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CHAPTER 1

Introduction

The topic of coordinated control of multiple autonomous vehicles has been explored in

considerable detail in the last several years. This is due to the reason that coordinating

vehicles are expected to perform tasks more effectively than a single one, especially for

complicated tasks. Systems of multiple vehicles can accomplish tasks that no single

vehicle can accomplish since a single one irrespective of its capabilities, is spatially

limited. Multiple vehicles in coordination are spatially distributed in two-dimensional

or three-dimensional spaces, and they work together following some commands given

by a supervisor in a centralized control architecture, or following some rules designed in

advance in a distributed manner. Some examples include automated highway systems,

multiple mobile robots, unmanned aerial vehicles for surveillance, terrain mapping,

space missions, formation flight and fire detection.

1.1 Motivation

Cooperative behavior in large groups of individuals can be found abundantly in na-

ture. Well-known examples are schools of fish, flocks of birds, collective food-gathering

in ant colonies, as well as synchronization of flashing fireflies and pacemaker cells, see

Strogatz (2003)[1] for a nice introduction with many examples. A fundamental property

of this cooperation is that the group behavior is not dictated by one of the individuals.

On the contrary, this behavior results implicitly from the local interaction between the

individuals and their neighbours. For instance, every fish in a school knows where the

other fish in its neighbourhood are heading, but it does not know the average heading

of all fish in the school. Nonetheless, the fish in the school stay together and move as

1



2 CHAPTER 1 INTRODUCTION

a group in a certain direction [2, 3].

Many engineering systems also consist of large groups of cooperating dynamic

systems. They are called multi-agent systems (MAS) in the literature, see Olfati-Saber

et al. (2007)[4]; Ren and Beard (2008)[5] for recent overviews. Various applications are

provided in Murray (2002)[6]; we mention here only three examples: Communication

networks like the Internet are composed of many routers with the aim to transmit

information from millions of sources to equally many users respecting the capacity of

each link of the network [7]. Transport systems consist of many trains, cars, or airplanes

with the common aim to bring people and goods from one point to another, see Helbing

(2001) for an overview on car-following. In power networks, the power generators have

to cooperate in order to provide a constant voltage and frequency irrespective of how

many consumers are connected to the network [9]. These applications show two main

characteristics of MAS:

1. The group consists of a large number of subsystems and their number may even

be time-varying as new agents join or leave the group.

2. the interconnection topology between the agents is usually unknown and changing

over time.

These properties often render a centralized control of the MAS very difficult. There-

fore, engineers seek to learn from nature how to implement a decentralized cooperative

control strategy that achieves global goals based on local couplings [10].

In recent years, the multiple mobile robot system have been successfully used in many

fields due to their abilities to perform difficult tasks in hazardous environments, such as

robot rescuing, space exploring, and so on [11, 12, 13]. Therefore, the researchers have

paid more attention to many cases of searching for one or more targets in an unknown

and possibly dangerous (for humans) environment is a task that can be performed by

deploying multiple mobile robots[14, 15].

Many potential applications exist for the deployment of small mobile robots. Teams

of small robots may potentially provide solutions to surveillance, monitoring, search,

and rescue operations[16]. However, small robots have limited mobility range, reduced

sensing and computation capability due to their size and power constraints[17, 18].

In the behavioral control approach, primitives behaviors are defined for the mo-

bile robots. Drive commands are generated by aggregating a collection of weighted

primitives[19]. Many algorithms in multiple robot systems such as artificial potential
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field [20], genetic algorithm [21], neural network system [22, 23] and flocking algorithm

[24]have been proposed for solving control method for multiple robots. However those

algorithms work well for the robots traversing a known environment.

The idea of using multiple mobile robots for tracking targets in unknown envi-

ronment can be realized with Particle Swarm Optimization proposed by Kennedy and

Eberhart in 1995 [25]. The actual implementation of an efficient algorithm like Par-

ticle Swarm Optimization (PSO) is required when robots need to avoid the randomly

placed obstacles in unknown environment and reach the target point [26]. However,

ordinary methods of obstacle avoidance have not proven good results on route plan-

ning. PSO is a self-adaptive population based method in which behavior of the swarm

is iteratively generated from the combination of social and cognitive behaviors and is

an effective technique for collective robotic search problem[27]. When PSO is used for

exploration, this algorithm enables robots to travel on trajectories that lead to total

swarm convergence on some target.

The PSO algorithm is used for robots to find targets at unknown environment in an

area of interest. But if the environment system become complex, the searching time

required will be even longer. In order to improved the original PSO algorithm based

for the search performance of the multiple robot system, Lu and Han [28] proposed a

probability PSO with information-sharing mechanism for cooperative control system.

Due to introducing the ideas of distribution estimation algorithm and niche, each robot

can be provided an opportunity to choose an appropriate position in the search space

such that the search performance of the robot group can be improved.

This research treats of the cooperative control of multiple mobile robots for tracking

target. The control system should have an effective motion to reach one or more differ-

ent position of target [29]. Here we only have basic information about the environment

like the position of each mobile robot and relative distance between mobile robots and

target. Hence real time planning using coordination among the mobile robots about

their surrounding environment information is necessary.

We developed a cooperative control system with PSO and obstacle avoidance al-

gorithm in each mobile robot. The problem deals with a number of mobile robots

deployed in an unknown environment reaching and tracking their target by avoiding

obstacles encountered on their way. we deploy a set of mobile robots at a corner of

the space from where they start moving towards the target with random position. In
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this process, they broadcast the information from the sensor condition about their sur-

roundings continuously to a host PC. A circular drift function is used here to effectively

avoid collisions of robots with the obstacles.

In order to confirm the validity of the proposed control system, the mobile robots are

produced to implement a cooperative control system for tracking targets in unknown

environments using PSO and obstacle avoidance method of the size of the group.

1.2 Problem Statement

A common trait among groups that exhibit collective motion is the capability to act

without centralized control. By centralized control, we mean the actions of a single,

omnipotent entity that organizes the behavior of the group. For example, the coor-

dinated action of the tentacles of a octopus is likely generated by a central nervous

system. Likewise, the scripted maneuvers of battalions within a military regimen may

be orchestrated by a military commander. In both examples, the individual units ten-

tacles and battalions, respectively certainly have some capacity for autonomous move-

ment and interaction with one another and their environment, but without centralized

control, organized behavior of multiple units may not reliably occur.

Coordination under decentralized control, which emerges so effortlessly in biological

collectives, represents a major challenge for groups of autonomous vehicles. Decen-

tralized control (also called distributed control) is a process by which each agent in a

group executes a simple algorithm such that all of the agents converge to a common

activity. Knowledge of a desired group activity may be available to a few agents or to

none at all. Convergence to a common activity occurs literally or figuratively though

the process of consensus.

The focus of this study is creating control algorithms for multiple mobile robot

system. In the previous research [22], we had used neural network to organize the

multiple mobile robot. However if the target position is unknown, setting the weight

of the neural network will become complex. Therefore in this research we purpose a

new algorithm to search and track the target by using PSO in unknown environment

with obstacle.

A simple illustration for solving the problem of search and track target in unknown

environment has been presented in Fig. 1.1. In initial condition, the mobile robots at
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Figure 1.1: The conception of purpose research.

a random position and random direction on the unknown environment. The mobile

robots have mission to search and track the position of targets and avoid collisions of

robots with the obstacles.

