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Abstract

This paper studies the classical and the quantum mechanics in a non-
abelian gauge field on the basis of the symplectic geometry and the theory
of representation of Lie groups. As a classical-quantum correspondence
we present a conjecture on the quasi-mode corresponding to a certain
classical energy level.
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Introduction

Let (M,m) be a d dimensional smooth Riemannian manifold without bound-
ary, and let π : P →M be a principal G-bundle, where G is a compact semisim-
ple Lie group with dimG = r. Suppose P is endowed with a connection ∇̃. The
connection ∇̃ is defined by a g-valued one form (called the connection form) θ
on P with certain properties, where g is the Lie algebra of G. The g-valued
two form Θ := dθ + θ ∧ θ on P is called the curvature form of ∇̃. (See [4], for
example.)

Take an open covering {Uα} of M with {φαβ} being the transition functions
of P . Then the curvature form Θ is regarded as a family of g-valued two forms
Θ̄α defined on Uα such that

Θ̄β = Ad(φ−1
αβ)Θ̄α (0.1)

on Uα ∩ Uβ (̸= ϕ), where Ad(·) denotes the adjoint action of G on g. Such a
family of g-valued two forms {Θ̄α} on M satisfying (0.1) is called a gauge field,
while the connection form θ is called a gauge potential. If G is the abelian group
U(1), then Θ̄α = Θ̄β holds, and accordingly we have a two form Θ̄ globally
defined on M , which is called a magnetic field.

In this paper we study the classical and the quantum mechanics in the
non-abelian gauge field {Θ̄α} on the basis of the symplectic geometry and the
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theory of representation of Lie groups. Section 1 is devoted to reviewing a
geometrical formulation for the classical mechanics in the gauge field, which is
essentially the same as that in the previous paper [6] (see also [7]). In Section 2
we introduce the space of quantum states corresponding to the classical system
with an integral “charge”. (Related arguments are found in [8], [9].) Finally in
Section 3 we present a conjecture on the quasi-mode corresponding to a certain
classical energy level. This conjecture is a generalization of the eigenvalue
theorem given in [5] for the abelian gauge field (the magnetic field).

1 Classical mechanics in a gauge field

1.1 The Kaluza-Klein metric
Let ( , )g denote the inner product given by (−1) × (the Killing form) on

the compact semisimple Lie algebra g(= TeG), and let mG be the metric on
the Lie group G induced from ( , )g. Note that mG is invariant under left- and
right-translations on G.

The connection ∇̃ on the principal bundle π : P → M defines the direct
decomposition of each tangent space TpP (p ∈ P ) as

TpP = Hp ⊕ Vp, (1.1)

where Vp is tangent to the fiber, and Hp is linearly isomorphic with Tπ(p)M
through π∗|Hp . Note that the tangent space Vp to the fiber is linearly isomorphic
with g by the correspondence g ∋ A 7→ AP

p := d
dt (p·exp tA)|t=0 ∈ Vp. The inner

product on g induces the inner product ( , )V,p on Vp (p ∈ P ) as (AP , BP )V,p =
(A,B)g (A,B ∈ g). On the other hand, we have the inner product ( , )H,p on
Hp from the metric m on M such that π∗|Hp is an isometry. Finally, we define
an inner product m̃ in each TpP (p ∈ P ) by defining Hp and Vp to be orthogonal
each other. The metric m̃ on P (which is induced from the metric m on M ,
the metric mG on G, and the connection ∇̃) is called the Kaluza-Klein metric
(cf. [3]). Note that m̃ is invariant under the G-action on P .

Let ΩP = dωP be the standard symplectic structure on the cotangent
bundleT ∗P of P , where ωP is called the canonical one form on T ∗P . We
have the natural Hamiltonian function H̃ on T ∗P defined by the Kaluza-Klein
metric m̃, i.e., H̃(q) = ∥q∥2 (q ∈ T ∗P ). Thus, we have the Hamiltonian system
(T ∗P,ΩP , H̃), which is just the system of geodesic flow on T ∗P .

