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Abstract

By considering a certain symmetric differential operator we introduce
a sequence of numbers {Ck}∞k=0, and clarify their properties, which are
similar to those of the Bernoulli numbers. It is shown that the generating
function of {Ck} is the hyperbolic tangent function, and some (maybe
known) properties of the Bernoulli numbers are derived through those of
Ck.
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Introduction
This is a continuation of the previous note [4], in which we have considered

a certain symmetric differential operator and have derived certain properties
or identities concerning the binomial coefficients. On the basis of the results in
[4] we introduce in this note a sequence of numbers {Ck}∞k=0 associated to the
coefficients of the operators, and we clarify that these numbers have properties
analogous with the Bernoulli numbers.

After reviewing in §1 the results on the symmetric differential operators
considered in [4], we introduce in §2 numbers {Ck}, and investigate their prop-
erties. In §3 through the generating function of {Ck} we see the relationship
between Ck and the Bernoulli numbers, and obtain (maybe rediscover) some
properties of the Bernoulli numbers.
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1 Symmetric differential operators
Let C∞

0 (R) denote the space of complex-valued C∞ functions on R with
compact support. Suppose the space C∞

0 (R) is endowed with the inner product
(·, ·) defined by

(f, g) :=

∫ ∞

−∞
f(x)g(x) dx (f, g ∈ C∞

0 (R)).

Let D denote the differential operator 1
i

d
dx (i :=

√
−1). Then, D is a symmetric

operator, namely,

(Df, g) = (f,Dg) (f, g ∈ C∞
0 (R))

holds.
We consider the symmetric (or formally self-adjoint) operator whose prin-

cipal symbol is given by the monomial of degree n given by

pn(x, ξ) = a(x)ξn.

By applying the corresponding rule:

x 7→ x ·, ξ 7→ D,

we get the n-th order differential operator

Q = a(x)Dn

corresponding to pn(x, ξ). Then, we have the following.

Lemma 1 The adjoint operator Q∗ of Q is given by

Q∗ = Dn
[
a(x) ·

]
=

n∑
p=0

(
n

p

)(
Dpā(x)

)
Dn−p.

Thus Q is not a symmetric operator. As a symmetric operator correspond-
ing to pn(x, ξ) we consider the differential operator

Pn = a(x)Dn +

n∑
p=1

cnp
(
Dpa(x)

)
Dn−p, (1)

where a(x) is a real-valued function, and cnp ’s are complex constants. By virtue
of Lemma 1 we have the following.
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Lemma 2 The operator Pn is symmetric, i.e., P ∗
n = Pn if and only if the

coefficients cnp (p = 1, 2, . . . n) satisfy

cnp = (−1)pc̄np + (−1)p−1

(
n− p+ 1

1

)
c̄np−1

+ (−1)p−2

(
n− p+ 2

2

)
c̄np−2 + · · · −

(
n− 1

p− 1

)
c̄n1 +

(
n

p

)
. (2)

We assume the coefficients cnp (p = 1, 2, . . . , n) to be

cnp =

{
a real number (p : odd)
0 (p : even)

. (3)

Theorem 3 ([4]) For any n ∈ N, and any real valued function a(x) there
exists an unique n-th order symmetric differential operator P of the form (1)
satisfying the assumption (3).

Proof. First we show the existence of P (cf. [3, Lemma 4.2]). Let Q0 :=
a(x)Dn. Put

Q1 :=
1

2
(Q0 +Q∗

0).

Then, by means of Lemma 1 Q1 is a symmetric operator with the n-th order
term being equal to Q0, and the coefficients

1

2

(
n

p

)
Dpa(x)

of the (n − p)-th order term of Q1 are real if p is even. Let Rn−2 denote the
(n− 2)-th order term of Q1, and put

Q2 := Q1 −
1

2
(Rn−2 +R∗

n−2).

Then, Q2 is a symmetric operator of the form (1) with cnp being real and cn2 = 0.
Next, let Rn−4 be the (n− 4)-th order term of Q2, and put

Q4 := Q2 −
1

2
(Rn−4 +R∗

n−4).

Then, Q4 is a symmetric operator of the form (1) with cnp being real and
cn2 = cn4 = 0. Thus by continuing this process we get Q2, Q4, Q6, . . ., and we
obtain the required operator Pn as Qn−1 if n is odd, or Qn if n is even.

