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Abstract

Let C be a circle divided into n parts equally. S = {P0, P1, . . . , Pn−1}
denotes the set of the ends of these parts on C. Let C3(n) be the
number of incongruent triangles inscribed in C, where the vertices
of the triangles are chosen from S. In this note, we shall show a
relation between the number C3(n) and the partitions into at most
three parts.

2000 Mathematics Subject Classification. Primary 05A17; Sec-
ondary 11P81

Introduction

Let C be a circle divided into n parts equally and the ends of parts be
labeled {P0, P1, . . . , Pn−1} as in the following Figure 1:
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Let C3(n) be the number of incongruent triangles 4PiPjPk with vertices
Pi, Pj , Pk chosen from S = {P0, P1, . . . , Pn−1} as in Figure 2. In this note,
we shall show a relation between the numbers C3(n) and the partitions into at
most three parts. In the next section, we shall recall the fundamental notations
and the terminology in [3].

Main Result

Let p(n,m) be the number of partitions of n with each part ≤ m, that is,

p(n,m) = p(n | parts in {1, 2, . . . , m}).

It is easy to show p(n, 1) = 1 and p(n, 2) =
[n

2

]
+ 1, where [x] denotes the

greatest integer ≤ x. Then one can easily verify that p(n,m) has the following
generating function:

∞∑
n=0

p(n,m)qn =
1

(1− q)(1− q2) · · · (1− qm)
.

In the case m = 3, it has been shown in [3] that

p(n, 3) =
{

(n + 3)2

12

}
,

where {x} denotes the nearest integer to x. Let 4n be the number of incon-
gruent triangles with integer sides and perimeter n. This number 4n has been
investigated in [1] and [2]. In [1] and [3], it has been proved that

4n = p(n− 3 | parts in {2, 3, 4}) =
{

n2

12

}
−

[ n

4

] [
n + 2

4

]
.

Thus the generating function of 4n is given by

∞∑
n=0

4nqn =
q3

(1− q2)(1− q3)(1− q4)
.

In the following, we shall show the similar results also hold for C3(n). Let
O be the center of the circle C. Let Pi, Pj , Pk (0 ≤ i < j < k ≤ n− 1) be the
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vertices chosen from S = {P0, P1, . . . , Pn−1}. We denote the central angles of
the inscribed triangle 4PiPjPk by

6 PiOPj = θ1, 6 PjOPk = θ2, 6 PkOPi = θ3,

respectively as in the following Figure 3.

Figure 3
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From the definition, we have θ1 + θ2 + θ3 = 2π. Put a = j − i, b = k − j and
c = n + i− k. Then we have

θ1 =
2aπ

n
, θ2 =

2bπ

n
, θ3 =

2cπ

n
.

Then a, b, c are the natural numbers which satisfy the condition

a, b, c ≥ 1 and a + b + c = n.

We note any inscribed triangle whose vertices {Pi, Pj , Pk} in S is congruent to
exactly one inscribed triangle whose central angles satisfy n = a + b + c and
a ≥ b ≥ c ≥ 1. Thus we have shown

C3(n) = p(n | n = a + b + c, with a ≥ b ≥ c ≥ 1 )

= p(n− 3| at most three parts).

The conjugation of Ferrers-Young diagram implies that

p(n− 3 | at most three parts) = p(n− 3 | parts in {1, 2, 3}) = p(n− 3, 3).

Therefore we have shown the following theorem which is similar to the formula
of 4n.

Theorem. With the above notation,

C3(n) = p(n− 3, 3) =
{

n2

12

}
,

and the generating function of C3(n) is given by

∞∑
n=0

C3(n)qn =
q3

(1− q)(1− q2)(1− q3)
.
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Corollary. R3(n) denotes the number of incongruent right triangles where
the vertices Pi, Pj , Pk are chosen from S. Then R3(n) > 0 if and only if n is
even and ≥ 4. Put n = 2m. Then we have

R3(n) =
[m

2

]
,

and the generating function of R3(n) is given by
∞∑

n=0

R3(n)qn =
∞∑

m=0

[m

2

]
q2m =

q4

(1− q2)(1− q4)
.

Proof. We know the triangle PiPjPk is a righit triangle if and only if
the largest a satisfies the condition a = b + c. Hence we have shown the
corresponding central angles must satisfy n = 2a and a > b ≥ c ≥ 1 with
b + c = a. Put a = m. Then we have n = 2m and R3(n) =

[m

2

]
, which

completes the proof of this corollary.

Let us consider similar problems. Take two points Pi, Pj ∈ S and consider
the length of the line segment PiPj . In the same way as above, the small one

of the central angles 6 PiOPj can be expressed as
2aπ

n
. Put

2bπ

n
= 2π − 2aπ

n
.

Then a satisfies 1 ≤ a ≤
[n

2

]
. We denote the number of line segments PiPj (0 ≤

i < j ≤ n− 1) with Pi, Pj ∈ S of different length by C2(n). Then we have

C2(n) = p(n | n = a + b with b ≥ a ≥ 1) = p(n− 2, 2) =
[n

2

]
.

Thus the generating function of C2(n) is given by
∞∑

n=0

C2(n)qn =
q2

(1− q)(1− q2)
.

Let S2(n) be the set of all the sides and the diagonals of a regular n-sided
polygon. We note the number C2(n) coincides the number of segments ∈ S2(n)
with the different length.