1.2 Reduction of the system (cf. [1, Ch.4])
The action p 7→ p · g = Rg(p) (p ∈ P, g ∈ G) of G on P is naturally lifted

to the action R∗
g−1 := (Rg−1)∗ on T ∗P (so that R∗

g−1 : T ∗
pP → T ∗

p·gP for each
p ∈ P ), which preserves ωP (and accordingly ΩP ), i.e., R∗

g−1ωP = ωP holds for
every g ∈ G. (We call such action a symplectic action.) Moreover, we notice
that the Hamiltonian H̃ is also invariant under the action R∗

g−1 .
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A momentum map for the symplectic G-action R∗
g−1 is a map J : T ∗P → g∗

(the dual space of g) given by

⟨J(q), A⟩ = ⟨qp, AP
p ⟩ (q ∈ T ∗P, qp ∈ T ∗

pP (p ∈ P )), (1.2)

for all A ∈ g. The momentum map J is Ad∗-equivariant, i.e.,

J ◦R∗
g−1 = Ad∗(g−1) ◦ J (1.3)

holds for g ∈ G, where Ad∗(g) := (Ad(g−1))∗ (the adjoint of Ad(g−1)). Fur-
thermore, J is invariant under the flow of (T ∗P,ΩP , H̃).

Note that J is a surjective map with any µ ∈ g∗ to be a regular value,
and J−1(µ) is a submanifold of T ∗P . Put Gµ := {g ∈ G; Ad∗(g)µ = µ},
which is a closed subgroup of G. Then, J−1(µ) is Gµ-invariant because of
(1.3). The quotient manifold Pµ := J−1(µ)/Gµ is naturally endowed with a
symplectic structure Ωµ induced from ΩP , and endowed with a Hamiltonian
function Hµ induced from H̃. Thus we have a (reduced) Hamiltonian system
Hµ = (Pµ,Ωµ,Hµ), which we regard as the dynamical system of classical par-
ticle of “charge” µ in the gauge field given by the connection ∇̃ (the gauge
potential). We remark that the reduced phase space Pµ is also given as the
quotient manifold J−1(Oµ)/G for the coadjoint orbit Oµ = {Ad∗(g)µ; g ∈ G}
in g∗.

1.3 A formulation by using the connection form
Suppose Gµ $ G. Consider the quotient manifold Mµ := P/Gµ, and the

natural projection π′ : Mµ → M(= P/G) gives a bundle structure with the
fiber G/Gµ(∼= Oµ). Let π′

Mµ
: M#

µ → Mµ be the vector bundle obtained by
pulling back the cotangent bundle T ∗M overM through the map π′ : Mµ →M ,
i,e.,

M#
µ = {(y, ξ) ∈Mµ × T ∗M ; π′(y) = πM (ξ)}.

We note that M#
µ is regarded as a subbundle of T ∗Mµ by the immersion

(y, ξ) 7→ π′∗(ξ) ∈ T ∗
yMµ.

Let θ be the connection form (which is a g-valued one form on P ) of ∇̃, and
put θµ = ⟨µ, θ⟩, which is an R-valued one form on P .

Lemma 1 Let gµ be the Lie algebra of Gµ. An element A in g belongs to gµ

if and only if dθµ(AP , X) = 0 for any vector field X on P .

Proof. We have

dθµ(AP , X) = (i(AP )dθµ)(X) = (LAP θµ)(X) − d(i(AP )θµ)(X),

where i(AP ) and LAP denote the interior product and the Lie derivative, respec-
tively. Since i(AP )θµ = θµ(AP ) = ⟨µ,A⟩ = constant, we have dθµ(AP , X) =
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Figure 1: Reduction of the system

(LAP θµ)(X). Note that R∗
gθ = Ad(g−1)θ for g ∈ G, and we get

(LAP θµ)(X) =
d

dt
⟨µ,Ad(exp(−tA))(θ(X))⟩

∣∣
t=0

=
d

dt
⟨Ad∗(exp tA)µ, θ(X)⟩

∣∣
t=0

.

This formula implies the assertion of the lemma． �
By virtue of this lemma dθµ is regarded as a closed two form on Mµ. We

introduce a two form

Ω#
µ := (π̃′)∗ΩM + (π′

Mµ
)∗(dθµ)

on M#
µ , where π̃′ : M#

µ → T ∗M is the natural lift of π′ : Mµ → M , and
ΩM is the standard symplectic form on T ∗M . The two form Ω#

µ is closed and
non-degenerate, and accordingly defines a symplectic structure on M#

µ .