Next, we show that the coefficients cnp is uniquely determined by the con-
dition (2) under the assumption (3).
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Suppose n is odd. The condition (2) for p = 1, 2, . . . gives a system of linear
equations for cn1 , c

n
3 , . . . , c

n
n−2, c

n
n as follows:

2cn1 =

(
n

1

)
,(

n− 1

1

)
cn1 =

(
n

2

)
,

2cn3 +

(
n− 1

2

)
cn1 =

(
n

3

)
,(

n− 3

1

)
cn3 +

(
n− 1

3

)
cn1 =

(
n

4

)
,

· · · · · · · · ·(
2

1

)
cnn−2 +

(
4

3

)
cnn−4 + · · · · · ·+

(
n− 1

n− 2

)
cn1 =

(
n

n− 1

)
,

2cnn +

(
2

2

)
cnn−2 +

(
4

4

)
cnn−4 + · · · · · ·+

(
n− 1

n− 1

)
cn1 =

(
n

n

)
.

It is easy to see that the rank of the (n× (n+1)/2)-matrix of the coefficients of
the above linear equations is equal to (n+1)/2. Hence, the solution (if exists)
is unique.

If n is even, the linear equations for cn1 , c
n
3 , . . . , c

n
n−1 is the following:

2cn1 =

(
n

1

)
,(

n− 1

1

)
cn1 =

(
n

2

)
,

2cn3 +

(
n− 1

2

)
cn1 =

(
n

3

)
,(

n− 3

1

)
cn3 +

(
n− 1

3

)
cn1 =

(
n

4

)
,

· · · · · · · · ·

2cnn−1 +

(
3

2

)
cnn−3 + · · · · · ·+

(
n− 1

n− 2

)
cn1 =

(
n

n− 1

)
,(

1

1

)
cnn−1 +

(
3

3

)
cnn−3 + · · · · · ·+

(
n− 1

n− 1

)
cn1 =

(
n

n

)
.

This system similarly derives the uniqueness of the solution. �
From the above system of linear equations for cn1 , c

n
3 , . . . we have the follow-

ing.

Theorem 4 ([4]) Let 1 ≤ k ≤ (n+ 1)/2. The following two systems of linear
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equations for cn−1, cn−3, . . . , cn−2k+1 are equivalent each other :

2(
n−1
2

)
2 0(

n−1
4

) (
n−3
2

)
2

...
...

. . .(
n−1
2k−4

) (
n−3
2k−6

)
· · ·

(
n−2k+5

2

)
2(

n−1
2k−2

) (
n−3
2k−4

)
· · ·

(
n−2k+5

4

) (
n−2k+3

2

)
2





cn1
cn3
...
...

cn2k−3

cn2k−1


=



(
n
1

)(
n
3

)
...
...(
n

2k−3

)(
n

2k−1

)


, (4)



(
n−1
1

)(
n−1
3

) (
n−3
1

)
0(

n−1
5

) (
n−3
3

) (
n−5
1

)
...

...
. . .(

n−1
2k−3

) (
n−3
2k−5

)
· · · · · ·

(
n−2k+3

1

)
(
n−1
2k−1

) (
n−3
2k−3

)
· · · · · ·

(
n−2k+3

3

) (
n−2k+1

1

)





cn1
cn3
...
...

cn2k−3

cn2k−1


=



(
n
2

)(
n
4

)
...
...(
n

2k−2

)(
n
2k

)


.

(5)

Applying Cramer’s formulas for the solution cn2k−1 of (4) and (5), we have
the following.

Corollary 5 For n, k ∈ N with 1 ≤ k ≤ (n+ 1)/2 we have

cn2k−1 =
(−1)k−1

2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n
1

)
2(

n
3

) (
n−1
2

)
2 0(

n
5

) (
n−1
4

) (
n−3
2

) . . .
...

...
... 2(

n
2k−1

) (
n−1
2k−2

) (
n−3
2k−4

)
· · ·

(
n−2k+3

2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

= (−1)k−1 (n− 2k − 1)!!

(n− 1)!!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n
2

) (
n−1
1

)(
n
4

) (
n−1
3

) (
n−3
1

)
0(

n
6

) (
n−1
5

) (
n−3
3

) . . .
...

...
...

(
n−2k+3

1

)(
n
2k

) (
n−1
2k−1

) (
n−3
2k−3

)
· · ·

(
n−2k+3

3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7)
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Here the formula means cn1 = 1
2

(
n
1

)
= 1

n−1

(
n
2

)
if k = 1.

2 Sequence of numbers associated to cnp
We can calculate cnp by the formula (6) or (7) and get Table 1 for small n and

p. By observing Table 1 we present and can prove the following proposition.

