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Abstract

This paper studies the classical and the quantum mechanics in a non-
abelian gauge field on the basis of the symplectic geometry and the theory
of representation of Lie groups. As a classical-quantum correspondence
we present a conjecture on the quasi-mode corresponding to a certain
classical energy level.
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Introduction

Let (M, m) be a d dimensional smooth Riemannian manifold without bound-
ary, and let 7 : P — M be a principal G-bundle, where G is a compact semisim-
ple Lie group with dim G = r. Suppose P is endowed with a connection V. The
connection V is defined by a g-valued one form (called the connection form) 0
on P with certain properties, where g is the Lie algebra of G. The g-valued
two form © :=df + 0 A0 on P is called the curvature form of V. (See [4], for
example.)

Take an open covering {U, } of M with {¢.s3} being the transition functions
of P. Then the curvature form © is regarded as a family of g-valued two forms
O, defined on U, such that

05 = Ad(p,5)0a (0.1)

on U, NUg(# ¢), where Ad(-) denotes the adjoint action of G on g. Such a
family of g-valued two forms {©,} on M satisfying (0.1) is called a gauge field,
while the connection form 6 is called a gauge potential. If G is the abelian group
U(1), then ©, = (:)ﬁ holds, and accordingly we have a two form © globally
defined on M, which is called a magnetic field.

In this paper we study the classical and the quantum mechanics in the
non-abelian gauge field {©,} on the basis of the symplectic geometry and the



theory of representation of Lie groups. Section 1 is devoted to reviewing a
geometrical formulation for the classical mechanics in the gauge field, which is
essentially the same as that in the previous paper [6] (see also [7]). In Section 2
we introduce the space of quantum states corresponding to the classical system
with an integral “charge”. (Related arguments are found in [8], [9].) Finally in
Section 3 we present a conjecture on the quasi-mode corresponding to a certain
classical energy level. This conjecture is a generalization of the eigenvalue
theorem given in [5] for the abelian gauge field (the magnetic field).

1 Classical mechanics in a gauge field

1.1 The Kaluza-Klein metric

Let (, )g denote the inner product given by (—1) x (the Killing form) on
the compact semisimple Lie algebra g(= T.G), and let mg be the metric on
the Lie group G induced from ( , )g. Note that m¢ is invariant under left- and
right-translations on G.

The connection V on the principal bundle 7w : P — M defines the direct
decomposition of each tangent space T,P (p € P) as

T,P = H, &V, (1.1)

where V}, is tangent to the fiber, and H,, is linearly isomorphic with Ty, M
through 7, |m,. Note that the tangent space V), to the fiber is linearly isomorphic
with g by the correspondence g > A — Ag’ = %(pexp tA)|t=o € Vp. The inner
product on g induces the inner product (, )y, on V,, (p € P) as (A¥, BF)y,, =
(A,B)g (A, B € g). On the other hand, we have the inner product (, ), on
H,, from the metric m on M such that .|y, is an isometry. Finally, we define
an inner product m in each T, P (p € P) by defining H, and V,, to be orthogonal
each other. The metric m on P (which is induced from the metric m on M,
the metric mg on G, and the connection 6) is called the Kaluza-Klein metric
(cf. [3]). Note that m is invariant under the G-action on P.

Let Qp = dwp be the standard symplectic structure on the cotangent
bundleT™ P of P, where wp is called the canonical one form on T*P. We
have the natural Hamiltonian function H on T* P defined by the Kaluza-Klein
metric m, i.e., H(q) = ||q||* (¢ € T*P). Thus, we have the Hamiltonian system
(T*P,Qp, ﬁ), which is just the system of geodesic flow on 7™ P.

1.2 Reduction of the system (cf. [1, Ch.4])

The action p— p-g = Ry(p) (p € P, g € G) of G on P is naturally lifted
to the action R}, := (Ry-1)* on T*P (so that R}, : T;P — T P for each
p € P), which preserves wp (and accordingly Qp), i.e., R;,lwp = wp holds for
every g € G. (We call such action a symplectic action.) Moreover, we notice
that the Hamiltonian H is also invariant under the action R ..