Remark The symplectic structure Ω#
µ is just the restriction of the twisted

symplectic form ΩMµ + (πMµ)∗(dθµ) on T ∗Mµ to the subbundle M#
µ , where

πMµ : T ∗Mµ →Mµ is the natural projection.

Let H be the Hamiltonian function on T ∗M defined by the Riemannian
metric m on M , and putH#

µ := (π̃′)∗H+∥µ∥2, where the norm ∥µ∥ is naturally
defined by the inner product mg on g. Thus we obtain the Hamiltonian system
(M#

µ ,Ω
#
µ ,H

#
µ ) (see Figure 1).

Proposition 2 The Hamiltonian system Hµ is isomorphic with (M#
µ ,Ω

#
µ ,H

#
µ ),

that is, there exists a diffeomorphism χµ : Pµ →M#
µ such that

Ωµ = χ∗
µΩ#

µ , Hµ = χ∗
µH

#
µ . (1.4 a, b)
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Proof. For each p ∈ P we put

(V ⊥)p := {q ∈ T ∗
pP | ⟨q, AP

p ⟩ = 0 for ∀A ∈ g} (⊂ T ∗
pP ),

(V ⊥
µ )p := {q ∈ T ∗

pP | ⟨q, AP
p ⟩ = 0 for ∀A ∈ gµ} (⊂ T ∗

pP ),

and define the subbundles V ⊥ :=
∪

p∈P (V ⊥)p and V ⊥
µ :=

∪
p∈P (V ⊥

µ )p of T ∗P ,
which are invariant under the Gµ-action. Moreover we see that

M#
µ

∼= V ⊥/Gµ, T ∗Mµ
∼= V ⊥

µ /Gµ.

For each q ∈ T ∗
pP we define the map

χ̄µ(q) := q − (θµ)p ∈ T ∗
pP.

Then, we see that
(i) χ̄µ(q) ∈ (V ⊥)p if q ∈ J−1(µ), and that
(ii) χ̄µ(R∗

g−1(q)) = R∗
g−1(χ̄µ(q)) for q ∈ J−1(µ) and g ∈ Gµ.

Indeed, (i) is shown as follows: ⟨qp, AP
p ⟩ − ⟨(θµ)p, A

P
p ⟩ = ⟨J(q), A⟩ − ⟨µ,A⟩ = 0

for ∀A ∈ g. The assertion (ii) follows from the formula (θµ)p·g = R∗
g−1((θµ)p)

(g ∈ Gµ), that is derived from the property R∗
g−1θ = Ad(g)θ (g ∈ G) for θ and

the definition of Gµ. Noticing (i) and (ii), we can define the diffeomorphism
χµ : Pµ →M#

µ from map χ̄µ : T ∗P → T ∗P .
Now, we will prove (1.4 a). A vector X ∈ Tq(T ∗P ) (q ∈ T ∗P, πP (q) = p) is

written as

X(q) = X̄(q) +X∗(q) with X̄(q) ∈ TpP, X
∗(q) ∈ T ∗

pP (= Tq(T ∗
pP )).

Then, X∗(q) ∈ (V ⊥)p if X ∈ TqJ
−1(µ). Let us take two vector fields X = X(q)

and Y = Y (q) on J−1(µ) defined in a neighborhood of q0 ∈ J−1(µ) such that
X̄(q) and Ȳ (q) are constant along the each fibers of T ∗P . Then we have

ΩP (X,Y ) =
1
2
{X⟨ωP , Y ⟩ − Y ⟨ωP , X⟩ − ⟨ωP , [X,Y ]⟩}

=
1
2
{X⟨q, Ȳ ⟩ − Y ⟨q, X̄⟩ − ⟨q, [X,Y ]⟩}.

Put q′(= χ̄µ(q)) = q − θµ(∈ (V ⊥)p), and we have

ΩP (X,Y ) =
1
2
{X⟨q′, Ȳ ⟩ − Y ⟨q′, X̄⟩ − ⟨q′, [X,Y ]⟩}

+
1
2
{X̄⟨θµ, Ȳ ⟩ − Ȳ ⟨θµ, X̄⟩ − ⟨θµ, [X,Y ]⟩}.