Proposition 6 We have a sequence of numbers {Ck}∞k=1 which satisfies

cnk =

(
n

k

)
Ck, (8)

for n, k ∈ N with 1 ≤ k ≤ n.

Table 1: cnp

n cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 cn10

1 1
2

2 1 0

3 3
2 0 −1

4

4 2 0 −1 0

5 5
2 0 −5

2 0 1
2

6 3 0 −5 0 3 0

7 7
2 0 − 35

4 0 21
2 0 − 17

8

8 4 0 −14 0 28 0 −17 0

9 9
2 0 −21 0 63 0 −153

2 0 31
2

10 5 0 −30 0 126 0 −255 0 155 0
...

...
...

...
...

...
...

...
...

...
...

Proof. We have C2m = 0 (m ∈ N) because cn2m = 0. We show (8) for
k = 2m− 1 by induction with respect to m. (i) cn1 =

(
n
1

)
(1/2), i.e., C1 = 1/2.

(ii) Suppose

cn2j−1 =

(
n

2j − 1

)
C2j−1

for 0 ≤ j ≤ m− 1. It follows from the last equation of the system (4) that

cn2m−1 = −1

2

m−1∑
j=1

(
n− 2j + 1

2m− 2j

)
cn2j−1 +

1

2

(
n

2m− 1

)
.
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Hence

cn2m−1 = −1

2

m−1∑
j=1

(
n− 2j + 1

2m− 2j

)(
n

2j − 1

)
C2j−1 +

1

2

(
n

2m− 1

)
.

Here note that(
n− 2j + 1

2m− 2j

)(
n

2j − 1

)
=

(n− 2j + 1)!

(2m− 2j)!(n− 2m+ 1)!

n!

(2j − 1)!(n− 2j + 1)!

=
n!

(n− 2m+ 1)!(2m− 1)!

(2m− 1)!

(2m− 2j)!(2j − 1)!

=

(
n

2m− 1

)(
2m− 1

2j − 1

)
,

and we have

cn2m−1 =

(
n

2m− 1

){1
2
− 1

2

m−1∑
j=1

(
2m− 1

2j − 1

)
C2j−1

}
=

(
n

2m− 1

)
C2m−1,

where

C2m−1 =
1

2
− 1

2

m−1∑
j=1

(
2m− 1

2j − 1

)
C2j−1. (9)

�
By the formula (8) we have Cp = cpp, and accordingly see C1, C2, C3, . . . to

be diagonal elements of Table 1. We also find from (6) that

C2k−1

(
= c

(2k−1)
(2k−1)

)
=

(−1)k−1

2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
2k−1

1

)
2(

2k−1
3

) (
2k−2

2

)
2 0(

2k−1
5

) (
2k−2

4

) (
2k−4

2

) . . .

...
...

... 2(
2k−1
2k−1

) (
2k−2
2k−2

) (
2k−4
2k−4

)
· · ·

(
2
2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(10)

for k = 1, 2, 3, . . . (Table 2).
As a result we have a representation of the symmetric differential operator

Pn by means of the numbers {Cp}:

Pn = a(x)Dn +

n∑
p=1

(
n

p

)
Cp(D

pa(x))Dn−p.

We put C0 = −1. Then, we have the following theorem concerning the
recurrence relation for Cp.
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Table 2: Cp

p 1 3 5 7 9 11 13 15 17

Cp
1
2 −1

4
1
2 − 17

8
31
2 −691

4
5461
2 −929569

16
3202291

2

Theorem 7 (Recurrence relation) The sequence of numbers {Ck}∞k=0 is
given by the following recurrence relation:

k−1∑
j=0

(
k

j

)
Cj + 2Ck = 0 (k ≥ 1), C0 = −1, (11)

or equivalently,

Ck = −
k∑

j=0

(
k

j

)
Cj (k ≥ 1), C0 = −1. (12)

Proof. Put n = 2k in the last equation of the system (5), and we obtain

k∑
j=1

c2k2j−1 = 1.

This derives the relation:(
2k

0

)
C0 +

k∑
j=1

(
2k

2j − 1

)
C2j−1 = 0 (k ≥ 1). (13)

On the other hand, from (9) we have(
2k − 1

0

)
C0 +

k−1∑
j=1

(
2k − 1

2j − 1

)
C2j−1 + 2C2k−1 = 0 (k ≥ 1). (14)

We see that the relations (13) and (14) with

C2k = 0 (k ≥ 1)

are equivalent to the relation (11). �
Next we consider the denominator of Cp, and obtain the following.

