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Abstract

In their paper [4], A. Schinzel and W. Sierpiriski have investi-
gated the diophantine equation (z? —1)(y? — 1) = (22 —1)2. In this
paper, we shall investigate an analogous equation (z?+1)(y®>+1) =
(22 +1)2

2000 Mathematics Subject Classification. Primary 11D25; Sec-
ondary 11B37, 11D09

Introduction

In their paper [4], A. Schinzel and W. Sierpinski firstly investigated the
following diophantine equation

1) (@* - 1@" - 1) = (" - 1)

They have found all the integer solutions for which z —y = 2z. But they could
not find all the integer solutions of (1), and the problem to find all the integer
solutions of this diophantine equation still remains as an open problem. In this
paper, we shall show the following diophantine equation

(2) (@ + 1" +1) = (2> +1)°

has infinitely many integer solutions. Though we could not find all of the
integer solutions of this equation, we found all the solutions with the additional
condition z — y = 22. It is obvious that the above diophantine equation (2)
has the solution |z| = |y| = |z|- Throughout this paper, we shall call these
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solutions trivial and other solutions nontrivial. Without loss of generality, we
may restrict ourselves to the nontrivial and nonnegative solutions.

We shall also show the following slightly generalized diophantine equation
has infinitely many integer solutions for any fixed positive
integer t

(3) (@ + D) +1) = (2" + 7).

The equation (z2+1)(y% +1) = [((z — y)/2)? + 1]2

In this section, we shall show the diophantine equation (2) has infinitely
many integer solutions with ¢ — y = 2z.
The left hand side of the equation (2) can be written as

(@ + 1" +1) = (zy +1)* + (z —y)*.

Since z = (z — y)/2, the right hand side of the equation (2) is

2+1= (%)24—1: @-—_—%ﬁﬁ.
Thus we have
16(zy + 1) +16(z — y)*> = (z — y)* + 8(z — y)? + 16,
and then |
16(zy +1)* = (z - y)* - 8(z ~y)* +16 = ((z —y)* - 9.
Therefore we have

(z—y)? —4=%4zy +1)

(z—y)?—-4=22-2zy+y®>—4=—dzy—4
= or

(z—y)?2—-4=22-2zy+y?> —4=4dzy +4.

We note that
2?2 —2zy+y? — 4= —4zy — 4

if and only if
2 +2zy+y? = (z+y)?=0.
Hence we have y = —z and then z = (z —y)/2 = . Now we see these solutions

are trivial. Let us consider another case 2% — 2xy + y?> — 4 = 4zy + 4. Then
we have z% — 6zy + y? = 8. Since 2% — 6zy + y? = (z — 3y)? — 8y?, we can
conclude = — 3y must be divisible by 4. Put w = (z — 3y)/4. Then we have
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16w? — 8y% = 8, that is, 4y — 2w? = —1. Let us denote ¢ = 1+ /2 and
€ = 1 — /2. Define the binary recurrence sequences {t,} and {s,} by putting

tn = (™ +E&™)/2,
{ sp, = (g™ — &™) /2//2.

Then {t,} and {s,} satisfy

tn+1 = 2tn + tn—l; Sn+1 — 2Sn + Sn—1,

and
t2 —2s2 = (-1)".
Combining the fact that ¥y — 2w? = —1 and y is nonnegative, we see y = tan—1
and |w| = 89,1 for some positive integer n. Then we have
T — 3
w = 1 y = %89,_1 <= T = 3lzn_1 =452 _1.

From the fact that €2~ = to,_1 + San_1 V2 and €2 = 3 + 2v/2, we have

el =toni1 + S2n11V2 = (tan—1 + S20—1V2) (3 + 2V/2)
= 3tan_1 + 48201 + (382n—1 + 2t2n—1)V?2,

and

€23 =tn_3 + 520-3V2 = (tan—1 + S20-1V2)(3 — 2V/2)
= 3tan—1 — 482n—1 + (382n—1 — 2t2n—1)V2).

Hence we have verified 3t3,—1 + 452n—1 = tont+1 and 3ton—1 — 482p-1 = fon—3.

Thus we have = ¢35, or t3,—3. In the case £ = to,,_3, we have £ = 13,3 <

y = ton—1, which contradicts to the assumption 2z = z — y > 0. Hence any

nonnegative solution of (2) can be written as ¢ = t3,4; and y = t2,—1 for some

positive integer n. From the recurrence relation te,+; = 2t2, + t2,—1, we have
_T—Yy  topy1 —lop—

zZ = B = ) =t2n-

Thus we have shown the following theorem.

