
INTRODUCTION

Reduction of oxygen by normal cellular metabo-
lism leads to the production of reactive oxygen

species (ROS) that include superoxide anion (�O2
-),

hydrogen peroxide (H2O2), and hydroxyl radical
(OH�) (1). These species are now believed to par-
ticipate in a variety of cellular signaling mechanisms
that transmit transcriptional/translational regulation,
cell growth, differentiation, and apoptosis (2, 3). In
this regard, extracellular signal-regulated kinases
(ERK) and other members of the mitogen-activated
protein kinase (MAPK) family are up-regulated as a
result of ROS stimulation (4, 5). In addition, several
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protein tyrosine kinases (PTK) are reported to be
activated by ROS in various cell lines (6, 7). Accu-
mulating evidence indicates that ROS play impor-
tant roles in cardiovascular diseases such as hy-
pertension, atherosclerosis, and restenosis after an-
gioplasty (8, 9). Besides cardiovascular disease, oxi-
dative stress, exerted by the intracellular accumula-
tion of ROS, has been implicated in Type 2 diabetes
as well as in beta cell failure and insulin resistance
(10, 11). There is now much emerging evidences
suggesting that several factors that cause cardiovas-
cular diseases and insulin resistance have a common
pathway in the excessive formation of ROS (12, 13).
This seems to be risen from inflammation, glucotox-
icity, lipotoxicity and some endocrine mediators.

Insulin exerts important biological roles on vas-
culature as well as conventional insulin-responsible
tissue such as skeletal muscle and adipose tissue
(14-17). Insulin enhances glucose uptake in skeletal
muscle cells and adipocytes, and induces vasodila-
tion through nitric oxide production from vascular
endothelial cells (14-17). These effects of insulin
mediate insulin receptor signaling pathway-catalyzed
tyrosine phosphorylation of insulin receptor sub-
strate (IRS) and the subsequent activation of phos-
phatidylinositol 3 kinase (PI3-K) and downstream
molecules such as protein kinase B (Akt) (14-17).
Recently we had reported that insulin activates ATP-
sensitive potassium (KATP) channel and causes mem-
brane hyperpolarization through insulin receptor
signaling pathway including PI3-K in cultured vas-
cular smooth muscle cells (VSMCs) (18). KATP chan-
nel in vascular smooth muscle likely plays an im-
portant role in vaso-dilation and control of blood
pressure (19, 20). Activation of KATP channels in-
duces membrane hyperpolarization, lowered intra-
cellular calcium concentrations, and vaso-relaxation
(19, 20). In addition to vaso-dilative effect, the open-
ing of KATP channels has a protective function on the
cardiovascular systems such as ischemic precon-
ditioning (21). Thus insulin has important roles in
vascular relaxation by activation of PI3-K/Akt sig-
naling pathways. However, the relationship between
oxidative stress and the effects of insulin on the
vasculature remains unclear.

The KATP channel consists pore-forming hetero-
octamer containing four inwardly rectifying K+ chan-
nel (Kir) subunit and four sulfonylurea receptor
(SUR) subunits (22). The KATP channels have dif-
ferent isotypes among expressed tissue, such as
VSMCs (Kir6.1/SUR2B), pancreatic β-cells (Kir6.2/
SUR1), and skeletal muscle cells (Kir6.2/SUR2A)

(23). Pinacidil is a well known KATP channel opener
which binds SUR subunits and induces relaxation
of endothelium-denuded aorta through activating
KATP channel in smooth muscle cells (24). Erdös et
al. reported that insulin-resistant rats with oxidative
stresses were observed weaker pinacidil-induced
vaso-dilation than control subjects (25). Further-
more Yang et al. recently reported that H2O2 sup-
pressed pinacidil-induced activity of smooth muscle
isotype KATP channel, Kir6.1/SUR2B, which was ex-
pressed in human embryonic kidney (HEK) cells by
genetically modification technique, because H2O2

induced S -glutathionyl modulation of KATP channel
(26). However the effect of H2O2 on the activity of
native KATP channel expressed in VSMCs remains
unknown. In this study, we demonstrated the effect
of extracellular administration of H2O2 on pinacidil-
induced KATP channel activities in cultured VSMCs
by using patch-clamp experiments. Furthermore to
investigate the effect of H2O2 on insulin’s action in
vasculature, we also observed insulin-induced KATP

channel activities and signaling pathway in cultured
VSMCs.