A momentum map for the symplectic G-action R;_l isamap J : T*P — g*
(the dual space of g) given by

(J(@),A) = {ap, A})) (@€ T*P, gy € T, P (p€ P)), (1.2)
for all A € g. The momentum map J is Ad*-equivariant, i.e.,
JoR! 1 =Ad*(g7")oJ (1.3)

holds for g € G, where Ad*(g) := (Ad(g™'))* (the adjoint of Ad(g~1)). Fur-
thermore, J is invariant under the flow of (T* P, Qp, H ).

Note that J is a surjective map with any p € g* to be a regular value,
and J~!(p) is a submanifold of T*P. Put G, := {g € G; Ad"(g)u = u},
which is a closed subgroup of G. Then, J~!(u) is G-invariant because of
(1.3). The quotient manifold P, := J~*(n)/G,, is naturally endowed with a
symplectic structure €, induced from €1p, and endowed with a Hamiltonian
function H,, induced from H. Thus we have a (reduced) Hamiltonian system
Hy = (Pu,Q,, Hy,), which we regard as the dynamical system of classical par-
ticle of “charge” u in the gauge field given by the connection v (the gauge
potential). We remark that the reduced phase space P, is also given as the
quotient manifold J~(0,,)/G for the coadjoint orbit O,, = {Ad"(g)u; g € G}
in g*.

1.3 A formulation by using the connection form

Suppose G, ;Cé G. Consider the quotient manifold M, := P/G,, and the
natural projection 7’ : M,, — M(= P/G) gives a bundle structure with the
fiber G/G, (=2 O,). Let wau : M} — M,, be the vector bundle obtained by
pulling back the cotangent bundle T* M over M through the map =" : M,, — M,
ie.,

M ={(y.€) € My x T"M; 7'(y) = mr (€)}.

We note that M, j& is regarded as a subbundle of 7" M, by the immersion
(4, &) = '*(§) € Ty M.

Let 0 be the connection form (which is a g-valued one form on P) of V, and
put 6, = (u, 8), which is an R-valued one form on P.

Lemma 1 Let g, be the Lie algebra of G,,. An element A in g belongs to g,
if and only if d9,,(AY, X) =0 for any vector field X on P.

Proof. We have
d0,(A”, X) = (i(A")d6,,)(X) = (Lar0,)(X) — d(i(A7)6,)(X),

where i(AP ) and L 4r denote the interior product and the Lie derivative, respec-
tively. Since i(AF)0, = 6,(AF) = (u, A) = constant, we have df, (A", X) =
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Figure 1: Reduction of the system
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(L4r0,)(X). Note that R0 = Ad(g~")6 for g € G, and we get

d d N
(Lar0)(X) = — (1, Ad(exp(=tA)(O(X))| g = 7 (Ad" (exptA)s, O(X))],_,.
This formula implies the assertion of the lemmal] |

By virtue of this lemma df),, is regarded as a closed two form on M,,. We
introduce a two form

O = (7')" Qs + (mhy, )" (d0,)

m

on M#

B

where 7 : le — T*M is the natural lift of #’ : M, — M, and
Qs is the standard symplectic form on T*M. The two form Qf is closed and
non-degenerate, and accordingly defines a symplectic structure on M f

Remark The symplectic structure Q# is just the restriction of the twisted
symplectic form Qyy, + (g, )*(d6,) on T*M,, to the subbundle M#, where
wu, P T* M, — M, is the natural projection.

Let H be the Hamiltonian function on 7*M defined by the Riemannian
metric m on M, and put H# := (7')* H+||u||?, where the norm ||z| is naturally

defined by the inner product mg on g. Thus we obtain the Hamiltonian system
(Mf79f7Hf) (see Figure 1).

Proposition 2 The Hamiltonian system H,, is isomorphic with (Mif&7 Qf, Hjé),
that is, there exists a diffeomorphism x, : P, — Mf such that

QM = X;Qﬁ7 HM - X;ij (14 a,b)



Proof. For each p € P we put

(VY), = {qeT;P|{q,Al)=0for VA€ g} (CT;P),
(V) = {qeT;P|(qA))=0forVA€g,} (CT;P),

and define the subbundles V= := UpGP(VJ-)p and V- := UpeP(V )p of T*P
which are invariant under the G,-action. Moreover we see that

M# =V+/G,, T*M,=V,}/G,.
For each q € T); P we define the map

Xu(@) :==q—(0,.)p € T, P.

