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Abstract

We give a geometrical formulation for the classical mechanics in a non-
abelian gauge field on a Riemannian manifold. The formulation is based
on the reduction procedure associated to the non-abelian symmetry in
the principal bundle which describes the gauge field. In the formulation
we present explicitly the equation of the motion (called Wong’s equation)
of a charged particle by using a local coordinate system.
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Introduction

Let (M,m) be an n dimensional smooth Riemannian manifold without bound-
ary, and let 7 : P — M be a principal G-bundle, where G is a compact Lie
group with g its Lie algebra. Suppose P is endowed with a connection V. Take
an open covering {Uy} of M with {¢,3} being the transition functions of P.
Then the curvature of V is regarded as a family of g-valued two forms O,
defined on U, which satisfies

0p = Ad(¢,5)Oa (0.1)

on Uy NUg(# ¢), where Ad(-) denotes the adjoint action of G on g. Such a
family of g-valued two forms {0, } on M satisfying (0.1) is called a gauge field.
When G is the abelian group U(1), ©, = ©4 holds, and accordingly we have
a two-form © globally defined on M, Wthh is called a magnetic field.

In the previous papers [10], [11], [12] we have considered the case where
G = U(1), namely the classical and the quantum mechanics in magnetic fields,
and clarified some relations between the classical orbits and the energy levels
of the Schrodinger operator. In those papers the geometrical formulation for
the magnetic dynamical system based on the reduction procedure associated

*This research is partially supported by Grant-in-Aid for Scientific Research (C)
(No.14540210) of JSPS.
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to the U(1)-symmetry of the system plays key role in the investigations. In
the present article we generalize the formulation for the magnetic systems to
the case of a non-abelian compact Lie group G, which describe the motion of
a (classical) particle in a non-abelian gauge field.

Various mathematical formulations of the equation of classical motion of a
particle in the (non-abelian) gauge field (or the Yang-Mills field) have been pre-
sented by Kerner [5], Guillemin-Sternberg [3], [4], Kummer [9] and so on. (See
also Montgomery [14].) We give in this article a slightly different formulation
based on the reduction procedure for the symplectic G-action on the cotangent
bundle T* P, and present the equation of the motion (called Wong’s equation)
explicitly by using a local coordinate system.

The organization of the article is as follows. In §1 we introduce the so-called
Kaluza-Klein metric on P associated to the connection V, and the metrics on
M and G. Thus we get the Hamiltonian system (T*P,Qp, H) of geodesic flow
on T*P. Then in §2 because of the G-invariance the system (T*P,Qp, H ) is
reduced to (P,,,, H,) according to the Marsden-Weinstein reduction proce-
dure (see [13], [1]). We clarify in §3 the reduced phase space P, is the fiber
bundle over T*M with the fiber being a co-adjoint orbit through p in g*. In
§4 we show that the reduced system (P,,(,, H,) is realized as the subsystem
of (T*M#,ﬁﬂ,flﬂ), where the manifold M, is a union of the spaces of (ex-
ternal) configurations and of internal degrees of freedom, and the symplectic
structure ﬁ“ is derived explicitly from the connection form (or the gauge po-
tential) of V. Section 5 gives a explicit expression of the flow or the equation of
motion (called Wong’s equation) in the system (7*M,, ﬁ#, H ) by using local
coordinates. Finally in §6 we consider the Hopf bundle over the quaternionic
projective space, which is a typical example in non-abelian gauge theory.

1 Kaluza-Klein metric on the principal bundle

Let w : P — M be a principal G-bundle over an n-dimensional Riemannian
manifold (M, m) without boundary, where G is an r-dimensional compact Lie
group. Suppose P is endowed with a connection €7, i.e., the direct decomposi-
tion of each tangent space T, P (u € P) as

T,P=H,® V,, (1.1)

where V, is tangent to the fiber, and H, is linearly isomorphic with T} )M
through |, and satisfies

Hyg= Rg*(HU) (1-2)

for the right action R, of g € G on P (cf. [8]). Note that the tangent space
V,, to the fiber is linearly isomorphic with g by the correspondence g 3 4
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AP := 4 (y-exptA)|i=o € Vi. Let us take an inner product (, )4 on g = T.G (e
: the identity of G) which is invariant under the adjoint action of G (such inner
product induces a right- and left-invariant metric on G). Then, (, )4 induces the
inner product (, )v,, on V, (v € P) as (A¥,BF)y., = (4,B)4 (4,B € g). On
the other hand, we have the inner product (, ). on H, from the metric m on
M such that 7, |g, is an isometry. Finally, we define an inner product m in each
T.P (u € P) by defining H, and V, to be orthogonal each other. The metric
m on P (which is induced from the metric m on M, the Ad-invariant metric on
g, and the connection (1.1)) is called the Kaluza-Klein metric (cf. [5]). Note
that m is invariant under the G-action on P because of the Ad-invariance of
the metric of g and the property (1.2).

Let Q2p = dwp be the standard symplectic structure on the cotangent
bundleT™ P of P, where wp is called the canonical one form on T*P. We
have the natural Hamiltonian function H on T™*P defined by the Kaluza-Klein
metric m. Thus, we have the Hamiltonian system (T*P,Qp, H), which is just
the system of geodesic flow on TP generated by the Hamiltonian vector field
Xy induced from H, ie., i(Xz)Qp = —dH, where i(X5)Q2p stands for the
interior product of Xz and Qp.