The environment and obstacle (i.e. Walls or other robots) position is unknown

for each mobile robot. We use video cameras over the environment to get coordinate

position of each mobile robot and target area. And the robots only have the information

about the relative distance to the targets area and position of each mobile robot. The

searching radius of each mobile robot is nearer distance from targets. For example, dT1
3

is the nearer distance of R3 so the blue space is its searching area and dO3 is distance

between R3 and static obstacle.





CHAPTER 2

Particle Swarm Optimization

Particle swarm optimization is a stochastic population based optimization approach,

first published by Kennedy and Eberhart in 1995 [25, 30]. Since its first publication, a

large body of research has been done to study the performance of PSO, and to improve

its performance. From these studies, much effort has been invested to obtain a better

understanding of the convergence properties of PSO. These studies concentrated mostly

on a better understanding of the basic PSO control parameters, namely the acceleration

coefficients, inertia weight, velocity clamping, and swarm size [31, 32, 33, 34, 35, 36, 37].

From these empirical studies it can be concluded that the PSO is sensitive to control

parameter choices, specifically the inertia weight, acceleration coefficients and velocity

clamping. Wrong initialization of these parameters may lead to divergent or cyclic

behaviour.

The empirical PSO studies do, however, provide some insight into the behaviour of

particle swarms optimization (PSO), providing guidelines for parameter initialization.

For example, Eberhart and Shi found empirically that an inertia weight of 0.7298 and

acceleration coefficients of 1.49618 are good parameter choices, leading to convergent

trajectories [38]. While such empirically obtained values do work well (in general), they

should be considered with care, since the corresponding empirical studies are based on

only a limited sample of problems. It should also be noted that PSO control parameters

are usually problem dependent.

To gain a better, general understanding of the behaviour of particle swarms, indepth

theoretical analyses of particle trajectories are necessary. A few theoretical studies

of particle trajectories can be found, which concentrate on simplified PSO systems

[39, 40, 41, 42, 43, 44, 45]. These studies facilitated the derivation of heuristics to select

7
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parameter values for guaranteed convergence to a stable point. This paper overviews

these theoretical studies, and generalizes to more general PSO systems which includes

the inertia component. The paper also provides a formal proof that particles converge

to a stable point. This point is formally defined.

This chapter discusses a conceptual overview of the PSO algorithm and its parameters

selection strategies, geometrical illustration and neighborhood topology, advantages

and disadvantages of PSO, and mathematical explanation.

2.1 Basic of Particle Swarm Optimization

In the particle swarm optimization (PSO) algorithm, particles communicate with

each other while learning their own experience, and gradually fly into better regions

of the problem space. PSO is a stochastic global optimization method which is based

on simulation of social behavior. As in GA and ES, PSO exploits a population of

potential solutions to probe the search space. In contrast to the aforementioned meth-

ods in PSO no operators inspired by natural evolution are applied to extract a new

generation of candidate solutions. Instead of mutation PSO relies on the exchange of

information between individuals, called particles, of the population, called swarm. In

effect, each particle adjusts its trajectory towards its own previous best position, and

towards the best previous position attained by any member of its neighborhood. In

the global variant of PSO, the whole swarm is considered as the neighborhood. Thus,

global sharing of information takes place and particles profit from the discoveries and

previous experience of all other companions during the search for promising regions

of the landscape. To visualize the operation of the method consider the case of the

singleobjective minimization case; promising regions in this case possess lower function

values compared to others, visited previously.

The problem space is initialized with random solutions in which the particles search

for the optimum. Each particle random searches in the problem space by updating

itself with the best solution it ever found and the social information gathered from

other particles. Within the defined problem space, the system has a population of

particles. Each particle is randomized with a velocity and flies in the search space.

The velocities and positions of the particles are constantly updated until they have all

reached the target. The PSO particles are referred to as robots and the local version
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of the PSO algorithm is considered in the context of this application. Each mobile

robot as particles communicate with each other while learning their own experience in

the population begins with a randomized position P⃗i(t) and randomized velocity V⃗i(t)

in the real environment search space. PSO has been used by researchers all over the

world from various fields of research for different types of optimization.

Initially, let us define the notation adopted in this paper. The problem in un-

known environment is initialized with random solutions in which the robots search for

the optimum. Each robot random searches in the problem space by updating itself

with the best solution it ever found and the social information gathered from other

robots. As in general PSO, the mobile robots navigate through the environment with

dynamic velocity while storing their personal previous best position (pBest) and the

best position of the entire swarm relative to the target, know as the global best po-

sition (gBest). As one mobile robot finds an optimal solution, other robots migrate

towards it, in effect exploiting and exploring the best sections of the search space. The

velocities and positions of the robots are constantly updated until all robots reached

the target position.

Velocity update equations based on the PSO are given by :

V⃗i(t+H) = V⃗i(t) + c1rand(∗)(pBesti − P⃗i(t))

+ c2rand(∗)(gBest− P⃗i(t)) (2.1)

where,

H: sampling time in the simulation with 40 ms.

c1 is the cognitive acceleration coefficient so named for its term’s use of the personal

best, which can be thought of as a cognitive process whereby a particle remembers the

best location it has encountered and tends to return to that state.

c2 is the social acceleration coefficient so named for its term’s use of the global best

which attracts all particles simulating social communication. c1 and c2 are two posi-

tive constant and the balance factors between the effect of self-knowledge and social

knowledge in moving the particle towards the target.

rand(∗): a random number between 0 and 1, and different in each iteration.

pBesti: the personal best position of a particle i (mobile robot).

gBesti : the best position within the swarm.

V⃗i(t+H): the velocity of mobile robots.
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The farther a particle is from its personal best, the larger (pBesti− P⃗i(t)) is and the

stronger the acceleration toward that point is expected to be. Notice that if a particular

dimension of the current position is greater than the same dimension of the personal

best, the acceleration on that dimension is negative, which means that the particle

is pulled back toward that location on that dimension. Of course, this implies that

when the personal best lies ahead of the current position, the particle will accelerate

in the positive direction toward the personal best so that each particle is always pulled

toward its personal best on each dimension. Similarly, the farther a particle is from its

global best, the larger (gBesti − P⃗i(t)) is and the stronger the acceleration is toward

that point.

The social and cognitive acceleration coefficients, c1 and c2 , determine the respective

strengths of those pulls and relative importances of each best.

When each dimension of the social and cognitive terms is multiplied by a random

number, the acceleration is not necessarily directed straight toward the best. Were the

same random number used on all dimension, each pull will be straight toward its best.

Either way, particles are accelerated in two different directions at once so that they

do not actually accelerate straight toward either best.

At each iteration, the previous velocity is reduced by the inertia weight and altered

by both accelerations in order to produce the velocity of the next iteration. Treating

each iteration as a unit time step, a position update equation can be stated as :

P⃗i(t+H) = P⃗i(t) + V⃗i(t+H) (2.2)

where,

H: sampling time in the simulation with 40 ms.

P⃗i(t+H): the new position of mobile robots i for the next iteration.

P⃗i(t) :the current position of a mobile robot i.

V⃗i(t+H): the velocity of mobile robots.