Then, we see that

(1) Xu(a) € (V1) if g € J (1), and that

(1) Xu(R;-1(9) = Ry-1(Xu(q)) for ¢ € J7(n) and g € G..
Indeed, (i) is shown as follows (p, ALY = ((0,4)p, AY) = (J(q), A) — (u, A) =0
for VA € g. The assertion (ii) follows from the formula (6,,)p.g = R} ((64)p)
(9 € Gp.), that is derived from the property R} .0 = Ad(g)¢ (g € G) for ¢ and
the definition of G,. Noticing (i) and (ii), we can define the diffeomorphism
Xp Py — Mij7£ from map ¥, : T*P — T*P.

Now, we will prove (1.4 a). A vector X € T,(T*P) (¢ € T*P,mp(q) = p) is
written as

X(a)

X(q) +X*(q) with X(q) € T,P, X*(q) € T; P(=T,(T; P)).
Then, X*(q) € (V ) if X € T,J ' (u). Let us take two vector fields X = X(q)
) on

and Y =Y(q L) deﬁned in a neighborhood of gy € J~1(x) such that
X (q) and Y (q) are constant along the each fibers of 7" P. Then we have

Qp(X,Y)

S {X(wp, ¥) = ¥ {op, X) = (wp, [X,Y])}

:%w@ﬂJME—MXW}

Put ¢'(= Xu(q) =q—0,.(c (VJ‘)p), and we have

W(X,Y) = X V)Y X) - ¢ V)

N %{X@“?} — Y (0,,X) — (0,, X, Y]}

Here we notice that X (p') = X(p) and [X,Y] = [X,Y] hold. Therefore we
see that the first term of this formula is regarded as Qu/((7" 0 x,)«([X]), (7" ©
Xu)«([Y]))Oand the second is regarded as df, () ox,.)« ([X]), (7 0x)« ([Y]))-



Finally we prove (1.4b). Take ¢ € T, P N J~Y(u). Then, we have q =
Xu(q) + (0,)u with x,.(¢) € V1), (0,), € (HL),. Since (V1), and (H1),
are orthogonal each other, we have

H,(lg]) = ||Xu(Q)|‘2 + H(G#)pHQ = H(ﬁl °© Xﬂ([‘ﬂ)) + H(Qu)pH2~
Here, (0,,),(AL) = (u, A) for VA € g, and accordingly [|(6,)p|| = [|x2]| holds. W

Wong’s equation on M,,. We represent the flow of the system (Mif&7 Qf, Hjé)

using local coordinates. Let (z,g) = (x',...,2% g',..., g") be local coordinates
of Ux G =7 Y(U) C Pfor UC M. Note that M, is locally diffeomorphic

with U x (G/G},). Suppose the connection form 6 of V is represented as

0(z,g) = Z 0;(z,g)dx? + Z 0o (z, g)dg”.

j=1 a=1

Then, the curvature form © :=df + 0 A 0 of V is locally written as

O(x,g)

1 ) .
3 Z O;;(x, g)dx" A da’

)]

- (- ) o na
2%

Put ©, = (i, 0), and it is shown similarly to df, that ©, is an R-valued
two form globally defined on M,. We get the following by straightforward
calculations.

Proposition 3 The motion of the particle in the system (Mf,Qﬁ,Hf) i
governed by the equation (called Wong’s equation [7]) on M, locally expressed

as
B4 Tig(a)idit =23 m (2)0%) (z, 9)i* =0
ik gk
g+ Lg*(z ej(a;,g)g'cj) —0
J

where @5.’2)(1‘,9) = {1, O;k(x,9)), Th.(x) denotes Christoffel’s symbol on the
Riemannian manifold (M, m), and L. : g(= T.G) — T,G is the left trans-

lation. (Note that @;‘,:) (x,9) and the second equation is invariant under G-
action, namely they depend only on the equivalent class [g] € G/G),.)