Here we notice that X̄(p′) = X̄(p) and [X,Y ] = [X̄, Ȳ ] hold. Therefore we
see that the first term of this formula is regarded as ΩM ((π̃′ ◦ χµ)∗([X]), (π̃′ ◦
χµ)∗([Y ]))，and the second is regarded as dθµ((π′

Mµ
◦χµ)∗([X]), (π′

Mµ
◦χµ)∗([Y ])).
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Finally we prove (1.4 b). Take q ∈ T ∗
pP ∩ J−1(µ). Then, we have q =

χ̄µ(q) + (θµ)u with χ̄µ(q) ∈ (V ⊥)p, (θµ)p ∈ (H⊥)p. Since (V ⊥)p and (H⊥)p

are orthogonal each other, we have

Hµ([q]) = ∥χ̄µ(q)∥2 + ∥(θµ)p∥2 = H
(
π̃′ ◦ χµ([q])

)
+ ∥(θµ)p∥2.

Here, (θµ)p(AP
p ) = ⟨µ,A⟩ for ∀A ∈ g, and accordingly ∥(θµ)p∥ = ∥µ∥ holds. �

Wong’s equation on Mµ. We represent the flow of the system (M#
µ ,Ω

#
µ ,H

#
µ )

using local coordinates. Let (x, g) = (x1, . . . , xd, g1, . . . , gr) be local coordinates
of U × G ∼= π−1(U) ⊂ P for U ⊂ M . Note that Mµ is locally diffeomorphic
with U × (G/Gµ). Suppose the connection form θ of ∇̃ is represented as

θ(x, g) =
d∑

j=1

θj(x, g)dxj +
r∑

α=1

θα(x, g)dgα.

Then, the curvature form Θ := dθ + θ ∧ θ of ∇̃ is locally written as

Θ(x, g) =
1
2

∑
i,j

Θij(x, g)dxi ∧ dxj

=
1
2

∑
i,j

{(∂θj

∂xi
− ∂θi

∂xj

)
+ [θi, θj ]

}
dxi ∧ dxj .

Put Θµ := ⟨µ,Θ⟩, and it is shown similarly to dθµ that Θµ is an R-valued
two form globally defined on Mµ. We get the following by straightforward
calculations.

Proposition 3 The motion of the particle in the system (M#
µ ,Ω

#
µ ,H

#
µ ) is

governed by the equation (called Wong’s equation [7]) on Mµ locally expressed
as

ẍi +
∑
j,k

Γi
jk(x)ẋj ẋk − 2

∑
j,k

mij(x)Θ(µ)
jk (x, g)ẋk = 0

ġ + Lg∗

( ∑
j

θj(x, g)ẋj
)

= 0


where Θ(µ)

jk (x, g) := ⟨µ,Θjk(x, g)⟩, Γi
jk(x) denotes Christoffel’s symbol on the

Riemannian manifold (M,m), and Lg∗ : g(= TeG) → TgG is the left trans-
lation. (Note that Θ(µ)

jk (x, g) and the second equation is invariant under Gµ-
action, namely they depend only on the equivalent class [g] ∈ G/Gµ.)

2 Quantum systems in a gauge field

2.1 Unitary representations of G and the quantum states
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Let gC be the complexification of the Lie algebra g. Let h denote a Cartan
subalgebra of gC, and let R be the root system for the pair (gC, h). Put hR :=
{H ∈ h; α(H) ∈ R for ∀α ∈ R}. Then, hR = it ⊂ tC = h holds for a Cartan
subalgebra t of g. We notice that hR is a l(= rank G) dimensional real vector
space with the inner product (iH, iH ′)K = −(H,H ′)K = (H,H ′)g (H,H ′ ∈ t),
where (·, ·)K denotes the Killing form on gC (or g). By identifying g to g∗ with
respect to the inner product (·, ·)g we have h∗

R = it∗ ⊂ ig∗. Put Γ := t∩exp−1(e)
for exp : gC → GC, where GC is the simply connected Lie group whose Lie
algebra is gC. Then, Γ is a lattice in t ∼= Rl. Let Γ∗ be the dual lattice of Γ,
namely

Γ∗ = {τ ∈ t∗ | ⟨τ,H⟩ ∈ 2πZ for ∀H ∈ Γ}.