Eq. (2.2) provides the new position of each particle, adding its new velocity, to its

current position. The performance of each particle is measured according to a fitness

function, which is problemdependent. In optimization problems, the fitness function is

usually identical with the objective function under consideration.
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2.2 The pseudo code of PSO

The pseudo code of the procedure PSO algorithm can be written as follows:

�

�

�

�

Algorithm 2.2.1: PSO(pBesti, gBest)

for each Particle

do Initialize particle

repeat

for each Particle

do Calculate particle

if The fitness value is better than its personal best

then Set current value as the new pBesti

the particle with the best fitness value of all as gBest

for each Particle

do Calculate particle velocity according equation 2.1

Update particle position according equation 2.2

until maximum iterations or minimum error criteria is not attained

In PSO, there are two types of information available for the particles so that they

can make the best decision regarding where to move next.

2.3 PSO with inertia weight

The role of the inertia weight (ω) is considered important for the PSO’s convergence

behavior. The inertia weight is employed to control the impact of the previous history

of velocities on the current velocity.

2.3.1 Static inertia weight

There was a weakness inherent in velocity update eq. (2.1) that was fixed by the

introduction of an inertia weight. For the following derivation, let t = 0 be the itera-

tion at which particles have their positions and, optionally, their velocities randomly

initialized. Then for any particle i , the velocity at iteration 1 is :
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V⃗i(1) = V⃗i(0) + c1rand(∗)(pBesti(0)− P⃗i(0))

+ c2rand(∗)(gBest(0)− P⃗i(0)) (2.3)

Since a particle has only one position, x⃗i(0), from which to choose in order to

determine its personal best, P⃗i(0), of necessity P⃗i(0) = x⃗i(0) and the middle term

of eq. (2.1) is zero, so the particle’s velocity at iteration 1 can more succinctly be

expressed as :

V⃗i(1) = V⃗i(0) + c1rand(∗)(0)

+ c2rand(∗)(gBest(0)− x⃗i(0)) (2.4)

Using eq.(2.1) again, the velocity of particlei at iteration 2 is

V⃗i(2) = V⃗i(1) + c1rand(∗)(pBesti(1)− P⃗i(1))

+ c2rand(∗)(gBest− P⃗i(1)) (2.5)

Substituting the value found in eq.(2.4) for V⃗i(1) , the velocity at the second iteration

following initialization becomes

V⃗i(2) = V⃗i(0) + c1rand(∗)(pBesti(1)− P⃗i(1))

+ c2rand(∗)(gBest− P⃗i(1)) (2.6)

Because the personal bests and global best can only improve over time, V⃗i(t +H)

should rely more heavily upon recent bests than upon early values. The parameter ω

regulates the trade off between the global (wide ranging) and the local (nearby) explo-

ration abilities of the swarm. A large inertia weight facilitates exploration (searching

new areas), while a small one tends to facilitate exploitation, i.e. fine tuning the cur-

rent search area. A proper value for the inertia weight ω provides balance between the

global and local exploration ability of the swarm, and, thus results in better solutions.

Experimental results imply that it is preferable to initially set the inertia to a large

value, to promote global exploration of the search space, and gradually decrease it to

obtain refined solutions. The initial population can be generated either randomly.
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Velocity update equations based on the PSO with inertia weight are given by :

V⃗i(t+H) = ωV⃗i(t) + c1rand(∗)(pBesti − P⃗i(t))

+ c2rand(∗)(gBest− P⃗i(t)) (2.7)

Additionally, a particle’s initial velocity, which is not derived from any information,

but randomly initialized to lie between the upper and lower velocity clamping values,

becomes of less effect over time.

2.3.2 Time-Varying inertia weight

Decreasing the inertia weight over time would still allow the swarm to gradually forget

early information of relatively low quality, as in the static case, due to the iterative

multiplication of all past information by a fraction of one as in equation (2.7). For the

decreasing weight, however, information is forgotten more quickly than were the initial

value held constant. This time-decreasing weighting of information may provide more

balance between early and recent information since early information is forgotten at a

slower rate than later information due to the use of relatively large weights early in the

simulation. In other words, all memory is adversely affected, but short-term memory

is mostly affected. This potentially more balanced weighting of early information with

late information might help the standard algorithm postpone premature convergence

to candidate solutions of later iterations when appropriate initial and final values are

used.

The decreasing inertia weight also allows early weights to be larger than were a static

weight used throughout the search. This corresponds to larger velocities early in the

search than would otherwise be seen, which may help postpone premature convergence

by facilitating exploration early in the search. The rate of decrease from initial weight

to final weight depends on the expected length of the simulation since the step size is

a fraction of the total number of iterations expected; hence, the amount of time spent

in the relatively explorative phase, as determined by the amount of time for which

the decreasing weight is larger than the value that would have been used for a static

weight, also depends on the expected length of the simulation.

Increasing the inertia weight, on the other hand, would cause past information to

be forgotten more rapidly than recent information due to the weighting distribution,

thus tremendously increasing the importance of the higher quality information of later
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iterations. For the right range of values, this could conceptually lead to quicker initial

convergence due to less diversity being maintained; however, this could adversely affect

solution quality on difficult functions by upsetting the balance between exploration and

exploitation.

Quick convergence is desirable when successfully converging to a global minimizer,

but it is undesirable when the search is so hasty as to converge prematurely to a

local minimizer. There is a delicate balance to achieve in order to search efficiently

yet thoroughly. The time-varying weight attempts to improve that balance as inferred

from equation (2.7), which shows that at any iteration a particle’s velocity vector is the

result of weighted attractions toward past information, which frames a time-varying

inertia weight as affecting the balance between the rates of short-term and long-term

forgetfulness.

The first study to vary the inertia weight decreased it with the idea that this

would help particles converge upon and refine a solution by reducing velocities over

time. This appeared to work better over the thirty trials conducted [33]; but with only

one benchmark tested, it is conceivable that this might have been a characteristic of

that particular benchmark, which would be consistent with the findings of Meissner

et al [46], who used particle swarm to optimize its own parameters with very different

parameters being proposed per benchmark including an increasing inertia weight on

some benchmarks and a decreasing weight on others. Since that experiment used

Gbest PSO, which tends to stagnate before reaching a global minimizer, the parameter

combinations recommended are likely not ideal, though they may be approximations

of quality local minimizers.

Whereas [46] found an increasing weight to outperform on some benchmarks, [47]

suggested that an increasing inertia weight outperformed on all benchmarks tested;

however, a different formulation of PSO was used so that the quicker convergence

claimed could not be attributed to the increasing weight alone. In an attempt to

reproduce the results of [47] using standard Gbest PSO, increasing the inertia weight

from 0.4 to 0.9 with the same swarm size of 40 particles, acceleration constants 1.49618,

and 1,000 iterations as used in the paper resulted in worse performance on all nine

benchmarks relative to decreasing the weight from 0.9 to 0.4. Therefore, decreasing

the weight appears better than increasing it, at least for the range between 0.9 and

0.4. When the static weight was compared to decreasing, however, only the Ackley
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and Rastrigin benchmarks saw much improvement from decreasing the weight; and

performance on Rosenbrock suffered from the decrease, so that decreasing the inertia

weight is not always best.

It is noteworthy that Naka and Fukuyama showed a decrease from 0.9 to 0.4 to

considerably outperform decreases from 2.0 to 0.9 and from 2.0 to 0.4 on their particular

state estimation problem [48], but they did not generate any comparison data using

the static inertia weight.

2.4 Velocity Clamping

Eberhart and Kennedy introduced velocity clamping, which helps particles take

reasonably sized steps in order to comb through the search space rather than bouncing

about excessively [25]. Clerc had hoped to alleviate the need for velocity clamping

with his constriction models [41]. Eberhart, however, showed clamping to improve

performance even when parameters are selected according to a simplified constriction

model (2.7) [38].