2 The momentum map and the reduction of the
system

The action p — p-g = Ry(p) (p € P, g € G) of G on P is naturally lifted to the
action R}_; := (Ry-1)* on T*P (so that R}_, : TP — T P for each p € P),
and the action R;_, preserves wp (and accordingly p), ie., R, wp = wp
holds for every g € G. (We call such action a symplectic action.) Moreover, we
notice that the Hamiltonian H is also invariant under the action R;_l.

A momentum map for the symplectic G-action is a map J : T*P — g*
satisfying

(J(P),A) = (pu, AD) = i(ATP)wp (peT*P,p, € T;P (v€ P)), (21)
for all A € g, where AT'F := £4( ;(t)_l(p))[t=0 with g(t) = exp tA.

Lemma 2.1 (1) The momentum map J is surjective onto g*, and every u € g*
is a regular value of J.
(2) The momentum map J is Ad*-equivariant, i.e.,

JoR!_, =Ad*(g7)oJ (2.2)

holds for g € G. Here we define Ad*(g) := (Ad(g™))* (the adjoint of Ad(g™)

g—g)
(8) The momentum map J is invariant under the geodesic flow on T*P,

i.e., XgJ =0 holds.
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Proof. (1) Note the definition (2.1) of J, we can easily derive the assertion
from the fact that the map g 3 A — AP € T, P is surjective.
(2) For p € TXP, A € g we have
(J(B3-1(P), A) = (Ry-1(pu), AL ) = (Pu, Rg-1.(AL))-

9

Since
P d -1
Rg—l*(Au-g) = _CE(U g exp(tA)g )ltZO
d
= 5 (u-exp(tAd(g)4))le=o = [Ad(g)A]Z,
we have

(J(By-1(p)), A) = (pu, [Ad(9)AL) = (J(p), Ad(9)A) = (Ad"(g71) (), 4).

(?:) For A € g define the function J4 on T*P as Ja(p) = (J(p),A) =
i(AT"P)wp. We show X 7Ja = 0. First note that the Lie derivative £ yr+rwp =
d(i(ATP)wp) + i(ATP)dwp = 0 because G-action on T*P preserves wp. We
have

XzJa = Xg((ATP)wp) = (d(i(AT F)wp), X )
= —(i(ATF)dwp, Xg) = (i(Xz)dwp, ATF)
= —(dH,ATT) =0.

Here note that G-action also preserves H. 0O

Now, we apply the reduction procedure associated to the momentum map

~J. by Marsden and Weinstein. For g € g*, it follows from Lemma 2.1 that

J~Y(u) is a (2n +7)-dimensional submanifold of T* P, which is invariant under

the geodesic flow. Let G, := {g € G|Ad*(g)p» = p} C G, which is a closed

subgroup of G. Then, by virtue of Lemma 2.1,(2) G, preserves the submanifold

J~1(p), and the action of G, on J~!(u) is free. Hence the quotient set P, :=
J~1(p)/G, is a smooth manifold, and the natural projection

T I () = Py
is a submersion. In this situation we have the following.

Proposition 2.2 The quotient manifold P, has a uniquely defined symplectic

form Q, with
W;Q# = i;QP,

where i, : J71(u) < T*P is the inclusion.
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Sketch of the proof. Note that the following facts: For p € T*P,

() Tp(J~ (1)) = Ker(J,) = {X € T,(T*P)| Qp(X,ATF) = 0 for VA € g},
and

(i) Tp(J=H(w) /Tp(G i - p) = Tr,(p) (Pa)-
For X € T,(J7'(p)), let [X] = m,.(X) be the associated equivalence class in
Tp(J ™Y (1)) /Tp(Gp - p)- Let us define Q, on P, as

QX [Y]) = Qp(X,Y) (XY €T,(J7' (W)

Here we can easily check that 2, is well-defined by the above fact (i) and that
{1p is invariant under the G ,-action. Moreover, we can check that £, is closed
and non-degenerate. These properties are guaranteed by those of Qp. O
The Hamiltonian H is G-invariant, and accordingly induces the (Hamil-
tonian) function H, on P,. Thus, we have a reduced Hamiltonian system
(P, Qu, Hy), where dim P, = 2n+7 — 7, (7, :=dim G,).
Let O, be the coadjoint orbit of 4 in g*, i.e.,

O, :={Ad*(g)u| g € G},
which is diffeomorphic with G/G,. Then, we have the following.

Proposition 2.3 Suppose v is an element of O,. Then, the reduced Hamilto-
nian system (P,,Q,, H,) associated to v € g* is isomorphic with (P,, Qy, H,).

Proof. Suppose v = Ad*(g)u for g € G. Note that G, = G, by the
isomorphism G, 3 h + ghg™! € G,. By virtue of Lemma 2.1,(2), we have
the map R} : J~'(u) = J~(v). Then, we can easily see that R} induces the
isomorphism of (P,,,,H,) onto (P,,Q,,H,). O

3 Geometrical structure of the reduced space

We can define the surjective map & : T* P — T™ M associated to the connection
V on P as follows. Let p be a point in T*P with mp(p) =u € P,7(u) =z € M,
where 7p : T*P — P is a natural projection. For a tangent vector X € T, M,
let X# be the horizontal lift of X relative to the connection V, i.e., X# belongs
to H, in (1.1) and 7,(X#) = X. We define ®(p) € Ty M as

(@(p), X) :=(p, XF) (X €TM).
Concerning the horizontal lifts we have X, = Ry.(X#), and accordingly see
that @ is G-invariant, i.e., ®(R;-1(p)) = ®(p) as follows:
(®(Ry-1(p), X) = (Ry-1(p), X)) = (0, XF) = (2(p), X)-

By virtue of the G-invariance (hence, the G,-invariance) of ® we have the
surjective map ®, : P, — T*M induced from ®. The purpose of this subsection

is to show the following.
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Figure 1: Reduced space
Proposition 3.1 ®, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit O, of p in g*.
We have the decomposition of T'F P associated to (1.1):
T:P=H' oV},

where

HF {p e TP|(p,X) = 0for VX € H,},
Vi = {peT!P|(p,AF) =0forVAF € V,}.