MATERIALS AND METHODS

Cell culture

A10 cells, which are embryonic rat thoracic aortic
smooth muscle cells from DB1X rat, were obtained
from American Type Culture Collection (ATCC,
Manassas, VA, USA). A10 cells is an useful model
of VSMCs for the observation about KATP channel
activity, because A10 cells showed close similar ac-
tivities about pinacidil- and insulin-induced KATP

channel with primary isolated VMSCs from Wistar
rat thoracic aorta (18). Cells were cultured at 37��
in a humidified atmosphere with 95% air and 5% CO2

in Dulbecco’s modified Eagle medium (DMEM,
Sigma, St. Louis, MO, USA) containing 0.5 mg/mL
gentamicin (Sigma) and 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA). Cells were serum-
starved for 1 hour before experiments.

Determination of intercellular reactive oxygen spe-
cies

Changes in intercellular ROS were indicated us-
ing the fluorescence dye, carboxy-H2DCFDA [6-
carboxy-2’,7’ -dichlorodihydrofluorescein diace-
tate, di (acetoxymethyl ester)] (Molecular Probes,
Eugene, OR, USA). When the intercellular ROS was
increased, the dye was deacetylated and oxidated
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into the fluorescent product (DCF) and fluores-
cence intensities increased (27). A10 cells were
subcultured on glass cover - slips. After loading
with carboxy - H2DCFDA at 37�� for 30 minutes,
cells were placed in a chamber filled with HEPES
buffered solution (HBS) containing (mM) NaCl
145, KCl 5, MgCl2 1, CaCl2 1, D-glucose 5.5, HEPES
10, pH 7.2. Fluorescence intensities at an excita-
tion wavelength of 490 nm were obtained by mi-
croscopy (IX71, Olympus, Tokyo, Japan) and ana-
lyzed with Meta Fluor software (Molecular Devices,
Downingtown, PA, USA). All experiments were per-
formed at 37��. Fluorescence intensities were con-
tinuously recorded every 30 seconds. Fluorescence
intensities of an identical area adjacent to cells were
subtracted as background. To evaluate changes in
fluorescence intensity, we calculated their ratio be-
fore and after H2O2 treatment.

Cell preparation and Western blotting analysis

After incubation in HBS for 1 hour, cells were
pretreated with or without H2O2 for 5 minutes and
then treated with 100 nM insulin for 5 minutes. Af-
ter treatment with insulin, the cells were rinsed with
cold phosphate buffered saline (PBS) and solubi-
lized in cold cell lysis buffer containing (mM) Tris-
HCl 20, pH 8.0, NaCl 140, MgCl2 1, CaCl2 1, dithio-
threitol 1, sodium vanadate 0.5, sodium pyrophos-
phate 20, phenylmethanesulfonyl fluoride 0.02, 10%
glycerol (v/v), 1% Nonidet P40 (v/v).

The lysate samples were normalized for protein
concentration by using Bicinchoninate (BCA)
method (PIERCE, Rockford, IL, USA) and subjected
to immunoblotting. The normalized lysates were
electrophoresed on a sodium dodecyl sulfate (SDS)-
polyacrylamide gel and transferred to nitrocellu-
lose membranes (Schleicher & Schnell Bioscience,
Dassel, Germany), which were incubated with spe-
cific primary antibodies for 12 hours at 4��. Follow-
ing incubation with horseradish-peroxydase conju-
gated secondary antibodies, immunoreactive bands
were visualized using an enhanced chemi-lumines-
cence substrate. The membranes were stripped by
incubating with stripping buffer containing (mM)
Tris-HCl 62.5, and 2-mercaptoethanol 100, 2% SDS,
pH 6.8, at 50��for 30 minutes for a second round
immunoblotting.