Clerc then compared equation (2.13) with velocity clamping to his other constriction

models without velocity clamping and concurred that velocity clamping does offer con-

siderable improvement even when parameters are selected according to (2.7), so that

the constriction models have not eliminated the benefit of velocity clamping [41]. Con-

sequently, velocity clamping has become a standard feature of PSO. Velocity clamping

is done by first calculating the range of the search space on each dimension, which is

done by subtracting the lower bound from the upper bound.

As noted by Engelbrecht [49], clamping a particle’s velocity changes not only the step

size, but usually also the particle’s direction since changing any component of a vector

changes that vector’s direction unless each component should happen to be reduced

by the same percentage. This should not be thought of as a problem, however, since

each dimension is to be optimized independently, and the particle still moves toward

the global best on each dimension, though at a less intense speed.

Since the maximum iterative movement toward global best on any dimension is

clamped, particles may be thought of as combing the search space a bit more thoroughly

than were their velocities unclamped. Though the same velocity clamping percentage

of fifty percent is used in most papers for sake of comparison, the value does not appear



16 CHAPTER 2 PARTICLE SWARM OPTIMIZATION

to have been optimized yet. Liu et al suggested a value of fifteen percent [50].

Clamping velocities to fifteen percent provided noticeably better performance in

median and mean values on multi-modal functions of high dimensions, where cautious

step sizes in light of new information proved most beneficial; Griewangk was the excep-

tion, since one poorly performing trial significantly affected the mean function value.

Smaller step sizes seem to have helped avoid premature convergence to sub-optimal,

local minimizers. It appears that the standard velocity clamping value of fifty percent

widely used in the literature can be improved upon, and fifteen percent seems to work

well in agreement with Liu’s observation based on primarily different benchmarks of

low dimensions [50].
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2.5 Flowchart of PSO

The velocity value is calculated according to how far an individual’s data is from

the target. The further it is, the larger the velocity value. In the birds example, the

individuals furthest from the food would make an effort to keep up with the others by

flying faster toward the gBest bird.

If the data is a pattern or sequence, the velocity would describe how different the

pattern is from the target, and thus, how much it needs to be changed to match the

target. The basic flowchart of PSO algorithm is shown in Fig. 2.1.

This too makes sense because its main benefit is in early iterations where it provides

momentum by which to propel the best particle, but after some time it effectively

becomes noise diluting actual information. It can be concluded that PSO, as algo-

rithm with low complexity and high feasibility, can finish the task of searching for the

optimum solution without too much parameter adjustment.
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Figure 2.1: Flowchart of the particle swarm optimization algorithm.



CHAPTER 3

Cooperative Control System

One of the current challenges in the development of robot control systems is making

them capable of intelligent and suitable responses to changing environments. Learning

and adaptation methods, as well as decision-making techniques, help to achieve these

objectives. Nevertheless, it is technologically difficult and potentially dangerous to

build complex systems that are only centrally controlled, since the system will fail

if the control system does not work. With decentralized control, it is possible for

the system to continue working even when a part of it fails. Although centralized

control allows multiple goals and constraints to be coordinated in a coherent manner,

decentralization provides flexibility and robustness.

This section presents the cooperative control method, based on particle swarm

optimization, used to combine multiple controllers in the behavior of the mobile robots.

Instead of developing only one very elaborate controller, we have designed several

simple controllers aimed at treating different aspects of the control separately and

unifying their actions to obtain a final complex behavior.

3.1 Previous work

To solve the navigation problem for the robot, researchers have proposed various

methods. In conventional navigation methods such as cell decomposition[51] and road

map[52], due to the high volume of calculations, we are not able to solve problems in

complex environments.

Artificial potential field method [53], because of simplification frequently is used

for local navigation. But due to stop at a local minima, This method will fail. In

19
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recent years a series of intelligent ideas, such as genetic algorithms and particle swarm

optimization because of the robust and ability to the Simultaneous calculations to solve

the navigation problems are used. Ghorbani and colleagues[54], use of the genetic

algorithm for solving the problem of mobile robot navigation. Sugiwara and colleagues

[55], used ants colony algorithm to solve the problem of navigation in a dynamic virtual

environment. Qu and colleagues [56] used neural networks for navigation and obstacles

avoid in dynamic environments. PSO, by Kennedy in 1995, based on observation of

the collective behaviour of certain species of animals such as birds and fish have been

proposed[25]. Due to simplicity, this method is used in robot navigation. Doctor and

colleagues[18], using the PSO method for navigation an unmanned vehicle that can

converge well. Chen and colleagues[57], suggests a soft and efficient navigation method

for mobile robot using the Stochastic PSO. Qin and colleagues[38] used the Chaotic

PSO with Mutation operator for navigation and moving the robot meets the immediate

needs.

Hao and colleagues, [58] proposed a method of obstacles avoiding using the PSO

and polar coordinate system in a dynamic environment. Wang and colleagues [60]

used a PSO for navigation of soccer robot and Karimi[61] , using dynamic hybrid PSO

algorithm to solve motion planning problem.

3.2 Cooperation and Consensus

As mentioned above, consensus and cooperation in networked multi-agent systems

has recently attracted much attention in the research community. For a great intro-

duction into the field and examples of its many, diverse applications see for instance

the surveys[62], Olfati-Saber et al. (2007)[4] and Murray (2007)[63], as well as the

collection of references at Reynolds (2001)[64].

3.2.1 History

Consensus and agreement problems were studied systematically as early as the 1960

in the context of management science and statistics [65, 66, 67, 68]. Later, those ideas

were picked up in different contexts,such as fusion of sensor data [69, 70, 71, 72] or

see the proceedings of the IEEE conferences on Multisensor Fusion and Integration

for Intelligent Systems), medicine [73], decentralised estimation [74, 75, 76, 4], clock
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synchronisation or simulation of flocking behaviour [77, 78] just to name a few.

3.2.2 Networked dynamic systems

Particularly in the last decade the general problem of consensus finding in networked

dynamic systems has been focused on intensely. It typically comes in many flavours

depending on the application. These variations include whether the topology of the

graph representing the inter-agent communications remains fixed or changes over time;

it is undirected or directed; the agents can manipulate the state on which to reach

consensus instantly or only with certain dynamics; if each node’s state is scalar or

multidimensional; whether there are delays in the information exchange; or if all nodes

update their states in a synchronous fashion or on their own pace. While the initial

work by [77, 78, 79] on consensus and coordination was based on bi-directional infor-

mation exchange between neighbouring nodes (leading to undirected communication

graphs) with rigorous convergence proofs given in[75], this has been extended to include

directed communication graphs for instance in [4, 62]. Another generalisation allowed

asynchronous consensus protocols so that not all nodes had to perform state updates

at the same instant,[4]. Closely related was the work that also considered changing

graph topologies. Further generalisations of the problem allowed the inclusion of agent

dynamics (typically linear, second order systems) in the consensus problem[4], which

play an important role in networks of mobile agents that move with finite dynamics.

In some situations the consensus variable may not be directly altered by the nodes,

but only implicitly.

However, most of these papers only focus on so-called unconstrained consensus

applications. When the consensus, that the system is to reach, should fulfil external

conditions (such as a common heading of a flock of agents, but in a particular direction),

three approaches are usually taken, see [4].