Note that dim H = r and dimV;} = n. The following lemma is easily ob-
tained.

Lemma 3.2 (1) The map Jy := J|gs : HE — g* is a linear isomorphism.
(2) Forv € g* let p, = J;'(v) € HL. Then,

J_l(l/) NT,P=p, + Vu‘L ={p, +p"|p* € VuJ‘}.

(3) The map @y, = By, 4vr : JT'H (W) NT;P — T; M is a bijection with
®,.(p) =0.
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Proof. (1)It is obvious that J, is linear and surjective. Suppose J(p) = J(p')
for p, p € H. Then, (p, AF) = (p', AF) for VA € g. On the other hand,
(p,X) = (p',X) =0 for VX € H,. Hence, (p,V) = (p',V) for VV € T, P, and
accordingly p = p'

(2) is obvious.

(3) The surjectivity is obvious. Suppose ®(p) = ®(p') for p, p' € J~1(v) N
T:P. Then, (p, X#) = (p', X#) for VX € T, M. On the other hand, (p, AY) =
(p', APy = (v, A) for VA € g. Hence, (p,V) = (p',V) for VV € T,P, and
accordingly p = p' ‘ a

Let v be a point in P with n(u) = ¢ € M. We define the map ¢, of
TiM x O, to J™ (p) as

T;M x Oy 3 (g,v) = Rya(®5(0) + 5 (v) € Ty, PO T (w),

where g is an element of G satisfying v = Ad*(g)u. Here we can check by
noticing (2.2) and ®;¢(q) € V,;- that the image of ¥,, belongs to J~'(u) as

follows:
J(Ry-1(250(0) + I3 () = J(Ry - (J5' () = Ad™ (97w = .
If v = Ad*(g)p = Ad*(¢')p for g # ¢', then ¢’ = gh for some h € G,.
Therefore, we obtain the bijective map
T, : T*M x 0, — [( U 75,P)n J_l(p)]/G,,
9€G

from ,,. It is easily see that ¥, is bijective and satisfies ®, o ¥, (q,v) = q.
Thus it is shown that ®, : P, — T*M is a fiber space with the fiber being the
coadjoint orbit O,. Moreover, by taking a local section u = u(z) (z € U C M)
of P we have a local triviality of P,:

T, :T*U x 0, = &;1(T*U).

In particular, we have a local section s(q) (¢ € T*U) of the fiber space ¢, :
P, = T*M by

su(9) = Tulg, p) = [250(0) + J2 (W)]- (3.1)
associated to a local section u(z) (z € U) of P. Thus we complete the proof of
O

Proposition 3.1.

4 Dynamical structure of the reduced system

Let @ be the connection form on P of the connection V. The connection
form 6 is a g-valued one form satisfying (i) 8(AF) = A for VA € g, and (ii)
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R0 = Ad(g~1)8 for Vg € G. For p € g* we define the R-valued one form 6,

on P by
0u(X) = (n,0(X)) (X €TLP).

It is easy to see that 0, is G-invariant, ie., R;0, = 0, for Vg € G,. Let g,
be the Lie algebra of G,. Then we have

Lemma 4.1 df, (AP, X) =0 holds for any A € g, and X € T, P.
Proof. We have
d6,, (AT, X) = (i(AP)d8,)(X) = (Lar0,)(X) — d(i(AT)8,)(X) =0

because 8, is G ,-invariant and i(AF)6, = 6,(AF) = (u, A) = constant. a

Let M, := P/G, be the quotient manifold by the G,-action on P. By
noticing the above lemma the two form df,, can be regarded as that on M, as

d,([X],[Y]) :=db.(X,Y) (X,Y € TLP).
Now, we consider the cotangent bundle T* M,, with the twisted symplectic form
Oy = Qug, + iy, (d6,), (4.1)
where (1), is the canonical symplectic two form on T*M,, and mp, : T* M, —
M, is the projection.

Proposition 4.2 ([1, Theorem 4.3.3], [9, Theorem 3]) There exists a sym-

plectic embedding _
Xp ¢ (P#,Qu) — (T*M”,Q”),

that is, X, is an embedding satisfying x;, Q0 = Q.
Proof. For each u € P let
(Va)u == {p€ TiP| (p, A7) = 0for VA € g} (C T, P),

which can be identified with T;M, (¢ = 7'(u) € M, for the projection «' :
P — M,) because we have the linear isomorphism

Ry s (V)E = (V)d,

for each g € G,,. Thus we have T*M, = V,;-/G,.

Take p € T*P such that mp(p) = u € P, i.e., p € Tt P. We define x,(p) =
Pu — (8,)u € T*P. Then we can easily see that (i) x,(p) belongs to V- (and
accordingly to (V.)3) if pu € J7'(n), and (i) Xu(Rj-1(p)) = Rj-1(Xu(p))
for g € G, ie., Xu is Gu-equivariant. In fact, (i) is shown as (pu, AEY —
((8u)w, AFY = (J(p), A) — (1, A) = 0. As (ii) we have only to see the equality
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On)ug = R;_1((64)w), that is shown as (6,)u.¢(X) = R;_1((64))(X) =0 for
VX € g and (0,)ug(AD,) = R2-1((6,)0)(AR,) = (4, ) for VA € g. As a
result of (i) and (ii) X, induces the map x, : P,(= J~Y(n)/G,) = T*M,(=
V-/G,). Tt is obvious that x,, is an injection.

