASIC86

Remark 3. In [8], we have shown that K(s.1)(n) satisfies the analogous
results as above and formulated similar conjecture for any odd n.

4. Numerical data

In the following, we shall give the numerical data to generate and verify the
signature with the redundancy function Rs. We used a text m of the bit length
7.39KB and used the Timing of Mathematica 4.1. In the following ”Normal”
is the time(second) which took to generate and verify the signature s of the
text m. "Redundancy” is the time(second) which took to generate and verify
the signature of the text m; = Ry(m). Let (n,e) be the RSA signature system
with ed = 1 mod ¢(n?). Then We know the complexity to sign the normal
text m is O((logn)? - logd), while the complexity to sign the text with R, is
O((log(n?))? - log d). Thus we can expect the time to generate and verify the
signature with the redundancy function Ry takes about 4 ~ 8 times as the
usual one. In practice, it took about 2 ~ 3 times as follows.
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The bit length Generation Verification

of pand ¢ Normal Redundancy Normal Redundancy
106 0.312(sec.) 0.516 0.313(sec.) 0.469
212 0.531 1.219 0.562 1.266
318 0.781 2.172 0.781 2.156
425 1.156 3.359 1.172 3.328

Table 3: Practical time to generate and verify, using Mathematica 4.1
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