3.2.3 Leader-following

The first concept presents a common technique used typically to make formations

of autonomous mobile agents follow desired trajectories. The idea is that all agents in

the are programmed to follow a designated ”leader” node. However, the problem with

these architectures is usually that they not only depend heavily on the leader, but it

appears that little discussion of the case where the leader adjusts its state based on
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feedback of the totality of the states of the network has taken place, and most of the

systems dealt with in that context are linear.

3.2.4 Behaviour based

In the behavioural approach, each agent’s behaviour is based on a combination

(e.g. weighted sum) of a number of desired behaviours, such as goal seeking, formation

keeping, obstacle and collision avoidance, etc. A typical application of these techniques

are rendezvous problems with obstacle and collision avoidance, where the agents are

to meet in a certain place, but avoid running into obstacles or crashing into each other

during the approach.

3.3 Obstacle avoidance algorithm

Collision detection concerns the problems of determining if, when, and where two

objects come into contact. Gathering information about when and where (in addition

to the Boolean collision detection result) is sometimes denoted collision determination.

The terms intersection detection and interference detection are sometimes used syn-

onymously with collision detection. Collision detection is fundamental to many varied

applications, including computer games, physically based simulations (such as com-

puter animation), robotics, virtual prototyping, and engineering simulations to name

a few. Due to this wide application base, numerous techniques have been developed

to predict possible collision situations. Velocity space based techniques, like The Dy-

namic Window approach (DW) and Velocity Obstacles (VO) have been shown to realize

collision avoidance taking into account the future behavior of moving objects.

One way to realize Collision avoidance maneuvers is trough the implementation of

path planing methods with obstacle compliant geometry. Substantial research on these

kind of methods and algorithms for single robots working in environments with static

obstacles can be found in the literature. Examples include the geometrical methods

like the road map, cell decomposition, or methods based on potential field theory just

to name a few. The roadmap and cell decomposition methods rely on rules that are

derived using the geometry of the obstacle field. Many problems on motion planning

for multiple robots [11] have been solved using the geometrical methods. Different

control theories have also been used for path planning for groups of mobile robots.
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A centralized path generation for a group of vehicles is realized using a polynomial-

based approach, taking into account spatial and temporal constraints. Ensuring inter-

vehicle collision avoidance, or even other criteria like simultaneous times of arrival. As

mentioned, another approach that has been extensively used for obstacle avoidance for

single mobile vehicles, multiple mobile vehicles, and dynamic obstacles is the potential

field approach.

In this research, we focus on the mobile robots as particles move through on the

workspace, gaining one new position for every iteration, a conditional statement checks

to see if the sensor condition of each mobile robot active or not. If one of the sensors

is active, the obstacle avoidance section of the algorithm is initiated. The detection

range of the sensor is fixed 50mm.

The obstacle avoidance algorithm can be summarized in the following steps. Each

mobile robot from the beginning until reaching the target position, always check the

condition of the sensor with the scanning method from left to the right. Second if the

condition of the sensor is true, the mobile robot will execute the interrupt program for

obstacle avoidance. In interrupt condition mobile robot makes moving action according

the condition of sensor are listed in the Table 3.1.

Table 3.1: Obstacle avoidance moving action of mobile robot (P-2)

Left Front Right

Moving Action Sensor Sensor Sensor

Right pivot True False False

Slow backward False True False

Left pivot False False True

Right pivot True True False

Slow forward True False True

Left pivot False True True

Slow backward True True True

In the experiment each mobile robot after the completion of obstacle avoidance

moving action will send the condition of sensor data to the host PC. Then the sensor

data will be used to determine the next position that produced by PSO algorithm.

The sensor data used to explain that there are obstacles around the mobile robots, if
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the next position around the obstacle area, PSO algorithm will find another position

to avoid the obstacles. In the simulation, the distance sensor simulated with the fix

range and drawing by red line in the three position around the mobile robot.

3.4 Moving action topologies

In the PSO context, two terms, local versus global are often used. Local refers

to an individual neighbourhood while the global refers to the entire swarm as one

big neighbourhood. Different neighbourhood structures may effect the performance of

the swarm. They determine how information propagate among particles and thus may

effect the convergence of partcles, i.e. when and how particles may come together,arrive

at some stable state and stop improving the solution.

Particle 1

Particle 2 Particle 3

Particle 4

Particle 5

(a) A star

Particle 1

Particle 2 Particle 3

Particle 4

Particle 5

(b) A ring

Particle 1

Particle 2 Particle 3

Particle 4

Particle 5

(c) A wheel

Figure 3.1: Simple neighbourhood topologies with 5 particle

Figures 3.1(a)-(c) are the most commonly used neighbourhood structures, i.e. Stars,

rings and wheels. In star topology as shown in Fig. 3.1(a), all particles are influenced

by one global best location so far in every iteration and move towards the location, so

they tend to converge quickly to the global best. In a ring topology as shown in Fig.

3.1(b), the neighbourhood to another and eventually pull all the particles together. By

gradually spreading information, the swarm converges slower in a ring than in a star

topology. In a wheel topology as shown in Fig. 3.1(c), there existx one and only one

central particle, which serves as a buffer. The central particle collects and compares the

position of all particles, finds the best one and moves itself towards the best position.

Becouse of this buffering effect, a wheel topology may preserve diversity for a bit longer
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and prevent the swarm from converging too fast on local optima.

3.5 Mobile robot model

There are some common mathematical models for mobile robots. The simplest

possible model is the kinematic or first order model, which describes a point-like robot

moving around in the plane. In this model, the velocity is the control input. The main

drawback of the model is that it allows instant velocity change, which is a problem if

the vehicle is heavy, relative to its motor power. To fix this problem, we will consider

a dynamic model with inertia or second order model.

A more common mobile robot configuration is called the two-wheeled mobile robot,

according to the classification made by E. Ferrante. [27], which has two independently

actuated fixed wheels. It is clear that their degree of maneuverability is two and their

number of steering wheel is zero. The simplest 75 possible model for two-wheeled

mobile robot, the kinematic equations of the two-wheeled mobile robot are:



dx

dt

dy

dt

θ

 =


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2
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2

sin(θ)

2

sin(θ)

2

1

2l

1

2l


VL

VR

 (3.1)

where dx
dt

and dy
dt

are velocities of the center of mobile robot, θ is the angle that represents

the orientation of the vehicle, vLi and vRi are velocities of right and left wheels and 2L

is the mobile robot base length. Each particle remembers the position that achieves its

highest performance also a member of some neighborhood of particles, and remembers

which particle achieved the best overall position in that neighborhood.

Figure 3.2 shows the description of a two-wheeled mobile robot model. Where,

Pi (xi, yi) is the coordinates of the i-th mobile robot position, V⃗i is a velocity of the

mobile robot.
More details in dynamics of wheeled mobile robot can be found in [10], which include

not only the motion of mobile robot but also the motion of the driving wheels.

The evaluation function of distance between each mobile robot and the target, means

the distance drefi between the current position Pi (xi, yi) and the desired position P ref
i

(xref
i , yrefi ) of the robot at the next sampling, and is defined by.
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Figure 3.2: Model of two wheeled mobile robot.

drefi =
√
(xref

i − xi)2 + (yrefi − yi)2 (3.2)

The distance dTi between the current position Pi (xi, yi) and the target position PT

(xT, yT) of the robot at the next sampling is defined as :

dTi =
√

(xT − xi)2 + (yT − yi)2 (3.3)

And the angle to the desired position θ is defined as :

θ = tan−1

(
yrefi − yi

xref
i − xi

)
(3.4)

and in the next sampling program will minimize the distance to the target. From the

equation (3.2) we can know where is the nearest target position with the robot position,

and the mobile robot will decided and choose the final target. The nearest position of

the mobile robot with the target will become gBest. The equation (3.1) is used for

determining direction of mobile robot toward into the target.