Then, iΓ∗ is a lattice in it∗ = h∗
R, whose element is called an integral form. Let

C be a Weyl chamber in h∗
R. Then C defines the set R+ of positive roots and

the ordering in h∗
R. The set Ĝ of irreducible unitary representations is labeled

by the set C ∩ iΓ∗ (whose element is called a dominant integral form).
For a “charge” µ ∈ g∗ the coadjoint orbit Oµ in g∗ intersects the set iC

in exactly one point iλ (λ ∈ C). We assume that λ lies on iΓ∗\{0}, i.e., λ
is integral. We call such µ a quantized charge. Let (ρλ, Vλ) be the irreducible
unitary representation of G with highest weight λ. We introduce the associated
vector bundle Eλ = P×ρλ

Vλ →M of P through the representation (ρλ, Vλ). We
regard the Hilbert space L2(M, Eλ) of L2-sections of Eλ as the space of quantum
states corresponding to the classical system Hµ for the quantized charge µ.

The connection ∇̃ on P induces the covariant derivative ∇̃(λ) : C∞(M, Eλ) →
C∞(M,T ∗M ⊗ Eλ) on Eλ, and we obtain the Laplacian ∆(λ) := (∇̃(λ))∗ ∇̃(λ) :
L2(M, Eλ) → L2(M, Eλ), which is a non-negative, (formally) self-adjoint, sec-
ond order elliptic differential operator.

Let s : U(⊂ M) → P be a local section of P , and set θU := s∗θ for the
connection form θ of ∇̃. Suppose θU is expressed as

∑
Aj(x)dxj (Aj(x) ∈ g).

Then, the covariant derivative ∇̃(λ) is given by

∇̃(λ)
j f = ∇jf +A

(λ)
j (x)f (f ∈ C∞(U, Vλ))

with A(λ)
j (x) = (ρλ)∗(Aj(x)) ∈ u(Vλ), and

∆(λ) = −
∑
j,k

mjk(x)
(
∇j +A

(λ)
j (x)

)(
∇k +A

(λ)
k (x)

)
where ∇ is the Levi-Civita connection on (M,m).

2.2 Spaces of L2 functions on P and L2 sections of Eλ

Let L2
λ(P, Vλ) be the space of Vλ-valued L2 functions f ’s on P satisfying

f(p · g) = ρλ(g−1)f(p) (p ∈ P )
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for any g ∈ G. Then, we have the natural unitary isomorphism (by taking
suitable inner products):

L2(M, Eλ) ∼= L2
λ(P, Vλ).

Let χλ denote the character of the representation ρλ, and define the map
Pλ : L2(P ) → L2(P ); f 7→ fλ by

fλ(p) := dλ

∫
G

χλ(g−1)f(p · g) dg (p ∈ P ),

where dλ := dimVλ, and dg is the Haar measure on G. Let L2
λ(P ) be the image

of Pλ. Using local coordinates, P ⊃ π−1(U) ∋ p = (x, g) ∈ U ×G, we can see
that L2

λ(P ) consists of functions locally expressed as

fλ(p) = fλ(x, g) =
∑
j,k

[ρλ(g)]jk f0(x)
j
k (2.1)

for some functions f0(x)
j
k on U , where [ρλ(g)]jk denotes the matrix-components

of the representation ρλ. By virtue of the Peter-Weyl theorem we have

L2(P ) =
∑

ρλ∈Ĝ

⊕ L2
λ(P ).

Define the map Fλ : L2(P ) → L2(P, V ∗
λ ⊗ Vλ); f 7→ Fλ by

Fλ(p) := dλ

∫
G

f(p · g)ρλ(g)dg (p ∈ P ).

Here ρλ(g) is regarded as a element of V ∗
λ ⊗ Vλ = EndC(Vλ), and we have a

local expression
Fλ(p) = Fλ(x, g) = ρλ(g−1)F0(x)

for a matrix-valued function F0(x) on U . We denote by L2
λ(P, V ∗

λ ⊗ Vλ) the
image of the map Fλ. Then, we have the following.