Theorem 8 (1) For an integer k ≥ 1 put 2k = 2αq with q being an odd integer.
Then, 2αC2k−1 is an odd integer, i.e., the denominator of C2k−1 is equal to 2α.
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(2) The coefficients

c2m2k−1 =

(
2m

2k − 1

)
C2k−1 (1 ≤ k ≤ m)

of the differential operator P2m are integers.

Proof. We see by the formula (10) that the denominator of Ck is 2α for
some non-negative integer α. If

2k =

(
2k

2k − 1

)
=

2k(2k − 1)(2k − 2) · · · 2
(2k − 1)!

= 2αq,

(
2m

2k − 1

)
=

2m(2m− 1) · · · (2m− 2k + 2)

(2k − 1)!
= 2βq′ (m > k),

where q and q′ are odd integers, then we have(
2m

2k − 1

)/( 2k

2k − 1

)
= 2β−α · q

′

q

=
2m(2m− 1) · · · (2m− 2k + 2)

2k(2k − 1)(2k − 2) · · · 2

=
2k ·m(m− 1) · · · (m− k + 1) · q1

2k · k(k − 1) · · · 1 · q2
=

(
m

k

)
· q1
q2

, (15)

where q1, q2 are odd integers. Since
(
m
k

)
is an integer, β ≥ α holds. Hence, the

fact that
(

2m
2k−1

)
C2k−1 to be an integer follows from the fact that 2αC2k−1 is

an (odd) integer, namely the assertion (2) follows from the assertion (1).
We obtain from (15) that(

2m

2k − 1

)
C2k−1 =

(
m

k

)
· q1
q2

·
(

2k

2k − 1

)
C2k−1 =

(
m

k

)
· q1
q2

· 2αqC2k−1,

and accordingly find that(
2m

2k − 1

)
C2k−1 is odd (resp. even) ⇐⇒

(
m

k

)
is odd (resp. even) (16)

for 1 ≤ k < m if 2αC2k−1 is an odd integer.
We will show by induction with respect to integers k that 2αC2k−1 =(

2k
2k−1

)
C2k−1 is odd. (i) For k = 1 the assertion holds as 2C1 = 1. (ii) Suppose

2βC2l−1 (2l = 2β × (an odd integer)) is odd for 1 ≤ l < k. Notice the formula(
2k

2k − 1

)
C2k−1 = 1−

(
2k

1

)
C1 −

(
2k

3

)
C3 − · · · −

(
2k

2k − 3

)
C2k−3,

9



and we have to show that(
2k

1

)
C1 +

(
2k

3

)
C3 + · · ·+

(
2k

2k − 3

)
C2k−3

is even. This is shown by virtue of (16) and the fact that
∑k−1

l=1

(
k
l

)
is even

(= 2k − 2). �

Review on Bernoulli numbers (see [1], [2, §6.5], for example).

Let us consider the sum of kth powers

Sk(n) = 1k + 2k + · · ·+ nk.

By summing the formulas:

(m+ 1)k+1 −mk+1 =
k∑

j=0

(
k + 1

j

)
mj

for m = 1, 2, . . . , n, we get

(n+ 1)k+1 − 1 =
k∑

j=0

(
k + 1

j

)
Sj(n),

namely,

Sk(n) =
1

k + 1

{
(n+ 1)k+1 − 1−

k−1∑
j=0

(
k + 1

j

)
Sj(n)

}
. (17)

Noticing S0(n) = n we see by induction that Sk(n) is given as

Sk(n) =
k∑

j=0

skjn
k+1−j with sk0 =

1

k + 1
.

For the coefficients skn there exists a sequence of numbers {Bj}∞j=0 such that

skj =
(−1)j

k + 1

(
k + 1

j

)
Bj (0 ≤ j ≤ k).

The numbers Bj are called Bernoulli numbers. Hence, we have

Sk(n) =
1

k + 1

k∑
j=0

(−1)j
(
k + 1

j

)
Bjn

k+1−j . (18)

10



By virtue of (17) we find that {Bk}∞k=0 satisfy the recurrence relation

Bk =
k∑

j=0

(
k

j

)
Bj (k ≥ 2) with B0 = 1, B1 = −1/2. (19)

Comparing (12) and (19) we remark that {Ck} and {Bk} are closely related.