Since dynamics of mobile robots are nonlinear, the technique of feedback linearization

can be used to facilitate the control design. Because the nonholonomic constraints in

the dynamics of the mobile robot, the mobile robot is not input-state linearizable, most

feedback control methods for mobile robots use input-output linearization [14]. Thus,
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the system can be feedback linearized to a two dimensional double integrator if the

orientation is ignored and only focus on the position of an off-wheel axis point on the

mobile robot [16].

3.6 Moving action of mobile robot

The moving action algorithm of each mobile for tracking the moving targets (T) is

shown in Fig.3.3.

In initialization t = 0s, first of each mobile robot has some information such as

position themselves, others mobile robot position in the surrounding areas and the dis-

tance to the target position. This information will be used for PSO, each mobile robot

will check the distance between his own position with the moving target position (dTi ).

Next, performed tracking the shortest path to reach the target using PSO method.

The moving action algorithm of each mobile for 2 targets (T1 and T2)is shown

in Fig. 3.4. In initialization t = 0s, first of each mobile robot has some information

such as position themselves in unfamiliar surroundings, another mobile robot position

in the surrounding areas and the distance to the target position. This information will

be used for PSO.

Each mobile robot will check the distance between his own position with target

1 position (dT1
i ) and target 2 position (dT2

i ).The mobile robots will decides which the

target area nearest with the mobile robot. Next, performed tracking the shortest path

to reach the target using PSO method.

In an iteration, the mobile robot updates the nearest target position by a Euclidean

distance equation. The information about the current position of each mobile robot,

gBest, pBest and V⃗i(t +H) for the velocity of mobile robot will be calculated by the

PSO algorithm to obtain a new position of each mobile robot.

During moving action to reach to the target area, mobile robot also checks availability

and distance of the obstacle (i.e. walls or other robots) by using a sensor. If have an

obstacle during moving action to reach the target, by using avoidance algorithm, mobile

robot will avoid the obstacle and use his last position closer to the obstacle as an input

to the PSO algorithm to get the next new position.
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Figure 3.3: Flowchart of moving action for moving target.
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CHAPTER 4

Developed Mobile Robot System

In this study, we discuss the cooperative control system of multiple mobile robots

using particle swarm optimization on the 2D coordinate environment. To realize coop-

erative target tracking experiment using real robots, we developed the multiple mobile

robots and environment system.

4.1 Developed environment system

In this system, we used the positions of six mobile robots and relative distance

between each mobile robot and targets, that is calculated from image information

observed from a video camera over workspace in real time process shown in Fig. 4.1.

A host PC has two inputs, one is an image from a video camera mounted on the

top of the workspace, from the images received by the PC we get the information

about the position of each mobile robot and the distance between each robot to the

target. The other input receives distance sensor data in real time also through XBee

wireless communication, in this case XBee wireless communication on mobile robot

alternately receive command signal and sending distance sensor data. A host PC

calculates the control signal for each mobile robot using the cooperative control system

with particle swarm optimization algorithm and sends to each mobile robot through

XBee wireless communication, in this case XBee wireless communication on host PC

alternately receive distance sensor data and sending command signal. Sampling time

of the control system is set to 40 ms.

31
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Figure 4.1: Environment system

4.2 Developed mobile robots

Figure 4.2 shows the appearance of the developed mobile robot with two wheels

named P-2. The overall height is 55 mm, diameter is 70 mm, and the total weight of

the P-2 is 550 g.

(a) Mobile robot without sign (b) Mobile robot with sign

Figure 4.2: Developed two wheels mobile robot: P-2

In the each mobile robots there are three fix range distance sensors. The sensors are

located on front, right side and left side of each mobile robot. Each distance sensor has
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a detection fixed distance is 50 mm with a digital output. Their physical specification

of a mobile robot is listed in Table 4.1.

The mobile robots with AVR ATmega88p as a controller can receive data commands

from the host PC then process it become a moving action and checking distance sensor

condition continuously for detecting the obstacle then send the data to the host PC.

Table 4.1: Specifications of P-2

Robot Size

Height [mm] 55

Diameter [mm] 70

Weight [g] 550

Microcontroller

Type AVR ATmega88P

Frequency [MHz] 20

DC geared Motor

Type GWS PICO/STD/F

Max Speed[cm/s] 9.4

Radio Tranceiver

Type XBee (3.3V UART)

Frequency band [GHz] 2.4

Baudrate Max. [bps] 115200

Distance Sensor

Type Sharp GP2Y0D805Z0F

Package size [mm] 13.6x7x7.95

Power Consumption [mA] 5

Range [mm] 50 (Fixed)

To control the mobile robot, we use AVR ATmega88p micro-controller. The AVR is

one of the popular micro-controller families to use on chip flash memory include that

ROM, EPROM, and EEPROM. It can output the PWM signal. The parameters and

figure for hardware of mobile robot are shown in Appendix A.
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4.3 Image processing system

For this experiment, we was prepared the environment for mobile robot system with

size 2.0x1.5m. We used CCD video camera with resolution 640x480 pixel mounted

on the top of the workspace for getting moving image. And Image from CCD video

camera will process using opencv based on Microsoft visual C++.
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Experiment result

In this section, to confirm the validity of cooperative control of multiple mobile

robot using PSO algorithm, first we show the simulation result in many different case.

Then we show the experimental result in real environment of this research.

5.1 Simulation experiment

In this section we perform some simulations in different cases to validate the

feasibility of the proposed method. The parameters of PSO in the experiment are

set as follows : c1 = c2 = 1.5, ω = 0.5, maximum velocities of mobile robot is 9.4

cm/s and the initial position of each mobile robot is random in unknown environment.

For developed simulation program, we use opencv based on Microsoft visual C++

for making moving action animation of mobile robot. In this simulation, there are

several types of simulation to show PSO and obstacle avoidance algorithm can solved

cooperative control of multiple mobile robot.

5.1.1 Simulation result for following moving target

In this research, we have purposed PSO methode which control multiple mobile

robot to find and following the moving target position in unknown environment. In

this simulation the number of mobile robot is 15. Figure 5.1 shows the response of 15

mobile robot can move toward the goal quickly during avoid wall and others mobile

robot in unknown environment. And also each mobile robot can follow the moving

target position.
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In the beginning of simulation, position of each mobile robot and the targets position

in unknown environment is shown as Fig. 5.1(a).

In the t=37s shown in Fig. 5.1(d), each mobile robot moves to the nearest target

position. After one of the mobile robot touch the target, target will starting move with

square trajectory in the unknown environment. Until t=125s shown in Fig. 5.1(h), the

mobile robots still can follow the moving target.

(a) t=0s (b) t=20s

(c) t=37s (d) t=60s
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(e) t=85s (f) t=100s

(g) t=120s (h) t=125s

Figure 5.1: Trajectories of 15 two-wheeled mobile robot using PSO-based method

5.1.2 Simulation result for tracking two passive target

In this research, we have proposed the use of PSO method in order to cooperative

control multiple mobile robot to reach two different position of target in unknown

environment. Fifteen mobile robots are used in this simulation.