2 Quantum systems in a gauge field

2.1 Unitary representations of G and the quantum states



Let gc be the complexification of the Lie algebra g. Let h denote a Cartan
subalgebra of gc, and let R be the root system for the pair (gc, ). Put br :=
{H € bh; a(H) € R for Ya € R}. Then, hr = it C t¢ = h holds for a Cartan
subalgebra t of g. We notice that hg is a I(= rank ) dimensional real vector
space with the inner product (¢H,iH ) = —(H,H')x = (H,H')q (H,H' € 1),
where (-, -) x denotes the Killing form on g¢ (or g). By identifying g to g* with
respect to the inner product (-, )4 we have b = it* C ig*. Put I' := tNexp~!(e)
for exp : gc — Gg¢, where G¢ is the simply connected Lie group whose Lie
algebra is gc. Then, I' is a lattice in t =2 R'. Let I'* be the dual lattice of T,
namely

I ={ret|(r,H) €2nZ for YH € T}.

Then, ¢I'"* is a lattice in it* = hj, whose element is called an integral form. Let
C be a Weyl chamber in hj. Then C defines the set R of positive roots and
the ordering in hg. The set G of irreducible unitary representations is labeled
by the set C' N iT™* (whose element is called a dominant integral form).

For a “charge” p € g* the coadjoint orbit O, in g* intersects the set iC
in exactly one point i\ (A € C). We assume that A lies on I'*\{0}, i.e., A
is integral. We call such u a quantized charge. Let (py, V) be the irreducible
unitary representation of G with highest weight A\. We introduce the associated
vector bundle £y = P x,,Vy — M of P through the representation (px, Vx). We
regard the Hilbert space L2(M, £y) of L2-sections of £y as the space of quantum
states corresponding to the classical system H,, for the quantized charge p.

The connection V on P induces the covariant derivative V) : ¢ (M, &) —
C> (M, T*M @ E,) on &y, and we obtain the Laplacian A®) := (VV)* ¥
L?(M,Ey\) — L*(M, &), which is a non-negative, (formally) self-adjoint, sec-
ond order elliptic differential operator.

Let s : U(C M) — P be a local section of P, and set 0y := s*0 for the
connection form 6 of V. Suppose 6 is expressed as S Aj(z)da? (Aj(x) € g).
Then, the covariant derivative v is given by

V= Vi + AP @ (f € CR W)
with A§->‘)(x) = (pa)«(A4;(z)) € u(Vy), and

AW = =3 (@) (V; + AP @) (Vi + AL (@)
7,k

where V is the Levi-Civita connection on (M, m).

2.2 Spaces of L? functions on P and L? sections of &,
Let L3(P,Vy) be the space of Vy-valued L? functions f’s on P satisfying

fip-9)=pr(g")flp) (peP)



for any g € G. Then, we have the natural unitary isomorphism (by taking
suitable inner products):

L3(M, &) = Li(P,Vy).

Let x denote the character of the representation py, and define the map
Px: L2(P) — L2(P); f+ fx by

S(p) = dy / @ Ve g)dg (peP)

G

where d := dim V), and dg is the Haar measure on G. Let L3 (P) be the image
of Py. Using local coordinates, P D 7~ 1(U) > p = (z,9) € U x G, we can see
that L3 (P) consists of functions locally expressed as

fap) = fale,9) = Ioa(@)lk fol@)i, (2.1)
7,k

for some functions fo(x)i on U, where [py (g)]fC denotes the matrix-components
of the representation py. By virtue of the Peter-Weyl theorem we have

L*(P)= Y _ ®L}(P).

pr€G

Define the map F : L?(P) — L*(P, Vi @ Vy); f — F\ by

FA(p) = dy /G fo-9)oale)dg (p € P).

Here py(g) is regarded as a element of V¥ @ Va = Endc(V)), and we have a
local expression

Fx(p) = Fa(z,9) = palg™ ") Fo(x)

for a matrix-valued function Fy(z) on U. We denote by L3(P,Vy @ V) the
image of the map F,. Then, we have the following.

Lemma 4 The function F € L*(P,Vy ®Vy) belongs to L3(P, Vi @ Vy) if and
only if
F(p-g)=prlg™)F(p) (peP) (2:2)

holds for any g € G.
Proof. The “only if”-part of the statement is shown by directly checking
(2.2). Suppose F satisfies (2.2). Then, F is locally expressed as F(z,g) =

pa(g™H K (x) for some matrix-valued function K(x). Take the L? function f
on P (locally) defined by

f(z,g) = Trace[px(g~") 'K (x)].