Patch-clamp experiments

Single channel activities were measured using
cell-attached patch-clamp recordings as described
by Hamill et al (28). Cells on glass cover - slips

were placed in a chamber in a solution containing
(mM) KCl 140, MgCl2 1, CaCl2 0.1, D-glucose 5.5,
HEPES 10, pH 7.2. The buffered solution in patch
pipettes contained (mM) KCl 140, D-glucose 5.5,
HEPES 10, pH 7.2. Patch pipettes were made from
soft-glass capillaries (DRUMMOND SCIENTIFIC,
Broomall, PA, USA) using an electrode puller (PP-
830, Narishige, Tokyo, Japan). The resistance of pi-
pettes filled with buffered solution was 7-10 MΩ.
All drugs were added into the dishes. The inside of
the pipette was voltage-clamped at +50 mV. Experi-
ments were performed at 37��.

Currents were recorded with a patch clamp ampli-
fier (L/M-EPC7, List-Medical, Darmstadt, Germany)
and converted into digital files using DigiData 1200
(Axon Instruments, Foster, CA, USA). The noises
of current signals were removed using a low-pass
filter of 1 kHz. pClamp version 6 software (Axon
Instruments) was used for recording data. BIO-
PATCH Ver. 3.42 software (BIO - LOGIC, Claix,
France) was used to analyze recorded data. The
channel activities were expressed as NPo. NPo was
determined from current amplitude histograms and
calculated as follows,

���� �
���

�

���� ���
where Po is the open probability ; T, the duration of
the measurement ; tj, the time spent at the current
level corresponding to j = 1, 2 ... N channels in the
open state ; N, the number of the channels active
in the patch. The NPo values were determined from
recording data for longer than 120 seconds.

Reagents

Pinacidil and glibenclamide were purchased from
SIGMA. Insulin and H2O2 was from WAKO chemi-
cals (Tokyo, Japan). Anti-phosphorylated (Tyr612)
and anti-total insulin receptor substrate (IRS) anti-
bodies were from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Antibodies of anti-phosphorylated
Akt (Ser478), anti-total Akt, anti-phosphorylated
ERK (Thr202/Tyr204), and anti-total ERK were
from Cell Signaling (Beverly, MA, USA).

Statistical analysis

Statistical analysis of differences was estimated
using ANOVA plus Bonferroni multiple comparison
tests. Student’s t - tests for paired data were used
when appropriate. A value of P�0.05 was consid-
ered statistically significant.
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RESULTS

H2O2 increases ERK phosphorylation and ROS gen-
eration in A10 cells

It is well known that stimulation of ROS enhanced
the phosphorylation of ERK (4, 5). To demonstrate
the effects of extracellular administration with H2O2

on ERK phosphorylation, we treated A10 cells with
various concentration (1-100 μM) of H2O2 for 5 min-
utes by using Western blot analysis (Fig. 1A). H2O2

treatment increased Thr202/Tyr204 phosphoryla-
tion of ERK from the concentration in 10 μM. By
using densitometric analysis for Western blotting,
the effect of H2O2 on ERK phosphorylation was sig-
nificant increased in both 10 and 100 μM (Fig. 1B).

Next, to check effect of extracellular administra-
tion with H2O2 on ROS generation in A10 cells, we
observed the change of intercellular ROS by using a
ROS-reactive fluorescent dye, carboxy-H2DCFDA
(Fig. 1C). Treatment with 10 μM H2O2 increased
intercellular ROS after 2.5 minutes and intercellular
ROS was kept increasing for 10 minutes (Fig. 1C).
In addition, we observed obvious morphological
changes of A10 cells with 100 μM H2O2 treatment
under a microscopy, but did not in the cells with un-
der 10 μM (data not shown). These data suggested
that 10 μM H2O2 had sufficient effect on elevation

of both intercellular ROS and ERK phosphorylation
without morphological changes in cultured vascular
smooth muscle A10 cells.

H2O2 suppresses pinacidil-induced KATP channel ac-
tivity in A10 cells.

Recent report showed that H2O2 suppressed
pinacidil-induced activity of smooth muscle KATP

channels, Kir6.1/SUR2B isotype, which were ex-
pressed in HEK cells by genetically modification
technique (26). To consider direct effect of H2O2

on the activities of native KATP channel expressed
in VSMCs, we measured the effect of H2O2 for
pinacidil-induced KATP activities in cultured A10
cells using cell-attached patch clamp experiments
(Fig. 2). The cells were pretreated with vehicle or
10 μM H2O2 for 5 minutes and then stimulated with
100 μM pinacidil for 5 minutes. Pinacidil increases
channel activation without H2O2 treatment (Fig. 2A).
Treatment with 3 μM glibenclamide, a KATP channel
blocker, significantly inhibited pinacidil-induced
channel activation (data not shown). Treatment with
H2O2 suppressed significantly pinacidil-induced
channel activity in A10 cells (Figs. 2B and 2C).
These results suggested that H2O2 suppress KATP

channel activity in cultured VSMCs.