38 CHAPTER 5 EXPERIMENT RESULT

Figures 5.2(a)-5.2(f) show snap shots during the moving of 15 mobile robots to the

two different positions of the target in unknown environment. Each mobile robot can

move towards the two target quickly and cooperatively during avoid wall and another

mobile robot.

At the beginning of simulation, position of each mobile robot and the targets position

in unknown environment is shown as Fig. 5.2(a).

(a) t=0s (b) t=20s

(c) t=48s (d) t=60s
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(e) t=110s (f) t=120s

Figure 5.2: Tracking actions of the 15 mobile robots using PSO method

In Fig. 5.2(a), the mobile robot will moves from the current position to the one of

target with its velocity. At thats time each mobile robot have three important infor-

mation; current position of the mobile robot; another mobile robot position; distance

between each mobile robot and distance between each mobile to the target.

Figure 5.2(b) shows the moving actions of each mobile robot to reach their selected

final target by avoidance the obstacles and through the narrow path. At the t=48s

in Fig. 5.2(c), some of mobile robot can pass through the narrow path with obstacle,

while others mobile robot still find the way to reach the target.

In the t=60s shown in Fig. 5.2(d), each mobile robot moves to the nearest selected

target and some mobile robot already arrived in the final target position shown in Fig.

3(d). Figures 5.2(e) and 5.2(f) show that almost all of mobile robot already reach their

selected target at t=110s, until t=120s two mobile robot still tracking the way go to

their selected the final target.
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5.1.3 Simulation result for moving the target to the goal area

In this section, we perform some simulations in different cases to validate the

feasibility of the proposed method. In this simulation the number of mobile robot is

12.

From Figs.5.3(a)-5.3(f), the robots can find the two different targets by using

PSO-based method in unknown environment.

Target

(a) Initial Position(t=0s) (b) t=8s

(c) t=20s (d) t=70s
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(e) t=105s (f) t=120s

Figure 5.3: Trajectories of 12 mobile robots and two moving targets

The positions of the two targets can be adjusted by the robot when the robot

encourage it. During the simulation, the targets can moved into the home base area

with two groups robots using cooperative control method.

Figure 5.3(a) shows the initial position of each mobile robot towards the target and

goal area in unknown environment. At the t=20s in Fig. 5.3(c), some of mobile robot

can touch and push the target go to the goal area, the goal area is the area after the

red line. While others mobile robot still find the ways to reach the target.

In the t=70s shown in Fig. 5.3(d), one of the group robot can reach the goal area

with the target. And after t=120s two groups of mobile robot can reach to the goal

area.
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5.2 Experiment

In order to verify the validity of the cooperative control system using particle swarm

optimization for tracking target, several settings and experiments using the developed

mobile robots: P-2 was conducted. Six mobile robots are used in this experiment.

(a) Environment without obstacle

(b) Environment with obstacle

Figure 5.4: Environment setting with 1 target

In the experiment, the size of working space is 200x150cm. Figure 5.4(a) shows the

appearance of the environment without obstacle and Fig. 5.4(b) shows the appearance

of the environment with obstacle. Each mobile robot is programmed in order to find
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the moving action without crashing the obstacle and other robots using PSO method.

Here, it is assumed that each mobile robots have information about the distance be-

tween itself current position with target area, itself position and another robot position

close to the mobile robots.

During the experiment, the mobile robot we make full use of the real-time information

attained by updating the coordinate position of each mobile robot from a video camera

over the workspace and distance sensor condition, in this case the Euclidean distance of

the individual robots relative to the target, to analyze the status of their relative current

position. The basic PSO algorithm with obstacle avoidance algorithm to accommodate

for the obstacle (i.e. Walls or other robots) avoidance with cooperative and collective

robotic search applications.
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5.2.1 Tracking actions of mobile robots in unknown environment without

obstacle and with one target area

The parameters of PSO in the experiment are set as follows: c1=c2=1.5, ω = 0.5,

rand(∗) = [0, 1], and maximum velocities of mobile robot is 9.4 cm/s.

(a) t = 0s - t = 45s

(b) t = 45s - t = 90s
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(c) t = 90s - t = 100s

(d) t = 100s - t = 145s

Figure 5.5: Tracking actions of mobile robots in unknown environment without obstacle

and with one target area

By using particle swarm optimization method, the mobile robots can find and

move towards to the target area in unknown environment. The result is shown in Figs.
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5.5(a)-5.5(d) until Figs. 5.8(a)-5.8(d). At the initial time t = 0s, each mobile robot in

random positions on the unknown environment.

In the first experiment, we are setting the environment with 1 target area and

without obstacle. In initial time t = 0s, each mobile robot position is shown in Fig.

5.5(a). After the t = 45s, several mobile robots has been reached in the target area is

shown in Fig. 5.5(b) by using cooperative control algorithm with PSO method. During

t = 45s until t = 100s, only two mobile robots are still trying to find the target area

using information from other robots.

At the end of the experiment t = 145s, all of the mobile robots can reach surround

the target area is shown in Fig. 5.5(d).
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5.2.2 Tracking actions of mobile robots in unknown environment with two

obstacle and one target area

In the second experiment, we use obstacle in the unknown environment with 1 target

area.

(a) t = 0s - t = 45s

(b) t = 45s - t = 90s
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(c) t = 90s - t = 110s

(d) t = 110s - t = 160s

Figure 5.6: Tracking actions of mobile robots in unknown environment with two ob-

stacle and one target area

Figure 5.6(a) shows the initial position of each mobile robot in the environment.

Until t = 90s, the mobile robots can not find the target area is shown as Fig. 5.6(b).

After t = 110s, Fig. 5.6(c) shows several mobile robots has been reached in the target
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area. Each mobile robot can move towards the target area and cooperatively during

avoid an obstacle and other mobile robot after t = 160s is shown in Fig. 5.6(d).
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5.2.3 Tracking actions of mobile robots in unknown environment without

obstacle and with two target areas

Figures 5.7(a)-5.7(d) show snapshots during the movements of six mobile robots

with two target areas in an unknown environment without obstacle.

(a) t = 0s - t = 45s

(b) t = 45s - t = 90s



5.2　 EXPERIMENT 51

(c) t = 90s - t = 120s

(d) t = 120s - t = 155s

Figure 5.7: Tracking actions of mobile robots in unknown environment without obstacle

and with two target areas

Each mobile robot can move towards the target area quickly and cooperatively

during avoid other mobile robots. After the t = 45s, only one mobile robot can reach
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to the target area is shown as Fig. 5.7(a). All of the mobile robots has been reached

in the target area after t = 155s is shown as Fig. 5.7(d).



5.2　 EXPERIMENT 53

5.2.4 Tracking actions of mobile robots in unknown environment with ob-

stacles and with two target areas

The last experiment, we are setting the environment with two target areas and with

obstacles. In initial time t = 0s, each mobile robot is at random positions on unknown

environment.

(a) t = 0s - t = 45s

(b) t = 45s - t = 90s
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(c) t = 90s - t = 120s

(d) t = 120s - t = 170s

Figure 5.8: Tracking actions of mobile robots in unknown environment with obstacles

and with two target areas

After t = 90s, one of mobile robots can reach one of the target areas and one of

mobile robots is near one of the target areas as shown in Fig. 5.8 (b).

After t = 120s, four mobile robot has been reached in target areas is shown as Fig.
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5.8 (c). Each mobile robot can move towards to target areas with cooperatively during

avoid an obstacle and other mobile robot after t = 170s is shown in Fig. 5.8 (d).

