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Abstract

We study decay properties of solutions to the Cauchy problem
for the collision-less Vlasov–Poisson system which appears Vlasov
plasma physics and stems from Liouville’s equation coupled with
Poisson’s equation for the determining the self-consistent electro-
statics or gravitational forces.
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1 Introduction

We consider the Cauchy problem for the following kinetic system

∂tf + v · ∇xf + E · ∇vf = 0 in RN × RN × (0,∞) (1.1)

E(x, t) = −∇xU(x, t) in RN × (0,∞) (1.2)
f(x, v, 0) = ϕ(x, v) ≥ 0 , (1.3)

where U = U(x, t) is a potential which generates the force field E = E(x, t).
Then, the system (1.1)–(1.3) describes the evolution of a microscopic density
f = f(x, v, t) ≥ 0 of particles subject to the action of the force field E. We
will be mainly interested in the Vlasov–Poisson system where the force field is
self-consistent and given by

− ∆xU(x, t) = γρ(x, t) , U(x, t) → 0 as |x| → ∞ , (1.4)

ρ(x, t) =
∫

f(x, v, t) dv .

∗This work was in part supported by Grant-in-Aid for Scientific Research (C) of JSPS
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where ∇x = (∂x1 , · · · , ∂xN
), ∇v = (∂v1 , · · · , ∂vN

), ∆x is the Laplacian in the
x variable, and γ is a constant. The sign γ = +1 represents to electrostatic
(repulsive) interaction between the particles of the same species, while γ = −1
represents gravitational (attractive) interaction (see Risken [11], Glassy [5] for
physical interpretations).

From (1.2) and (1.4), we have

E(x, t) =
γ

SN−1

x

|x|N
∗ ρ(x, t) , (1.5)

where SN−1 is (N − 1)-dimensional volume of the N -dimensional unit sphere,
and the symbol ∗ is the convolution in the x variable.

The existence of local solutions of the system is known for every N ∈ N
(e.g. [3], [4], [6], [8]). The Global existence problem has been studied by several
authors under suitable restrictions (see [1], [2], [6], [7], [12], [14]).

In this paper we study decay properties of solutions to the Cauchy problem
for the Vlasov–Poisson system.

Let f = f(x, v, t) ≥ 0 be a strong solution of the Vlasov–Poisson system
with non-negative initial datum ϕ(x, v) ∈ C1

0 (RN × RN ), where C1
0 (RN × RN )

denotes the space of compactly supported, continuously differentiable functions
(see [9], [10]).

Our main result is as follows.

Theorem 1.1 Let N ≥ 4 and γ > 0. Then the solution f = f(x, v, t) ≥ 0 of
the Vlasov–Poisson system satisfies that

∥|x/t − v|2f∥L1
x,v

≤ C1t
−2 , t > 0 , (1.6)

and for 1 ≤ q ≤ 1 + 2/N ,

∥ρ(t)∥Lq
x
≤ C1t

−N(1−1/q) , t > 0 , (1.7)

and for N/(N − 1) < p ≤ N(N + 2)/(N2 − N − 2),

∥E(t)∥Lp
x
≤ C1t

−N(1−1/N−1/p) , t > 0 , (1.8)

where C1 = C1(∥(1 + |x|2)ϕ∥L1
x,v

, ∥ϕ∥L∞
x,v

) is a constant depending on ∥(1 +
|x|2)ϕ∥L1

x,v
and ∥ϕ∥L∞

x,v
.

Finally we fix some notation. The function spaces Lp
x,v and Lp

x mean
Lp(RN ×RN ) and Lp(RN ) with usual norms ∥ ·∥Lp

x,v
and ∥ ·∥Lp

x
for 1 ≤ p ≤ ∞,

respectively. Positive constants will be denoted by C and will change from line
to line.
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2 Proof

We first state the well-known convolution inequality (see for instance [13]).

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality)
Let 0 < λ < N and 1 < q < p < ∞. Then

∥|x|−λ ∗ f(x)∥Lp
x
≤ C∥f∥Lq

x
for f ∈ Lq

x

with 1 + 1/p = λ/N + 1/q.

The following proposition plays an important role in the proof of Theorem
1.1.

Proposition 2.2

(1)
d

dt
∥E(t)∥2

L2
x

= −2γ

∫
E · j dx , j =

∫
vf dv

(2)
N − 2

2γ
∥E(t)∥2

L2
x

=
∫

x · Eρ dx , ρ =
∫

f dv

Proof. (1) Using (1.2) and integrating by parts, we observe that

d

dt
∥E(t)∥2

L2
x

=
d

dt

∫
|∇xU |2dx = −2

∫
U∆Ut dx

= −2γ

∫
U∂tρ dx = 2γ

∫
U∇x · j dx

= 2γ

∫
∇xU · j dx = −2γ

∫
E · j dx ,

where we used the fact ∂tρ+∇x · j = 0, indeed, ∂tρ =
∫

∂tf dv = −
∫

(v ·∇xf +
E · ∇vf) dv = −∇ ·

∫
vf dv = −∇x · j.