Now, we will show that x;Q, = Q,. Let X be a vector in T,(T*P) (p €
T*P,mp(p) = u). Then, X is expressed as

X=X+X* with X € T,P, X* € T: P(= T,(T:P)).

Here X* belongs to V;' if X € T,J (1) (Lemma 3.2,(2)). For two vector
fields X = X(p), Y =Y (p) on a neighborhood of py in J~1(u) we have

Q(XY) = 3{X(p,¥) = V{wp, X) ~ (wp,[X,Y])}
= X -V, X~ (K VD).

Put p'(= x.(p)) =p — 6., and we have

(XY) = L(X0,7)- Y0, X) - 0, K V])
+ G{X0,7) - F(6, %) - (6, T VD).

Noticing V;t C (V,.)$ we can regard X = X + X* as a vector in Ty (T*M,,),
and see that the first term is nothing but Qaz, (xu«([X]), xu+([Y])). By noticing
[X,Y] = [X,¥] we see that the second term is just
9, (a1, 0 X )« ([X1), (mag,, 0x) ([(Y]))- s

Next, we define the Riemannian metric m, on M, as follows. Put (V,), :=
Tu(G, - u) for u € P, which is a subspace of V,,. Then we have the orthogonal
decomposition

T.P=H,®Vy,=H,®(Hu)u® Vyu)u (4.2)

from (1.1) and the G-invariant metric on G, where (H,), is the orthogonal
compliment of (V,,), in V,,. By identifying T,,M,, with H, ® (H,). we obtain
the metric m, on T,,M,,.

Let H » be the Hamiltonian function on 7™M, naturally induced from the
metric m,. Then,

Lemma 4.3 H, = x;ﬁu + |lpll2., where || - |lg- is the naturally induced norm
from the inner product in g.

Proof. For p € TP N J~}(u) we have p = X, (p) + (6,). with x,.(p) € V-
and (0,). € Hi. Since V;* and H are orthogonal each other, we have

Hy([p]) = 1% @I + 10)ull* = Hu (xu([p) + 16,1
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Figure 2: Reduction procedure

Note that (6,)u(AF) = (i, A) for VA € g, and we have ||(8,)u]] = ||pllg=- O

As a consequence, we have the following (cf. Figure 2).

Proposition 4.4 The reduced Hamiltonian system (P,,Q,, H,) is regarded as
a Hamiltonian subsystem of (T'*M,,Q,,H,).

Let X, be the Hamiltonian vector field on P, associated to H,, that is,
i(X,)Q, = —dH,. The flow of X, is regarded as embedded Harmltoman ﬁow

in (T*M,, Q ,L) and represents the motion of a classical particle of “charge”

4 in the gauge field given by the connection V. The (external) configuration
space of the system is the manifold M and the fiber of M » — M is the space

of internal degrees of freedom.

5 Expressions in local coordinate systems

5.1 Basic formulas
Let {Yo} = {Y,, Y5} = {¥7,.. ! ., Y;"} be the orthonormal basis

) r yEry410
of g =m®ag, w1th {¥o} {Y5'} El)emg the basis of m and g,, respectively,
where g,, is the Lie algebra of Gu- Note that dim G, =r —ri(=r,). We have
coordinates y = (v',y") = (y'%,...,y'™,y"™ 1 ..., 4"") in a neighborhood V

of the identity (y = 0) of G by

Y= (yll,‘ . ,ylrl’yllr1+1,“ . ’yll'r‘)

> g=exp (i y'aYo't) exp ( i y"ﬁYﬁ") .
a=1

B=r1+1
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By virtue of the local triviality of the bundle P we take a local coordinate
(z%,y*) e UxV (U C M,V C Q) of P. For the basis {Y,} of g we have the
assoc1ated basis {Y.F'} of V,, which is expressed as

T

0
YS (2,y) =ﬁz=:11“§(y)w (5.1)

with T8(0) = 62. Let (2%,y%;&,m4) the local canonical coordinates of T*P
Then, the momentum map J is represented as

™

J(z,y;&m) =Y (ZFﬁ(y)nﬁ)Y“ S (5:2)

a=1 pg=1

where {Y?,...,Y"} is the dual basis of g* associated to {Y4}.
We remark that I'(y) := (I2(y)) in (5.1) is non-singular near y = 0 because
I'8(0) = 2. Let A(y) = (AX(y)) be the inverse matrix of I'(y). Then, the

following is easy to see.
Lemma 5.1 (1) If1<a <7, r, +1<k<r, then we have
L) =A5(@) =0, (5.3)

nw| o | M) | o
I(y) = , Aly) = ,
v [rm(w r2<y)J @ {Azl(y) lAz(y)}

(2) If r1 + 1 < k < r, then we have
LUy, 0) = AL(y',0) =67, e, T2(y,0)=As2(y,0)=E.  (54)

i.e.,

and

ory OA%
550 = 5o5(,0) =0, (5.5)

Let C%; be the structure constants of g with respect to the basis {Yo} =
{¥5,Y)'}, ie., [Ya,Ys] = 3, CiYi. Then, the following formulas concerning

the functions I'z(y) and Aj(y) are derived from the fact that {YFP(y)} is a
family of left-invariant vector fields on G.