Then, we have Fy(f) = F. |

Let {v; };?; 1 be a orthonormal basis of V). It follow from the above lemma

that the Vy-valued functions fi(p) = F\(p)v; (j = 1,...,d») belong to
L3(P,Vy). As a result we have the following isomorphism:

dy times

L3P VY@ Vy) = L3(P,VA) @ @ L3(P, V).

Finally, for F)\ € L3(P,Vy ® V)) (which is a matrix-valued function) we
define

[®x(F))](p) := Trace["Fx(p)] (p € P).

Then, Py = @, o F) holds, and @, is a bijection from L3 (P,Vy ® Vy) onto
L3(P). In fact, for f(x,9) = 3, c[pa(@)l}.f(2);, € L3 (P) (locally), we have

(@3 fl(z,9) = palg™") F(a)

for the (dy x dy) matrix F(z) := [f(x)1].
As a consequence, we get the following one-to-one correspondences:

Li(P) = LY(PVY®W)
=~ L3(P,Va)&--- & L3(P,Vy)
=~ L*(M,&\) & - & L*(M,Ey),
that is, more explicitly
SUL (M, Ex) SULA(P,Va) LX(P, VY @ Vi) L3(P)
w w w w

W1, %ay) = (e y) = U= (Y, %,,) < Yp = Trace['T].

Let Ap be the Laplace-Beltrami operator on (P,m). Then, Ap leaves
L3(P) invariant. Notice that the Laplace-Beltrami operator Ag on (G, mg)
satisfies

Acloa(@l = (1A + 615 — 16117 [oa(9)].

where § = $ 3 cp+ @ € b, and the norm |||k (and the inner product (-, -)x)
on by is naturally induced one from that on hr, and we have the following
lemma by the formula (2.1).

Lemma 5 Suppose L3(P) > p +— 1p; € L2(M,E\)(j = 1,...,d)) is the above
correspondence. Then, we have

(Apvp); = AMY; + (A +0]1% — lI9]1% ).



We assume that M is compact. Then, the spectrum of AM) consists of
non-negative eigenvalues

vV <V << < oo,

If ¢yp € L3(P) satisfies Aptpp = ktpp, then
AN = (k= [N+ 3% + 1617)¢ G =1,...,d»).
Conversely, suppose 1) € L?(M, £,) satisfies ANy = ). Put

_ )
\IJ(J):(O,-~-,0,’¢,0,---,0) (]:17’d)‘)

Then, ¢ = Trace['WG)] € L3 (P) satisfies
ApY) = o+ IX+ 8l — 615
Thus, we have the following for the spectrum {VJ(-A)} of A® and that of Ap.
Proposition 6 The spectrum of Ap is the set of eigenvalues given by
A )
U da- o + I+ ol — ol | 5 € N},
AeG

where dy - { } denotes the set of dy copies of { }, and

B A+ a,a)k
=TI 0,0k

aERL

3 Quasi-mode for the mechanics in a gauge field

3.1 Quantum energies associated to a Lagrangian manifold

Suppose 1 € g* is a quantized charge, namely, iA = O, N iC belongs to
il*\{0}. We have a quantum system associated to H,, = (M#,Q#, H¥), that
is a quantum Hamiltonian given by

H = AW 4 a+0)%
= =Y @) (V5 + AP @) (Ve + AL (@) + A+ 0%
7,k

acting on L?(M, Ey). For the element A € C'NT* let us consider the “ladder”
of representations with the highest weights {nX; n € N} and the associated
family of quantum systems (H,x, L?(M, Exn)).

10



In the case of abelian gauge group U(1) we established in [5] a eigenvalue
theorem for the magnetic Schrodinger operator, which asserts the existence
of an approximate quantum energy associated to a certain classical energy
level. We here present the following conjecture which is a generalization of the
eigenvalue theorem to the case of non-abelian gauge group G.

Conjecture Suppose there exists a compact Lagrangian submanifold Lp of
T*P,Qp) contained in J~1(O,). Let L = x,, oo, (Lp), which is a submani-
1z f Iz

fold of Mf Assume the following conditions:

(i) ij =e on L for a real constant e,

(i) Lp is invariant under the Hamiltonian flow @, on (T*P,Qp, H), and
the restricted flow |1, leaves invariant a non-zero half-density on Lp, and

PlLp Y
(1) (quantization condition) for every closed curve v on Lp,

1 1

wp = amr,y (7)) €Z (3.1)

2 J, 4

holds, where my,, € H'(Lp,Z) is the Maslov class of Lp.
Let d be the smallest element of the set {1,2,4} for which d - myp.([7]) =
0 (mod 4) for all [y] € m1(Lp), and set

N 1 ||nk>\+5||[(
ng :=dk+1, ng:= f(n 7)
g S A&

for k e NU{0}. (Note that iy ~ ny as k — 00.)