(2) Using (1.2) and (1.4) and integrating by parts, we observe that∫
x · Eρ dv =

1
γ

∫
x · ∇xU∆xU dx =

1
γ

∑
k,j

∫
xkUxk

Uxjxj dx

= − 1
γ

∑
k,j

∫
∂xj (xkUxk

)Uxj dx

= − 1
γ

∫ |∇xU |2 dx +
1
2

∑
k,j

∫
xk∂xk

(U2
xj

) dx


= − 1

γ

∥E(t)∥2
L2

x
− 1

2

∑
k,j

∫
U2

xj
dx


= − 1

γ

(
∥E(t)∥2

L2
x
− N

2

∫
|∇xU |2 dx

)
=

N − 2
2γ

∥E(t)∥2
L2

x
.
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Proof of Theorem 1.1 Using the Vlasov–Poisson system and integrating by
parts, we observe that

d

dt
∥|x − tv|2f∥L1

x,v

= −2
∫∫

(x − tv) · vf dvdx −
∫∫

|x − tv|2(v · ∇xf + E · ∇vf) dvdx

= −
∫∫

|x − tv|2E · ∇vf dvdx = −2t

∫∫
(x − tv) · Ef dvdx

= −2t

∫
x · Eρ dx + 2t2

∫
E · j dx ,

where ρ =
∫

f dv and j =
∫

vf dv.
From Proposition 2.2, we have

d

dt
∥|x − tv|2f∥L1

x,v
= −N − 2

γ
t∥E(t)∥2

L2
x
− 1

γ
t2

d

dt
∥E(t)∥2

L2
x

or

d

dt

{
∥|x − tv|2f∥L1

x,v
+

1
γ

t2
d

dt
∥E(t)∥2

L2
x

}
= −N − 4

γ
t∥E(t)∥2

L2
x
.

When γ > 0 and N ≥ 4, we see

∥|x − tv|2f∥L1
x,v

+
1
γ

t2
d

dt
∥E(t)∥2

L2
x
≤ ∥|x|2ϕ∥L1

x,v

or

∥|x/t − v|2f∥L1
x,v

+
1
γ

d

dt
∥E(t)∥2

L2
x
≤ ∥|x|2ϕ∥L1

x,v
t−2 , t > 0 , (2.1)

which gives the estimate (1.6).
For a ≥ 1 and R > 0, we observe∫

f dv

≤
∫
|x/t−v|≤R

f dv +
∫
|x/t−v|≥R

(R−2|x/t − v|2f)1/af1−1/a dv

≤ CRN∥f∥L∞
x,v

+ R−2/a

(∫
|x/t − v|2f dv

)1/a(∫
f dv

)1−1/a

.

Optimizing the above estimate in R, that is, taking

RN+2/a =
(
C∥f∥L∞

x,v

)−1
(∫

|x/t − v|2f dv

)1/a(∫
f dv

)1−1/a

,
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we have that∫
f dv

≤ C

(
∥f∥−1

L∞
x,v

(∫
|x/t − v|2f dv

)1/a(∫
f dv

)1−1/a
)aN/(aN+2)

∥f∥L∞
x,v

,

and from the Hölder inequality,

∥
∫

f dv∥
L

(aN+2)/(aN)
x

≤ C∥f∥2/(aN+2)
L∞

x,v

(∫ (∫
|x/t − v|2f dv

)1/a(∫
f dv

)1−1/a

dx

)aN/(aN+2)

≤ C
(
∥f∥2/(aN)

L∞
x,v

∥|x/t − v|2f∥1/a
L1

x,v
∥f∥1−1/a

L1
x,v

)aN/(aN+2)

.

Putting q = (aN + 2)/(aN) (i.e. a = 2/(N(q − 1))), we obtain that for
1 ≤ q ≤ 1 + 2/N ,

∥
∫

f dv∥Lq
x
≤ C

(
∥f∥q−1

L∞
x,v

∥|x/t − v|2f∥
N
2 (q−1)

L1
x,v

∥f∥1−N
2 (q−1)

L1
x,v

)1/q

.

Here, we note that ∥f∥L1
x,v

= ∥ϕ∥L1
x,v

, indeed, d
dt∥f∥L1

x,v
=
∫∫

∂tf dvdx =
−
∫∫

(v · ∇xf + E · ∇vf) dvdx = 0. And, f is a constant along characteristics,
indeed, since f is an integral of the system of ordinary differential equations

Ẋ = V , V̇ = E(X, t) , t ≥ 0 ,

f satisfies that

f(X(t), V (t), t) = f(X(0), V (0), 0) = ϕ(X(0), V (0)) , t ≥ 0 ,

and hence, ∥f∥L∞
x,v

≤ ∥ϕ∥L∞
x,v

(see [9], [10]).
Thus, we have that for 1 ≤ q ≤ 1 + 2/N ,

∥
∫

f dv∥Lq
x
≤ C1∥|x/t − v|2f∥

N
2 (1−1/q)

L1
x,v

,

and from (2.1),

∥ρ(t)∥Lq
x

= ∥
∫

f dv∥Lq
x
≤ C1t

−N(1−1/q) , t > 0 ,

which implies the estimate (1.7), where C1 = C1(∥(1 + |x|2)ϕ∥L1
x,v

, ∥ϕ∥L∞
x,v

) is
a constant depending on ∥(1 + |x|2)ϕ∥L1

x,v
and ∥ϕ∥L∞

x,v
.
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Moreover, using Lemma 2.1 with λ = N − 1, we obtain

∥E(t)∥Lp
x
≤ C∥ x

|x|N
∗ ρ(t)∥Lp

x
≤ C∥ρ(t)∥Lq

x

≤ C1t
−N(1−1/N−1/p) , t > 0

with 1/p = 1/q − 1/N , 1 < q ≤ (N + 2)/N , i.e. N/(N − 1) < p ≤ N(N +
2)/(N2 − N − 2), which implies the estimate (1.8). �
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