Lemma 5.2

ors
Z(Pz-@i’— 3% = X2t (5.6)
Y
OA%
3y 3!/ﬂ ——ZA”’ (5.7)

Proof. The first formula is obtained from the relation [V, Y[f 1=2, C’;’ﬁYf .
The second is derived from the first by noticing AT’ = E. m
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5.2 Kaluza-Klein metric and the system of geodesic flow
on T*P

Now let us consider the connection form 6 of the connection V. Noticing
6(AF) = A for VA € g, we put

T

6=> (i=1 07 (z,y)da’ +ﬂ§ Ag(y)dy") ® Ya. (5.8)

o=1

Note that the property R;8 = Ad(g™1)8 (g € G), and we put for G > g +
(yh s 7yr)

Ad(gHY, = ZAz(y)Yﬂ (a=1,...,7). (5.9)
B=1
Then, we have the following.

Lemma 5.3 Put §%(z) := 62(z,0), and we have
02(z,y) =D A5 (@) (=1,...,ma=1...,7), (5.10)
=1

where AZ(y) satisfies
0A5

B =" ST ANCS Af with A5(0) = 45, (5.11)
and accordingly s
07 o g
e ; ABCg. 65 (5.12)

Proof. By virtue of the property:

bp-g (8_27) = Ad(g—l)ﬁp (aii)

we get (5.10). The equations (5.11) is obtained by differentiate the formula

Ad(g(t) ™Y = D AL(y(1)Ys
B=1

with respect to t for g(t) = g - exp(tY5). m|

From (5.8) we see that the horizontal space H, in T.P (u = (z,v)) is
generated by the vectors

0 o 0 .
X#(z,y) == S TA(y)6; (#¥)55 (=1
’ﬁ

ozt
o
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The Kaluza-Klein metric 7 on P is defined by
XFXH) =my, XF YD) =0, (¥F,Y]) = bap,

and is represented by

~ o 0
i = (5;’@) i+ 08,05 (o .
. d
Mia = (&U, By ) 297 z,y)AL(y), ' (5.13)
~ 0
o = (50 ay,g) ZA* (W) A} ).
)
As a consequence, we get the Hamiltonian system (T*P,Qp, H ) with
Qp =) d&Nde' + ) dna Ady®, (5.14)
H(z,y;&n) = Y mY(2)&g; — 2 m (2)0f (2, y)T5 (v)éima
+ Y T)6) (z, y)m? ()07 (=, y)T2 (y)nams (5.15)
+ Y T2 (W) nans-

The Hamiltonian flow (the geodesic flow) on T*P is governed by the canonical
equation

it =23 mig — 23 mieiTrgn,,
g = -2 mieirse + 2 Z I907m79rTEns +2)  TTEng,

Omki
g okéi T 22 B (m*02)T§&une

&=
0] 5.16
- ZP’?E—? 07m]k0;:)rﬁ77a77ﬁ’ ( ( )
= 2Zm 8 —(07T%) &imp — 2 Zm“ (T265) 07 Tmpny
-2y ayi Ty )

We can directly see that the momentum map J(z,y; &, n) is invariant under the
flow governed by this equation, i.e.,

2 160,90:60,9) = 5 (. T2WOMO 0 7*) =0

by virtue of Lemmas 5.2 and 5.3.
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5.3 Reduced system (P,,Q,, H,)

Now we consider the reduced system (P,,(,,H,). Note that Ad*(g)p =
p(r=7) pY* € g*) for Vg € G, and we have the following.

Lemma 54 If1<a<r r+1<8<r, then
> 1, Cly =0. (5.17)
v=1

Proof. Put g(t) = exp(tYy') (Y € gu). Then for VX € g we have
(u,Ad(g(t))«X) = (u, X). Differentiate this equation with respect to ¢, and we
get (u, [Y5, X]) =0, wh1ch derives (5.17). o

Jf (z,956,m) = (2,9,9";€,7',n") belongs to J~!(u), then it follows from
(5.2) that

Zfl(y)n7 =pa (@=1,...,71), (5.18)

and accordingly

=Y AWny (@=1,...,7). (5.19)

Thus, we can take (z,y;€) = (z,y',y"; ) as local coordinates of J~!(p) in the
neighborhood W of py = (20,0, 0; &, p’, u"). From (5.19) we have

ONY
Z gy Sdy”. (520)
Byy=1
Therefore we have
OAY OAY

i*Qp dei/\dmi+-;—z;t7[2(ayﬁ 6yf)dyﬂ/\dya]
ng,/\dx 42 Z (> i AFCYLAL ) dy® A dy”

¥,K,V

on J~1(u) by virtue of (5.7). Here notice Lemmas 5.1 and 5.4, and we get
(z:QP)(‘T7 yl) y”,f)

i 1 - o . K v I 18

— Zd& Adat+ 5 ﬁz_l (gzjlf\;lwxﬂ(y )1 A (y))dy Ady'®.

Two points (z1,y},y};&1) and (z2,y5,y5;&2) are in the same G,-orbit if and
only if 1 = z2,y} = v}, & = &. Hence we take (z,y';€)(= (z,y',0;€)) as local
coordinates of P,, and have the following.
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Proposition 5.5 The symplectic form Q, on P, is locally expressed as

(2,9'56) = stmdx

+"2‘ Z ( Z ZV’WAE(?J’,O C'Z,,AZ,(y',O))dy’“/\dy'ﬁ. (5.21)

a,f=1 &k,w=1v=1

Remark. For a fixed p € T*U we have the bijection k4 : O, — @;1(q)(c
P,) given by k,(q) := u(q,v) (v € O,) (see §3). Then, the two form ;€ is
just the symplectic form on O, called the Kirillov-Kostant form(cf. [6]). The
coadjoint orbit O, is locally parameterized by the coordinates (y'*,...,y'™),
and the second term in (5.21) is just the Kirillov-Kostant form.