Fig. 1 Measurements of reactive oxygen species (ROS). (A) Representative data of ROS-induced phosphorylated extracellular
regulated kinase (ERK) by extracellular administration with H2O2 in A10 cells. The cells were treated with the indicated concentra-
tions of H2O2 for 5 minutes. Whole cell lysates were subjected to immunoblot analysis with specific antibodies to phosphorylated
form (upper panels) and total (lower panels) ERK protein. (B) Densitometric analysis for phosphorylated forms of ERK. (n=5). (*)P�
0.05 versus vehicle treatment. (C) Intercellular ROS measurements in A10 cells. Intercellular ROS measurements were measured
using the ROS reactive fluorescence dye, carboxy-H2DCFDA [6-carboxy-2’,7’ -dichlorodihydrofluorescein diacetate, di (acetoxymethyl
ester)]. The data indicate relative fluorescence intensity for the following conditions. (�) Vehicle treatment. (�) 10 μM H2O2. Values
are shown as means�S.E.. All curves are representative of triplicate independent experiments and each point is the mean of tripli-
cate values. Independent experiment typically included 6 cells. (*) P�0.01 versus vehicle treatment.
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Insulin activates KATP channels in A10 cells.

We previously have reported that insulin causes
membrane hyperpolarization via KATP channels acti-
vation in cultured VSMCs (18). To observe the effect
of H2O2 for insulin-induced potassium ion transport
on the membrane of A10 cells, we directly meas-
ured single channel activities using cell-attached

patch-clamp experiments (Fig. 3). Ion channels
were activated 5 minutes after insulin stimulation
without H2O2 treatment (Fig. 3A). Insulin-activated
currents showed inward rectification ; the conduc-
tance of the positive pipette voltage was 28.6 pS,
whereas that of the negative pipette voltage was
21.8 pS. The conductance of insulin-induced cur-
rents in A10 cells was similar to that of vascular

Fig. 2 Effect of H2O2 for pinacidil - induced KATP channel activities in A10 cells. Single channel -currents were measured by the cell -
attached patch-clamp experiments. The pipette solution was voltage-clamped at +50 mV. The cells were pretreated with (A) vehicle,
or (B)10 μM H2O2 for 5 min and then stimulated with 100 μM pinacidil for 5 min. (C) KATP channel activities are shown as NPo.
Values are shown as means�S.E. (n=5).

Fig. 3 Effect of H2O2 for insulin- induced KATP channel activities in A10 cells. Single channel -currents were measured by the cell -
attached patch-clamp analysis as Fig. 2. The cells were pretreated with (A) vehicle, or (B) 10 μM H2O2 for 5 min and then stimu-
lated with 100 nM insulin for 5 min. (C) KATP channel activities are shown as NPo. Values are shown as means�S.E. (n=12-19).
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smooth muscle type KATP channel (18). These data
indicate that insulin activates KATP channel in A10
cells. Treatment of 10 μM H2O2 significantly sup-
pressed insulin-induced channel activities (Figs. 3B
and 3C).

H2O2 has no effects for insulin-induced IRS-1 and
Akt phospholyration in A10 cells

We previously have reported that insulin activates
KATP channels via insulin receptor signaling pathway,
which contains insulin receptor substrate (IRS) and
Akt, in cultured VSMCs (18). To determine the ef-
fect of H2O2 treatment on insulin receptor signaling
pathway in A10 cells, we examined the phosphoryla-
tion state of IRS-1 and that downstream molecule
Akt using Western blotting analysis (Fig. 4). The
cells were pretreated with vehicle or 1-10 μM H2O2

for 5 minutes and then stimulated with 100 nM insu-
lin for 5 minutes. Treatment with H2O2 had no effect
for insulin-stimulated IRS phosphorylation (Figs. 4A
and 4B). Similarly with IRS, insulin-stimulated Akt
phosphorylation was not changed by treatment with
H2O2 (Figs. 4A and 4C). From these results, we sug-
gested that H2O2 inhibited insulin-induced KATP

channel activation independent of insulin receptor
signaling pathway including IRS and Akt.