Moving actions of each mobile robot in an unknown environment to target areas

shown in Figs. 5.5, 5.6, 5.7 and 5.8. The mobile robot will move from the current

position to the one of the target with its velocity. Each mobile robot moves to the

nearest selected target using PSO method and cooperative control algorithm.
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5.2.5 Following the leader in unknown environment

Figures 5.9(a)-5.9(f) show snap shots during the moving of 6 mobile robots to reach

the moving target in unknown environment. Each mobile robot can follow and move

towards around the leader and cooperatively during avoid wall and another mobile

robot.

(a) t=0s-30s

(b) t=30s-60s
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(c) t=60s-90s

(d) t=90s-120s
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(e) t=120s-150s

(f) t=150s-170s

Figure 5.9: Following the leader in unknown environment

During the experiment, we make full use of the real-time information attained by

updating the coordinate position of each mobile robot and distance sensor condition,

in this case the Euclidean distance of the individual robots relative to the leader, to

analyze the status of their relative current position.
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5.2.6 Tracking actions in unknown environment with moving target

In the last experiment, we set the moving target in the environment. The targets

can move with constant velocity and the follow the white dashed lines as shown in Fig.

5.10 (a).

(a) t=0s-30s

(b) t=30s-60s
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(c) t=60s-90s

(d) t=90s-120s

Figure 5.10: Tracking actions of mobile robots in unknown environment with moving

target

In initial time t = 0s, each mobile robot is at random positions in the home base

area and the gBest value can get from the mobile robot with light blue line. The target
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will start moving when the distance between the target and one of mobile robots is

less than 15 cm as shown in Fig. 5.10 (a). After t = 30s, the target start moving

follow the white dashed line and five mobile robots can track the moving target with

continuously update the distance between mobile robot and target, the gBest value at

thats time is from robot with red line is shown in Fig. 5.10 (b). Figure 5.10 (c) show

snapshots five mobile robot can still tracking and following the moving target, until it

stops at the home base areas followed by five mobile robots as shown in Fig. 5.10 (d).

Moving actions of each mobile robot in an unknown environment to target areas

shown in Figs. 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10. The mobile robot will move from the

current position to the one of the target with its velocity. Each mobile robot moves to

the nearest selected target using PSO method and cooperative control algorithm.

The results are presented in the following to demonstrate the validity of the proposed

the cooperative control system using PSO for tracking target.
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Conclusion

In this research, we proposed cooperative control system of multiple mobile robots

using particle swarm optimization (PSO) for tracking target. We regard the problem

of tracking target as an optimization problem and solve it with PSO. A conceptual

overview of the PSO algorithm and its parameters selection strategies, geometrical

illustration and neighborhood topology, advantages and disadvantages of PSO, and

mathematical explanation.

The actual implementation of an efficient algorithm like PSO is required when

robots need to avoid the randomly placed obstacles in unknown environment and reach

the target point. We treats of the cooperative control of multiple mobile robots for

tracking target. The control system should have an effective motion to reach one or

more different position of target.

The control system have an effective motion to reach one or more different position

of target. We have basic information about the environment like the position of each

mobile robot and relative distance between mobile robots and target.

The positions of globally best particle in each iterative are selected, and reached by

the robot in sequence. Moreover, the positions of obstacles are detected by the robot

sensor and applied to update the information about the environment. The optimal

path is generated by the robot reaches its target by using PSO algorithm.

We developed a cooperative control system with PSO and obstacle avoidance algo-

rithm in each mobile robot. The mobile robots deployed in an unknown environment

reaching and tracking their target by avoiding obstacles encountered on their way. The

mobile robots are produced to implement a cooperative control system for tracking tar-

gets in unknown environments using PSO and obstacle avoidance method of the size

63
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of the group. We use video cameras over the environment to get coordinate position

of each mobile robot and target area. And the robots only have the information about

the relative distance to the targets area and position of each mobile robot.

The results of the experiment demonstrated that the proposed cooperative control

system of multiple mobile robot with limited sensor and information using PSO for

tracking target in unknown environment with obstacle.
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APPENDIX A

Hardware

A.1 AVR controller

To control the mobile robot, we use AVR AVR ATmega88P micro-controller as shown

in figure. A.1. The AVR is one of the popular micro-controller families to use on chip

flash memory include that ROM, EPROM, and EEPROM. It can process the speed

command from the PC to drive wheel, battery voltage minitoring and we have been

communicating with the control PC via wireless communication. The parameters are

shown in table. A.1.

Figure A.1: AVR micro-controller
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Table A.1: AVR parameter sets

Unit Value

Pattern number ATmega88

Pin 28

Operating Voltage V 1.8 5

Max. Operating Frequency MHz 20

EEPROM Bytes 512

CPU bit 16

Flash ROM KByte 8

RAM KByte 1

Serial Interface ch 1

A/D Converter ch 6

By using duty radio, we can adjust the PWM to drive the DC motor for the mobile

robot.

A.2 Wireless communication unit

The wireless communication with the mobile robot and control for PC, we use the

XBee from Digi’s company. XBee is a radio capable for transmitting and receiving

radio signal by ZigBee with standard UART signal communication and also low power

consumption. The mobile robot with low power consumption and low cost are needed.

Figure A.2 shows the appearance of the XBee, Specification of Xbee as shown in Table

A.2.

Figure A.2: Xbee wireless communication unit
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Table A.2: Xbee parameter sets

Name Xbee

Wireless standart IEEE 802.15.4 (ZigBee)

Wireless communication speed 250kbps

Transmission power output 1mW

Serial interface 3.3V CMOS UART

Serial communication speed 1200 - 250kbps

Power-supply voltage 2.8 - 3.4 V

Dimensions 24.38x32.94x7.33mm

A.3 Servo DC Motor

The actuator of the mobile robot, we use the RC servo motor PIC+F/BB/F of

GWS servo’s company. Figure A.3 the appearance of the servo motor. Specification of

DC motor as shown in Table A.3.

RC servo motor, DC motor which can be controlled by the angular position command

by pulse width Is in, many minutes as actuator small humanoid robot and traditional

radio control It is used in the field. RC servo motor potentiometer for the rotation

angle measurement inside Pcs in addition data, the position feedback control system,

it has a built-in motor driver and reduction gear.

Figure A.3: RC servo motor
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Table A.3: RC servo motor parameter

Name PIC+F/BB/F

Speed 0.12s / 60deg(4.8V)

Torque 0.79kg . cm (4.8V)

Power supply voltage 4.8V

Dimensions 22.8x9.5x19.8mm

A.4 IR distance sensor

Sharp GP2Y0D805Z0F is a distance measuring sensor unit, composed of an in-

tegrated combination of PSD (position sensitive detector) , IRED (infrared emitting

diode) and signal processing circuit.

The output voltage of this sensor stays high in case an object exists in the specified

distance range. So this sensor can also be used as proximity sensor. Figure A.4 the

appearance of the servo motor. Specification of DC motor as shown in Table A.4.

Figure A.4: Distance sensor

Table A.4: Distance sensor parameter

Name Sharp GP2Y0D805Z0F

Detecting fix distance 50mm

Power Consumption 5mA

Power supply voltage 2.7-6.2V

Dimensions 13.6x7x7.95mm
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The variety of the reflectivity of the object, the environmental temperature and

the operating duration are not influenced easily to the distance detection because of

adopting the triangulation method.
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