Lemma 4 The function F ∈ L2(P, V ∗
λ ⊗ Vλ) belongs to L2

λ(P, V ∗
λ ⊗ Vλ) if and

only if
F (p · g) = ρλ(g−1)F (p) (p ∈ P ) (2.2)

holds for any g ∈ G.

Proof. The “only if”-part of the statement is shown by directly checking
(2.2). Suppose F satisfies (2.2). Then, F is locally expressed as F (x, g) =
ρλ(g−1)K(x) for some matrix-valued function K(x). Take the L2 function f
on P (locally) defined by

f(x, g) = Trace
[
ρλ(g−1) tK(x)

]
.

8



Then, we have Fλ(f) = F . �
Let {vj}dλ

j=1 be a orthonormal basis of Vλ. It follow from the above lemma
that the Vλ-valued functions f j

λ(p) := Fλ(p)vj (j = 1, . . . , dλ) belong to
L2

λ(P, Vλ). As a result we have the following isomorphism:

L2
λ(P, V ∗

λ ⊗ Vλ) ∼=

dλ times︷ ︸︸ ︷
L2

λ(P, Vλ) ⊕ · · · ⊕ L2
λ(P, Vλ) .

Finally, for Fλ ∈ L2
λ(P, V ∗

λ ⊗ Vλ) (which is a matrix-valued function) we
define

[Φλ(Fλ)](p) := Trace
[
tFλ(p)

]
(p ∈ P ).

Then, Pλ = Φλ ◦ Fλ holds, and Φλ is a bijection from L2
λ(P, V ∗

λ ⊗ Vλ) onto
L2

λ(P ). In fact, for f(x, g) =
∑

j,k[ρλ(g)]jkf(x)j
k ∈ L2

λ(P ) (locally), we have

[Φ−1
λ f ](x, g) = ρλ(g−1) F (x)

for the (dλ × dλ) matrix F (x) := [f(x)j
k].

As a consequence, we get the following one-to-one correspondences:

L2
λ(P ) ∼= L2

λ(P, V ∗
λ ⊗ Vλ)

∼= L2
λ(P, Vλ) ⊕ · · · ⊕ L2

λ(P, Vλ)
∼= L2(M, Eλ) ⊕ · · · ⊕ L2(M, Eλ),

that is, more explicitly∑⊕L2(M, Eλ)
∑⊕L2

λ(P, Vλ) L2
λ(P, V ∗

λ ⊗ Vλ) L2
λ(P )

∈ ∈ ∈ ∈

(ψ1, . . . , ψdλ) ↔ (ψ1, . . . ,ψdλ
) ↔ Ψ = (ψ1, . . . ,ψdλ

) ↔ ψP = Trace
[
tΨ
]
.

Let ∆P be the Laplace-Beltrami operator on (P, m̃). Then, ∆P leaves
L2

λ(P ) invariant. Notice that the Laplace-Beltrami operator ∆G on (G,mG)
satisfies

∆G[ρλ(g)]jk = (∥λ+ δ∥2
K − ∥δ∥2

K)[ρλ(g)]jk,

where δ = 1
2

∑
α ∈R+ α ∈ h∗

R, and the norm ∥·∥K (and the inner product (·, ·)K)
on h∗

R is naturally induced one from that on hR, and we have the following
lemma by the formula (2.1).

Lemma 5 Suppose L2
λ(P ) ∋ ψP 7→ ψj ∈ L2(M, Eλ)(j = 1, . . . , dλ) is the above

correspondence. Then, we have

(∆PψP )j = ∆(λ)ψj + (∥λ+ δ∥2
K − ∥δ∥2

K)ψj .
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We assume that M is compact. Then, the spectrum of ∆(λ) consists of
non-negative eigenvalues

ν
(λ)
1 ≤ ν

(λ)
2 ≤ · · · ≤ ν

(λ)
k ≤ · · · ↑ +∞.

If ψP ∈ L2
λ(P ) satisfies ∆PψP = κψP , then

∆(λ)ψj = (κ− ∥λ+ δ∥2
K + ∥δ∥2

K)ψ (j = 1, . . . , dλ).