Then, there is a sequence {Eg(':k”}l?;o of eigenvalues of Hy,, x such that

NneA ~
BN = en? +0(1) (k- o0). (3.2)
Observation Put i = 1/n, and consider the Schrodinger operator

. 1 -
H(h) = ,";L72H"k>\
k

depending on the Planck constant i. Then, E(h) := E](:’“)‘)/ﬁi is an eigenvalue
of H(h), and the formula (3.2) means that

E(h) = e+ O(h2)

as h — 0. Thus, we see that the classical energy e obtained by the quantization
condition gives an approximation of a quantum energy of order A? in a semi-
classical sense.

3.2 Plan to prove the conjecture

11



Let _ '
G:=85"xG={(e"g); 0<t<2mgecG}.

The strategy to prove the conjecture is to construct a suitable operator A :
D'(G) — D'(P) (where D'(-) denotes the space of distributions). The idea is
essentially due to [11] by Weinstein, and applied in [5] in the case of magnetic
flow, i.e., G = U(1).

By virtue of the Peter-Weyl each element u(t, g) in L2(G) is written as

=Dy e p(g))- (3.3)

LEL pEG 7.k

For the sequence {ny}3Z (nx = dk+1) we define the subspace L2(G; {rxA}) of
L2(G) as follows: A function u € L2(G) written as (3.3) belongs to L2(G; {nxA})
if and only if 4,, = 0 holds for every (¢, p) & {(n, 7 A) }72,.
Put D¢ := (Ag+|6]|x)"/?, which is a first order pseudodifferential operator
satisfying _ _
Dalpna (@)l = (InA+ 8] x)lona(9)li, (n € N).

Let us consider a continuous linear operator A : D'(G) — D’'(P) which satisfies
the following conditions:

(A-i) e7'ApA — ADg induces a bounded operator from L2(G) to L2(P),
where 1,9 . )
i
Dgi=—7(5 + 57— Do) -
o= "1\at TNk ¢

(A-ii) A : L2(G; {nxA}) — L%(P) is an isometry.
(A-iii) Take

y | .
o € @) (d = dim Vi)

() (t9) ==/ 55 e

in L?(G; {nkA}). Then, ¢, = (¥3,)] := A[(ux)]] belongs to L2 ,(P) =

Suppose we have the above operator A. Note that
D@uk = ﬁiuk.
By virtue of (A-i) we have

||(€_1AP_ﬁi)'l/1k”L2(P) = ||(6_1APA—ADG)U,;€HL2(p)
Mlfurll oy = M, (3.4

IN
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M being a constant. Let {(pgk)} be the orthonormal basis of eigenfunction of
Ap|r2 L(P) By means of Lemma 5 we have
ng

App) = BN o0

with N \
B = B — 6] (35)

Using the expansion: ¥ = Zj ijapyc), we have
_ - _ » EeA) (b 27 (k
I Ap =i nllzap = et Yo bE Vel =Y el )
J J

1 ~(neA ~ h
= S DY i)y
J

Y

1 . (ngA ~ 7
min{ B —enf}? 3 oy
J

1 . S(ngA ~
= e—zmjln{Ej( o enz}?.
Note Y [¢j|* = 1 by means of (A-ii). Combining this inequality with (3.4),
h
we nave ' —(ne ) o )
min{ &; —eng}° <e*M,
J

that is R R
|E§k"’“/\) — efi}| = min \E]("k)‘) — eni| < Const. (3.6)
' j
We obtain the formula (3.2) from (3.5) and (3.6). The sequence {(¢y, enz )},
in this argument is called a quasi-mode of Ap (cf. [2]).

Thus, a proof of the conjecture is carried out if we can construct the operator
A and check the properties (A-i)-(A-iii). We expect that this procedure will be
similarly performed as [5] (see also [10], [11]) by constructing the operator A
as a Fourier integral operator under the quantization condition (3.1).
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