We may consider one more case C1(n). Let us choose the point Pi ∈ S =
{P0, P1, . . . , Pn−1}. Since all the points Pi congruent each other by the action
of the congruent transformation group of the plane. Thus we may consider
C1(n) = 1 for n ≥ 1, that is C1(n) = p(n−1, 1). Hence the generating function
of C1(n) is given by

∞∑
n=0

C1(n)qn =
q

(1− q)
.
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It shall be natural to consider the similar problems for Ck(n) for k ≥ 4.
But the cases k ≥ 4 seem to be more complicated than the cases 1 ≤ k ≤ 3.
For example consider the case k = 4, that is, C4(n) (the number of incongruent
quadrilaterals PiPjPkPl, where Pi, Pj , Pk, Pl ∈ S). Then we see C4(n) is not
equal to p(n− 4, 4). To understand this fact, it suffices to calculate p(n− 4, 4)
and C4(n) for small values n as follows.

n 4 5 6 7 8 9 10
p(n− 4, n) 1 1 2 3 5 6 9

C4(n) 1 1 3 4 8 10 16

We hope our investigation on C4(n) will be published in the near future.

Remarks on p(n | parts in {2, 3, 4})
The investigation of this note started when we have encountered with the

exercises 84 and 85 in the very interesting text book [3], where the formulas for
p(n | parts in{2, 3, 4}) and 4n are given. Concerning these exercises, we have
asked some question to Prof. G. E. Andrews and Prof. K. Eriksson who are the
authors of the text [3]. They have kindly informed us the paper [1] is the origin
of the exercise 85 and also informed us the survey paper [2] on these subjects.
We have found that a direct proof of the formula of p(n | parts in {2, 3, 4}). It
is easy to show the formula but has not been written explicitly in the papers
[1], [2] and the text [3]. Thus hoping to be of some meaning to give a direct
proof of those formulas, we shall write down the direct proofs of the exercises
84 and 85 in the rest of this note.

Firstly, we have the partial fractions decomposition:
∞∑

n=0

p(n | parts in {2, 3, 4})qn =
1

(1− q2)(1− q3)(1− q4)

=
59q2 − 154q + 107

288(1− q)3
+

7q + 9
32(1 + q)2

+
1− q

8(1 + q2)
+

q + 2
9(q2 + q + 1)

.

Moreover the above partial decomposition can be expressed as

1/24
(1− q)3

+
1/16

(1− q)2
+

1/3
1− q

+
1/4

(1− q2)2
+

1/16− q/4− 3q2/16
1− q4

+
1
4
× (1 + q2)

1− q4
− 1

3
× q + q2

1− q3
.

Put ∞∑
n=0

εnqn =
1
4
× (1 + q2)

1− q4
− 1

3
× q + q2

1− q3
.
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Then we see εn ∈
{
−1

3
,− 1

12
, 0,

1
4

}
and satisfy −1

2
< εn <

1
2

for any n. Thus

we have shown
∞∑

n=0

p(n | parts in {2, 3, 4})qn

=
1
24

∞∑
n=0

(n + 1)(n + 2)
2

qn +
1
16

∞∑
n=0

(n + 1)qn +
1
3

∞∑
n=0

qn

+
1
4

∞∑
n=0

(n + 1)q2n +
∞∑

n=0

1/16− q/4− 3q2/16
1− q4

+
∞∑

n=0

εnqn.

On the other hand, one can easily verify that

∞∑
n=0

(
(n + 3)2

12
−

[
n + 5

4

] [
n + 3

4

])

=
1
24

∞∑
n=0

(n + 1)(n + 2)
2

qn +
1
16

∞∑
n=0

(n + 1)qn +
1
3

∞∑
n=0

qn

+
1
4

∞∑
n=0

(n + 1)q2n +
∞∑

n=0

1/16− q/4− 3q2/16
1− q4

.

Combining these formulas, we have

∞∑
n=0

p(n | parts in {2, 3, 4})qn =
∞∑

n=0

(
(n + 3)2

12
−

[
n + 5

4

] [
n + 3

4

])
+

∞∑
n=0

εnqn.

Since p(n | parts in {2, 3, 4}) is an integer and |εn| < 1
2
, we see

p(n | parts in {2, 3, 4}) =
{

(n + 3)2

12
−

[
n + 5

4

] [
n + 3

4

]}

=
{

(n + 3)2

12

}
−

[
n + 5

4

] [
n + 3

4

]
,

which completes a direct proof of the formula of p(n | parts in {2, 3, 4}), which
is an answer to the exercise 84 in [3]. One knows4n = p(n−3 | parts in {2,3,4})
as follows. From the definition, we have

4n = p(n| n = a + b + c, a ≥ b ≥ c ≥ 1, b + c > a).
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Then we have the bijections:

(a, b, c) such that
{

a + b + c = n
a ≥ b ≥ c ≥ 1, b + c > a,

←→ (a1, b1, c1) such that
{

a1 + b1 + c1 = n− 3
a1 ≥ b1 ≥ c1 ≥ 0, b1 + c1 ≥ a1,

←→ (x, y, z) such that
{

2x + 3y + 4z = n− 3
x ≥ 0, y ≥ 0, z ≥ 0,

where a1 = a−1, b1 = b−1, c1 = c−1 and x = b1−c1, y = b1−c1−a1, z = a1−b1.
Here we shall show the relation of (a, b, c) and (x, y, z) by diagrams:

z

z

y

y

x

x

z

z

y

c−1
b−1

a−1

←→

z

y

x

Thus we have verified the formula

4n = p(n− 3 | parts in {2, 3, 4}) =
{

n2

12

}
−

[n

4

] [
n + 2

4

]

directly, which is an answer to the exercise 85 in [3].
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