Theorem 1. With the above notation, the diophantine equation (2) has in-
finitely many positive integer solutions. Moreover any positive integer solution
(z,y, z) which satisfies 2z = x — y can be written as © = tony1,Y = tan—1,2 =
tan for some positive integer n.

Generalization

Let t be a positive integer. Then we shall generalize the above results to the
following diophantine equation (3)

(2 +1)(2 +1) = (22 +17)%
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We note that ¢+ 1 is not square for any ¢ > 1 and vt2 + 1 ¢ Q. Let us denote
n=t++Vt?+1and 7} =t — vt2 + 1. Now we shall define binary recurrence
sequences by putting

{ vn = (0" +7")/2,
un = (" — ") /2VE + L.

Then we have {u,} and {v,} satisfy

u =0, up =1, ups=2¢,........ y Uny1 = 2tUp +Up_1,
vo=1 wvi=t va=282+1,..., Vpp1 = 2tv, +v,_1,

and

{vgn_l +1= ugn_l(tz +1),
Vipp1 +1=uz, ., (t° +1).

Then we obtain
(V3ni1 + 103, +1) = [(£® + Duons1tzn—1]*

Here we see
772n+1 _ ,'72n+1 ' ,’72n—l _ ﬁ2n——1
2 2

(£ + Dugni1uzn—1 =

_l n4n+ﬁ4n+n2+7—’2
2 2
On the other hand we have

2n+—-2n 2 4n+—4n+2 1
2 (n n)zn Ui = L oun + ).

Uon = 2 4

1
) = 5(114,, + 2% +1).

Thus we have shown
(£ + Dugnyrtion—1 = v3, + 2 = (£ + 1)(u3, + 1).
Hence we have
(V1 + D301 +1) = (v, +¢°)? = [(#* + 1) (u3, + D",
Therefore we have obtained the following theorem.

Theorem 2. With the above notation, the diophantine equation (3) has
infinitely many positive integer solutions T = Vopy1,Y = Van—1,2 = V2, With
some positive integer n.
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From the above argument, we have the following corollary.

Corollary. The diophantine equation
@+ +1) = [+ D+ )P

has infinitely many parameterized positive integer solutions
(1‘7 Y, =2, t) = (v2n+1 »V2n—1;U2n, t) .

Concluding remarks

Finally, we shall recall the classical results on Shinzel-Sierpifiski equation (1)
with £ —y = 2z. We have (t3,,, — 1)(t3, — 1) = (2s2n42520)°-
Here

1
232'n+232n — Z(52714-2 _ <,;:2'n+2)(€2n _ &—.Zn)

— %(641“-2 + 6—4n+2 _ 62 _ 52) — %(s4n+2 _ §4n+2 _ 6)

gint2 | gnt2 _ 9 - <€2n+1+&=2n+1)2 )
4 -\ 2 )

2
tonto — ¢
-1 (ﬁié_ﬁ_) 1

Thus we have recalled the elementary fact that any positive integer solution of
(2 - 1D@*> -1)=(22-1)? with2z =z —y,
is given by (z,y,2) = (t2nt2, t2n, t2nt1)-

Here we shall combine this classical result and Theorem 1 as follows. Put
e = 1. Then the following diophantine equation

(4) (@* +e)(y* +e) = (z° + ).
with 22 = z — y has infinitely many positive integer solutions (z,y,z) =
(tn+2:tn,tnt1)- Here, n is even for the case e = —1 and n is odd for the
case e = 1.

In [2], the positive integer solutions of (1) not of the form (tan42, t2n, t2nt1)
are called sporadic solutions. For example, there are several sporadic solutions
(31,4,11),(97,2,13), (48049, 155, 2729) quoted by Szymiczek. On the contrary,
it seems rare that our equation (2) has sporadic solutions. We have verified
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the only positive integer solutions with 0 < y < z < 300000 are

(z,9,2) = (7,1,3),
(41,7,17),
(239,41,99),
(1393, 239, 577),
(8119,1393, 3363),
(47321,8119,19601),
(275867,47321,114243).

Hence, there is no sporadic solution for 0 < y < z < 300000.
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