By plugging (5.18) into (5.15) we have

Hy(z,y';€) = Z m¥ (z)&:&; — 2 Z Zm (z,y',0)&py

1,7=1 1,7=1vy=1

+ Z z 07 (z,y',0)m? (2)65 (z,y", 0) p i +Z;(u7)2
1,j=1v,k=1 =

(5.22)

As a consequence, we get the equation of the motion in the reduced Hamiltonian
system (P,,Q,,H,).

Proposition 5.6 The Hamiltonian flow on the reduced phase space P, is gov-
erned by

# =2 ,Zl [m"%x)sj - Zm @6} .5, 0,
1,j= y=
Py
+2 Z 0k;u‘7p'n] r
’Y,K,_
§'e = -2 Z [Zm”fﬁ@f& ZZmﬂr 0500 m| (a=1,...,m).
1,j=1 pB=1 B=1~v=1

)
(5.23)

Proof. The Hamiltonian vector field Xp, = Y.(X'0/0z* + £'0/0&; +
Y *8/0y*) corresponding to H, is defined by the equation i(Xg, )0 = —dH,,
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which directly derives the first and second equations of (5.23) and

Z ZMAﬂm AZY® =2 Z [Z ,ﬁszm Z m ,fﬂefuyua].

a,k,v=1y=1 = y=1

By virtue of (5.12) we get

Z Zp7AﬁCV ALY =23 [ Z Zm”Aﬂuyczye &

a,k,v=1~vy=1 3,7=1 k,v=1 '1.—
3 Y mag,CLer ]
K,v=1~vy,0=1

Here, we notice that the r; x r; matrices Ay = (Af) and C = (Cn)
(22, #yCl,) are non-singular, and we get the last equation of (5.23).

o

5.4 Gauge field and Wong’s equation
Finally, we treat the system (T™*M,, ﬁ,“ H ), in which the curvature © of the

connection V appears explicitly in the equation of the motion of the charged
particle. The curvature form © of V is defined by
O(X,Y) :=db(X,Y) + 5 [ (X),0(Y)]

for X,Y € T,P (u € P) (see [8] for example). From (5.8) we have the local
expression

1
© = 2_3 Ep
1 s R,
Z [5 %5 + Z 05,0060} }do' A do'] @ Yo
?’Y—
(5.24)
by noticing (5.7) and (5.12). Moreover since © satisfies R;© = Ad(g~1)O, we

have
z] CL’ y) zAﬂ

for C:)fj (z) := G)fj (z,0), where

Z [% Z  (z)da’ /\d:z:j] ®Y, =50

075 (z, y)dzt A dx]]

{ ( Ozt 3:1:7



A Geometrical Formulation for Classical Mechanics in Gauge Fields 39

is a g-valued two-form on U C M (the so-called gauge field) pulled-back by the
local section s: U 3 z +— (2,0) € U x G =2 7~ 1(U).
For p € g we define the R-valued two-form ©, on P by

0.(X,Y) = (1,0(X,Y)) (XY € T.P).

By virtue of the following lemma we can regard ©, as a two-form (globally
defined) on M,,.

Lemma 5.7 ©,(AF, X) = 0 holds for any A € g, and X € T, P.

Proof. Note Lemma 3.2, and we see that (u,[0(AF),8(X)]) = 0. In fact,
we have

(1, [0(A7),0(X))) = (1, [4,6(X)]) = (w,ad(A)(6(X))) =0
because (u, Ad(exp(tA))()) = (i,-) (t € R). . a

The one-form 6, on P is given by
Ou(z,y) = Z (Zmﬁ (z,y)da’ + Zua/\ﬁ )dy )
a=1 =1

and we can directly check that Lynr6, =0 for Y" € g,, which means that 6,
is G,-invariant. We can take (z!,...,z",y'%,...,y'™) as coordinates of M,,.
Then, the two forms df, and ©, on M,, are represented as

db,(z,y') = diu(z,y',0)
RN 80} 9} i

+ Z ZMA"C,Z,,Q” dz' A dy'™

=1 a,k,v=1~vy=1

—= Z Zu«, T AL dy'* Ady'P,

aﬁ,n v=1vy=1
0uey) = 330 Dm0y y)de A (O]a,) = 0} (z,4,0)
z] 1v=1
by means of (5.7), (5.12) and (5.24). Let (z,y’; £7) = (..., z™ ", ..y
&, &, M, ,Mr) be canonical coordinates of T*M,,. Then we have

n 71
Q=) d&Nda'+ ) dia Ady'™ +dBu(z,y").

=1 a=1
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The metric m,, is defined by
(sz#ij#) = mij; (Xz#aYofD) = Oa (Yofj:YBP) = 50!,3)
for1<4,7<n,1<a,B<r with

0

XF (@) = 5

- ! a ! 8
Z Fg(y ’O)Gi (wiy ’0)6_?!—,-5

a,f=1

and is represented by

(m#)ij =myj + Z 0;?‘(z,y’,0)6;?‘(x,y',0),
a=1
(My)ia Zo” z,y',0)A%(y',0),  (5.25)
y=1
(mu)ap = Y ALY, 00A3(¥',0). J
y=1

Hence, we get
ﬁ“ (‘Ta y,1 Ea 7_’) = Z mwgzéj -2 Z mijogrggiﬁa (5 26)
+ 3 T0ImI 05 T  fiafp + Y T2TE aflp.
By straightforward calculations we see that the flow (z(¢),y’ (t); £(t),7(t)) of
(T*M,,Q,, H,) satisfies the equation in the form

d

a_ _ B -
’dtna—;F (z,y,0ip (1<a<m)

for some functions F*#. Hence, we restrict the flow on the submanifold: 7 = 0,
(which is invariant under the flow). Then, we have the following.