Conversely, suppose ψ ∈ L2(M, Eλ) satisfies ∆(λ)ψ = νψ. Put

Ψ(j) = (0, . . . , 0,
(j)

ψ , 0, . . . , 0) (j = 1, . . . , dλ).

Then, ψ(j)
P = Trace[tΨ(j)] ∈ L2

λ(P ) satisfies

∆Pψ
(j)
P = (ν + ∥λ+ δ∥2

K − ∥δ∥2
K)ψ(j)

P .

Thus, we have the following for the spectrum {ν(λ)
j } of ∆(λ) and that of ∆P .

Proposition 6 The spectrum of ∆P is the set of eigenvalues given by∪
λ∈Ĝ

dλ ·
{
ν

(λ)
j + ∥λ+ δ∥2

K − ∥δ∥2
K

∣∣ j ∈ N
}
,

where dλ · { } denotes the set of dλ copies of { }, and

dλ =
∏

α∈R+

(λ+ α, α)K

(δ, α)K
.

3 Quasi-mode for the mechanics in a gauge field

3.1 Quantum energies associated to a Lagrangian manifold
Suppose µ ∈ g∗ is a quantized charge, namely, iλ = Oµ ∩ iC belongs to

iΓ∗\{0}. We have a quantum system associated to Hµ = (M#
µ ,Ω

#
µ ,H

#
µ ), that

is a quantum Hamiltonian given by

Ĥλ = ∆(λ) + ∥λ+ δ∥2
K

= −
∑
j,k

mjk(x)
(
∇j +A

(λ)
j (x)

)(
∇k +A

(λ)
k (x)

)
+ ∥λ+ δ∥2

K

acting on L2(M, Eλ). For the element λ ∈ C ∩ Γ∗ let us consider the “ladder”
of representations with the highest weights {nλ; n ∈ N} and the associated
family of quantum systems (Ĥnλ, L

2(M, Enλ)).
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In the case of abelian gauge group U(1) we established in [5] a eigenvalue
theorem for the magnetic Schrödinger operator, which asserts the existence
of an approximate quantum energy associated to a certain classical energy
level. We here present the following conjecture which is a generalization of the
eigenvalue theorem to the case of non-abelian gauge group G.

Conjecture Suppose there exists a compact Lagrangian submanifold LP of
(T ∗P,ΩP ) contained in J−1(Oµ). Let L = χµ ◦ πOµ(LP ), which is a submani-
fold of M#

µ . Assume the following conditions:
(i) H#

µ ≡ e on L for a real constant e,
(ii) LP is invariant under the Hamiltonian flow φt on (T ∗P,ΩP , H̃), and

the restricted flow φ|LP leaves invariant a non-zero half-density on LP , and
(iii)(quantization condition) for every closed curve γ on LP ,

1
2π

∫
γ

ωP − 1
4
mLP

([γ]) ∈ Z (3.1)

holds, where mLP
∈ H1(LP ,Z) is the Maslov class of LP .

Let d be the smallest element of the set {1, 2, 4} for which d ·mLP ([γ]) ≡
0 (mod 4) for all [γ] ∈ π1(LP ), and set

nk := dk + 1, ñk :=
1
2

(
nk +

∥nkλ+ δ∥K

∥λ∥K

)
for k ∈ N ∪ {0}. (Note that ñk ∼ nk as k → ∞.)

Then, there is a sequence {E(nkλ)
jk

}∞k=0 of eigenvalues of Ĥnkλ such that

E
(nkλ)
jk

= eñ2
k +O(1) (k → ∞). (3.2)

Observation Put ~ = 1/ñk, and consider the Schrödinger operator

Ĥ(~) :=
1
ñ2

k

Ĥnkλ

depending on the Planck constant ~. Then, E(~) := E
(nkλ)
jk

/ñ2
k is an eigenvalue

of Ĥ(~), and the formula (3.2) means that

E(~) = e+O(~2)

as ~ → 0. Thus, we see that the classical energy e obtained by the quantization
condition gives an approximation of a quantum energy of order ~2 in a semi-
classical sense.

3.2 Plan to prove the conjecture
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Let
G̃ := S1 ×G = {(eit, g); 0 ≤ t < 2π, g ∈ G}.