3 Generating function - Relationship with
Bernoulli numbers
We consider the generating function for the sequence {Ck}, which gives the

explicit relationship with the Bernoulli numbers.

Proposition 9 (Exponential generating function) We have

∞∑
k=0

Ck

k!
zk = − 2

ez + 1
= tanh

(z
2

)
− 1 (|z| < π). (20)

Proof. Put

F (z) :=
∞∑
k=0

Ck

k!
zk.

Then, we have formally

ezF (z) =
( ∞∑

j=0

1

j!
zj
)( ∞∑

k=0

Ck

k!
zk
)

= C0 + (C0 + C1)z + · · ·

+

(
C0

0!(2k − 1)!
+

C1

1!(2k − 2)!
+

C3

3!(2k − 2)!
+ · · ·+ C2k−1

(2k − 1)!0!

)
z2k−1

+

(
C0

0!(2k)!
+

C1

1!(2k − 1)!
+

C3

3!(2k − 3)!
+ · · ·+ C2k−1

(2k − 1)!1!

)
z2k

+ · · ·

= −1− 1

2
z + · · ·

+
1

(2k − 1)!

{(
2k − 1

0

)
C0 +

(
2k − 1

1

)
C1 + · · ·+

(
2k − 1

2k − 1

)
C2k−1

}
z2k−1

+
1

(2k)!

{(
2k

0

)
C0 +

(
2k

1

)
C1 + · · ·+

(
2k

2k − 1

)
C2k−1

}
z2k

+ · · ·
= −2− F (z).

Here the last equality follows form the formulas (13) and (14). As a consequence
we get the assertion. �
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Corollary 10 For any n ≥ 2, we have

n∑
j=1

(
n

j

)
CjBn−j = 0. (21)

Particularly, we have

m∑
j=0

(
2m+ 1

2j + 1

)
C2j+1B2m−2j = 0 (m ≥ 1). (22)

Proof. We have only to show (21) for odd n, that is the formula (22),
because CjBn−j = 0 for any j ≥ 1 if n is even. Note that

z

ez − 1
=

∞∑
k=0

Bk

k!
zk,

and (
− 2

ez + 1

)( z

ez − 1

)
= − 2z

e2z − 1
.

Hence, we have  ∞∑
j=0

Cj

j!
zj

( ∞∑
k=0

Bk

k!
zk

)
= −

∞∑
n=0

Bn

n!
(2z)n.

If n(≥ 2) is odd, i,e, n = 2m+ 1, then Bn = 0, hence we have

n∑
j=0

CjBn−j

j!(n− j)!
= 0,

which leads the formula (21). �

Corollary 11 We have

Ck =
2

k + 1
(2k+1 − 1)Bk+1 (k ≥ 0). (23)

Proof. We have

− 2

ez + 1
= −2

(
1

ez − 1
− 2

e2z − 1

)
= −2

z

{(
1 +

∞∑
k=1

Bk

k!
zk
)
−
(
1 +

∞∑
k=1

Bk

k!
(2z)k

)}

= −1 +
∞∑
k=2

2(2k − 1)Bk
zk−1

k!
.
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Therefore we obtain the formula (23). �
From (21) and (23) we can derive the following relation between Bernoulli

numbers by using the identity 1
j+1

(
n
j

)
= 1

n+1

(
n+1
j+1

)
.

Proposition 12 For n ≥ 4 we have

n∑
j=2

(
n

j

)
(2j − 1)BjBn−j = 0. (24)

By combining this theorem with the formula (23) we obtain the following
property concerning the Bernoulli numbers.

Proposition 13 Let n(≥ 2) be an even integer, and given by n = 2αq with q
being an odd integer. Then,

2(2n − 1)

q
Bn (25)

is an odd integer. Moreover,(
2m

n− 1

)
2(2n − 1)

n
Bn (26)

is an integer for any m ≥ n/2 (≥ 1).

Remark. The first part of this proposition has been shown by Worpitzky [5,
p.232].

4 Concluding Remark
Similarly to the Bernoulli polynomial we define a polynomial

Cn(x) =
n∑

k=0

(
n

k

)
Ckx

n−k = −xn +
n∑

j=1

cnj x
n−j .

Then, we have Ck = Ck(0) and see that

∞∑
n=0

Cn(x)
zn

n!
= − 2exz

ez + 1

from Proposition 9. On the other hand, the polynomials En(x) defined by

2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!

are called Euler polynomials (cf. [2, pp.573-574]). Thus we have

Cn(x) = −En(x), Ck = −Ek := −Ek(0).
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