DISCUSSION

Here we found that 10 μM H2O2 increases inter-
cellular ROS and inhibits pinacidil-induced KATP

channel activities in cultured VSMCs. This result
was similar with the report using smooth muscle

Fig. 4 Effect of H2O2 treatment for insulin signaling pathway in A10 cells. The cells were pretreated with the indicated concentration
of H2O2 for 5 minutes and then stimulated with 100 nM insulin for 5 minutes. Whole cell lysates were subjected to immunoblot analy-
sis with specific antibodies to phosphorylated forms (upper panels) and total (lower panels) insulin receptor substrate (IRS) and
protein kinase B (Akt) protein. (B-C) Densitometric analysis for phosphorylated forms of IRS and Akt respectively (n=5). Values are
shown as means�S.E..
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KATP channel expressed HEK cells (26). Further-
more we found that H2O2 suppressed insulin- in-
duced KATP channel activities independent of insulin
signaling pathway, including IRS and Akt, in cul-
tured VSMCs. To our knowledge, this is the first
report that H2O2 inhibits both pinacidil- and insulin-
induced KATP channel activities in VSMCs. The in
vitro studies have reported that a KATP channel
blocker glibenclamide increases muscle tone and
causes depolarization in VSMCs (29, 30). Further-
more, the in vivo studies also have showed that
glibenclamide significantly increases vascular resis-
tance and decreased arterial diameter (31). In the
study for the mouse disrupted the gene encoding
Kir6.1, vascular smooth muscle type KATP channel
is critical in the regulation of vascular tonus, espe-
cially in the coronary arteries (32). Our data may
provide further insight into the relationship among
KATP channel and oxidative stress on cardiovascular
diseases.

There are several reports that insulin activates
KATP channels in neuronal cells (33, 34), pancreatic
β -cells (35), and skeletal muscle cells (36). KATP

channels are sensitive to intracellular ATP levels :
their activity is suppressed by increases in ATP and
activated by increases in ADP and other nucleoside
diphosphates (37). In previous study in VSMCs, we
reported that insulin-activated KATP channel activa-
tion was not mediated the changes of intracellular
ATP levels (18). Furthermore we and others have
found that insulin-induced KATP channel activities are
mediated by PI3-K in VSMCs and other cells (18,
34-36). PI3-K is main downstream molecule in in-
sulin receptor signaling pathway (14-17). Some re-
ports showed ROS-generating agents, such as an-
giotensin II, could suppress insulin-receptor signal-
ing pathways (38). We have also previously reported
that diamide, a thiol-oxidizing agent, inhibited criti-
cal insulin signal transduction component including
IRS and Akt (39). In addition, diamide suppressed
insulin-induced KATP channel activities, but did not
change pinacidil-induced activities in A10 cells (39).
However here we showed 10 μM H2O2 suppressed
insulin-induced KATP channel activities without in-
hibition of insulin-receptor signaling (Figs. 3 and 4).
Yang et al. recently reported that H2O2 inhibited
the activities of VSMC type KATP channels (Kir6.1/
SUR2B) expressed in HEK cells, because H2O2 in-
duced conformational changes of the channels as
closed state via S -glutathionylation of Kir6.1 Cys176,
a cysteine residue in the core domain (40). From
these data, some agents of oxidative stress may

induce oxidation to different target molecules for
KATP channel activities in VSMCs.

In conclusion, we have demonstrated that H2O2

suppresses insulin-induced KATP channel activities in
vascular smooth muscle A10 cells. Oxidative stress
is increased in the diabetic state ; hyperglycemia
leads to production of H2O2 within the cells (41).
Our findings suggest that insulin has maybe impor-
tant roles of the regulation of vascular tonus, which
mediates KATP channel activation, but ROS induces
impairment these effects on the vasculature. Our
data should provide further insight into the effect
of ROS on insulin’s action in the vasculature.
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