The strategy to prove the conjecture is to construct a suitable operator A :
D′(G̃) → D′(P ) (where D′(·) denotes the space of distributions). The idea is
essentially due to [11] by Weinstein, and applied in [5] in the case of magnetic
flow, i.e., G = U(1).

By virtue of the Peter-Weyl each element u(t, g) in L2(G̃) is written as

u(t, g) =
∑
ℓ∈Z

∑
ρ∈Ĝ

∑
j,k

ûjk
ℓρ e

iℓt[ρ(g)]jk. (3.3)

For the sequence {nk}∞k=0 (nk = dk+1) we define the subspace L2(G̃; {nkλ}) of
L2(G̃) as follows: A function u ∈ L2(G̃) written as (3.3) belongs to L2(G̃; {nkλ})
if and only if û · ·

ℓρ = 0 holds for every (ℓ, ρ) /∈ {(nk, nkλ)}∞k=0.
PutDG := (∆G+∥δ∥K)1/2, which is a first order pseudodifferential operator

satisfying
DG[ρnλ(g)]jk = (∥nλ+ δ∥K)[ρnλ(g)]jk (n ∈ N).

Let us consider a continuous linear operator A : D′(G̃) → D′(P ) which satisfies
the following conditions:

(A-i) e−1∆PA − ADG̃ induces a bounded operator from L2(G̃) to L2(P ),
where

DG̃ := −1
4

( ∂

∂t
+

i

∥λ∥K
DG

)2

.

(A-ii) A : L2(G̃; {nkλ}) → L2(P ) is an isometry.
(A-iii) Take

(uk)j
l (t, g) :=

√
dk

2π
einkt [ρnkλ(g)]jl (dk := dimVnkλ)

in L2(G̃; {nkλ}). Then, ψk = (ψk)j
l := A[(uk)j

l ] belongs to L2
nkλ(P ) ∼=

L2
nkλ(P, V ∗

nkλ ⊗ Vnkλ).

Suppose we have the above operator A. Note that

DG̃uk = ñ2
kuk.

By virtue of (A-i) we have

∥(e−1∆P − ñ2
k)ψk∥L2(P ) = ∥(e−1∆PA−ADG̃)uk∥L2(P )

≤ M∥uk∥L2(G̃) = M, (3.4)
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M being a constant. Let {φ(k)
j } be the orthonormal basis of eigenfunction of

∆P |L2
nkλ(P ). By means of Lemma 5 we have

∆Pφ
(k)
j = Ẽ

(nkλ)
j φ

(k)
j

with
Ẽ

(nkλ)
j = E

(nkλ)
j − ∥δ∥2

K . (3.5)

Using the expansion: ψk =
∑

j ψ̂jφ
(k)
j , we have

∥(e−1∆P − ñ2
k)ψk∥2

L2(P ) = ∥e−1
∑

j

ψ̂jẼ
(nkλ)
j φ

(k)
j −

∑
j

ñ2
kψ̂jφ

(k)
j ∥2

L2(P )

=
1
e2

∑
j

{Ẽ(nkλ)
j − eñ2

k}2|ψ̂j |2

≥ 1
e2

min
j

{Ẽ(nkλ)
j − eñ2

k}2
∑

j

|ψ̂j |2

=
1
e2

min
j

{Ẽ(nkλ)
j − eñ2

k}2.

Note
∑

j |ψ̂j |2 = 1 by means of (A-ii). Combining this inequality with (3.4),
we have

min
j

{Ẽ(nkλ)
j − eñ2

k}2 ≤ e2M,

that is
|Ẽ(nkλ)

jk
− eñ2

k| = min
j

|Ẽ(nkλ)
j − eñ2

k| ≤ Const. (3.6)

We obtain the formula (3.2) from (3.5) and (3.6). The sequence {(ψk, eñ
2
k)}∞k=0

in this argument is called a quasi-mode of ∆P (cf. [2]).

Thus, a proof of the conjecture is carried out if we can construct the operator
A and check the properties (A-i)-(A-iii). We expect that this procedure will be
similarly performed as [5] (see also [10], [11]) by constructing the operator A
as a Fourier integral operator under the quantization condition (3.1).
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