Theorem 5.8 (1) The flow of (T*M#,ﬁu,ﬁ“) restricted on the submanifold:
77 = 0 is governed by the equation

= Z g (x)g_j)

éi:— aazz (z)&r&; — 2 Z ijk py 07 (z &, Y (5.27)
7,k=1 J,k=1~v=1
=—2zzm 07 (2,4 T5()E&  (@=1,...,m).

i,j=1p=1
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(2) The map T*P — T*M,, defined by

(3717'"’xn7y1"‘"yr;él,""5”)”17"'7”7‘)
— (zl,...,:r:",y'l,...,y'”;fl,...,fn,ﬁl,...,ﬁrl)
with
y'o‘=y°‘ (a=1,...,r1), )

&i=& - ’07 , =1,...,n),
; @y G n) (5.28)

ﬁa:na_ZAg(y).u‘Y '(a:l,...,rl) J
y=1

induces the map x, : P, — T*M,, under which the canonical equation (5.23)
on P, is transformed to the equation (5.27).

Proof. We get the assertion by straightforward calculations. a

The equation (5.27) is (essentially same as) Wong’s equation (see [14]),
which describes the motion of a particle with charge p € g* in the gauge field
© with the potential §. From (5.27) we get the following.

Corollary 5.9 The motion of the particle with charge u in the gauge field ©
is governed by the following equation in M, :

n

4+ Y Ti(z)d’d* —2 > > mY(z)u,0](z,y)i* =0,

j,k:ln ) Jk=17=1 (5.29)
==Y @y (a=1.,m),
j=1p=1

where I‘; «(z) denotes the Christoffel symbol defined from the Riemannian struc-
ture m on M.

6 An example - Sp(1)-gauge fields associated to
the Hopf bundles

Let H be the division algebra of quaternions, i.e.,
H={qg=s+zi+yj+2k|szyz2€R, i’ =j>=k*=1ijk=-1}.

Consider the product space H**! = {q = (g0, 41, ---,qn)} with the Hermitian
inner product:

n n
(@,4') =Y ;a5 =D (s; — z51 — ;5 — zk)(s) + 25i + i3 + £5k),
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and the real inner product:

n

(@,9')r = Re(q,q') =Y _(s;8} + 225 + y;1 + 2;2)).-
~

<

Note that H"*! with (-, ) is identified with R*"*%. Let

St = {allal*(=q9) = lgo|> + - +|gn|* =4} C H"*! = R*"H

be the (4n+3)-dimensional sphere with radius 2, and let 7 be the Riemannian
metric on it induced from (-, -)g.
A quaternion ) acts on H™*! from right:

q-A=(90,--+:8n) - A= (90X, -+ gnA)-

Then, the Hermitian product (-,-) is left invariant under this action by every
unit quaternions, that is, every elements of

Sp(1) = {A e H| |\ =1}

which is a three-dimensional Lie group called the symplectic group (= SU(2) =
S3%). Thus Sp(1) acts freely and isometrically on 5[42’]“"3, and we get the Hopf
fiber bundle:

Sp(l) — Sints T, Hp" (6.1)

(2]
over the quaternionic projective space. The tangent bundle of .5’[42’]‘+3 is given

by
TSF;;H ={(q,u)|q€ 5[42’]1‘*3,u € H™*! (q,u)r = 0}.

For g € S[‘IZ’]’H, let Vq = (dm)~1(0) C TqS[‘;’}‘H, and it is easy to see that
Va = {(g,qv) | v € H,Re(v) = 0}.

Let Hg be the orthogonal compliment of V; in Tq.S'[‘;’]”'3 with respect to the

metric mg, and we have
TSt = Hq @ Va. (6.2)
Then, we have
Hy = {(g,u) | v € H**', (g, u) = 0}.
We can easily check that the horizontal space Hy, is invariant under the Sp(1)

action on Sf‘z’]’+3, and accordingly, the decomposition (6.2) defines the connec-
tion V on the principal Sp(1)-bundle 7 : Sé']’”“ — HP™. Furthermore, HP™
endowed with the Riemannian metric mg such that 7 is a Riemannian submer-

sion.




A Geometrical Formulation for Classical Mechanics in Gauge Fields 43

Let sp(1) denote the Lie algebra of Sp(1). Then, sp(1) consists of pure
imaginary quaternions, i.e.,

sp(1) = {v € H| Re(v) =0} = {v = v1% + v2j + v3k | v1,v9,v3 € R} = R3.

Note that we have the natural correspondence between the vertical space Vg
and sp(1).

Prop031t10n 6.1 The connection form 6 of v (which is a sp(1)-valued one-
form on 5[2] +3) is given by

1 ' n
bq(u) = 7(g,u) €sp(1) ((g,u) € ToSy 1+9). (6.3)
Here, note that (q,u) belongs to sp(1) because {(q,u)r = 0. By using the
coordinates (qo, - - -, gn) in H**! we have
1 1,_
0 =35> (ade; — dg; g;) = S(@- dg - dq - q). (6.4)
7=0

Proof. Put v = 04(u) € sp(1). Then, u — qu is a horizontal vector, hence

0= (q,u —qv) = (g,u) — (g,qv) = (g, u) — (g,q) v = (g, u) —

Therefore, we obtain (6.3). a

Let us introduce a local coordinate of HP™ as follows. For a point ¢ =
(90,q1,---,qn) € S[‘;']‘Jr?’, denote [q] = [g0,91,---,qn] = 7(q0, 1, - - -, qn) € HP™.
Put Up = {[q] = [g0,---,¢n] € HP™ | go # 0}, which is a open subset of HP™.
Then,

wo:Up = H™ [g0,q1,---,qn) = (P1,P2,---,Pn) = (0145 ", 8285 - - -, Tn5 )

gives a local coordinate of HHP™. Take a local section

( 2 2p 2pn )

VIt Vi+pP I+ PP

The connection form 0y, = s*8 on Uy C HP™ is given by

S UO — S[‘%;]H-a) D= (pl’ 7pn) —

- 1
) B;dp; — dp; ;) = 57— (B-dp—dp-p). (6.5

Let © be the curvature form of V, which is sp(1)-valued two-form on SA7+3,
and let Oy, := s*0 = dfy, + Oy, A Oy, (a gauge field on Up). Then, we have
the following.
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Proposition 6.2

1 n
Ou, = AT 1pP)? & dp; A dp;. (6.6)

j=1

The dual space sp(1)* of the Lie algebra sp(1) is identified with sp(1) by the
correspondence sp(1) 3 v > v* € sp(1)* with v*(w) = (v, w)r = Re(vw) (w €
sp(1)). Thus we have

sp(1)* = {11¢" + 1a5* + vsk™ | v1,ve,v3 € R} = RS,
Similarly, we have
TUSEE = {(qu")] (g,u) € TSEH)
= {(gu")|qe S5t ue H™, (g, u)r = 0}
through the inner product (-, ‘).
Proposition 6.3 The momentum map J : T".‘S’[‘;’]”'3 — sp(1)* is given by
J(g,u”) = (g, u)". (6.7)

Proof. Note that the vector field on Sé’]“’s associated to v € sp(1) is given
by (g, qv). Hence, by the definition of J we have

<J(q$U*)’U) = <(QaU*)’qU>= (u,qv)R '

= Re[Zqujv] = Re[(quuj) ‘v] = (Zﬁjuj,v )R-

Therefore, J(g,u*) = (Z] Gjuj)* =(g,u)". 0

Next, we consider the (co-)adjoint action of Sp(1) on sp(1) (or sp(1)*) and
its orbit. It is easy to see that 1

Ad*(\)o* = (Ad(\)w)* (A € Sp(1), v € sp(1)).

Take A = zo+z13+T2j+z3k € Sp(1). Then, [Ad(A1)i, Ad(A~1)7, Ad(A"1)k]
=[1%,7,k]Rx with Ry being a 3 x 3 matrix:

2 +22 —z2—22  2zom3 +7122)  2(—ToT2 + 2123)
Ry = | 2(~zox3 + 7172) 1z — 22+ 73— 22 2(zoT1 + T2T3) | .
2(zoz2 + z173)  2(—ToT1 + Tox3) TE — i — zi + 2

Here, Ry is an element of SO(3), and A — R, gives a homomorphism from
Sp(1) onto SO(3). More precisely, if A = cos(¢/2) + sin(¢/2) (v1t + v2J + v3k),
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then R, is the rotation about the axis v = (v, vs,v3) through the angle —¢.
Therefore, we see that the co-adjoint orbit O, through p € sp(1)* is the sphere
in sp(1)* = R3 with the center being the origin and the radius |u|. The isotropy
subgroup G, for p = p1* + paj* + psk™ is given by

1 . .
G, = {cosz/J + mSin¢(M12 + pog + psk) [ 0<y< 27r} > U(1)
if 4 # 0, and G, = Sp(1) if p = 0. Suppose u = ck* (¢ > 0). Then,
G, = {costp +singpk = e¥* | 0 < ¢ < 27} and g, = Rk. Take {¢,5,k}
as a orthonormal basis of sp(1), and we have local coordinates (¢1, ¢2,1) of
g € Sp(1) given by

g = exp(¢1i+ $2J)exp(k)
= {COS\/(ﬁ%+¢%+Sin\/¢%+¢%(\/¢2¢:—¢2i+\/¢2¢1¢2j)}
¥l 2 1 2

x(cosz/) +sim/1k).

Thus we have local coordinates (p1,...,Pn,$1,$2) of M, = S{‘Q’]‘*'S/G“, and
can explicitely represent the equation (5.29) (or (5.27)) of the motion.
Finally, we give some remarks on the case n = 1, that is, the Hopf bundle

7 : ST — HP!'. Note that HP! is diffeomorphic with the unit sphere S* =
{(p,a) e H x R| |p|? + a® = 1} in R® = H x R by the stereographic projection

2 _
HP' D Up(=H)3p —> ( lpl“’zz-){— T ;£:2 " i ) € S*\{(0,1)}.

Furthermore, the Riemannian metric mg previously introduced on HP! is noth-
ing but the canonical metric on S*. The connection given by (6.3) (or the gauge
field (6.6)) is an anti-self-dual Yang-Mills connection, i.e., *Oy, = —Oy, holds
for Hodge’s * operator, and is called the Belavin-Polyakov-Schwartz- Tyupkin

anti-instanton (cf. [2], [7]).
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