
1

A Study on Music Retrieval based on
Audio Fingerprinting

Qingmei Xiao

A Thesis submitted to the University of Tokushima in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

September, 2013

Department of Information Science and Intelligent Systems
Graduate School of Advanced Technology and Science

The University of Tokushima

Contents

1 Introduction 1

1.1 Backgrounds . 1

1.2 Purpose and Significance of the Study 2

1.3 Thesis Organization . 3

2 Music Retrieval based on Audio Fingerprinting 5

2.1 Audio Fingerprint Extraction . 5

2.1.1 Fourier Transform . 8

2.1.2 Fast Fourier Transform . 9

2.1.3 Window Function . 12

2.1.4 Bark Scale . 14

2.2 Distance between Audio Fingerprints 15

2.3 Audio Fingerprint Search . 17

3 Fast Hamming Space Search based on Query Multiplexing 19

3.1 Retrieval based on Locality-Sensitive Hashing 19

3.2 Suffix Array . 21

3.2.1 Definition of Suffix Array . 21

3.2.2 Binary Search on Suffix Array 23

3.3 Hamming Space Search based on Query Multiplexing 25

3.3.1 Suffix Array Method . 26

3.3.2 Music Retrieval based on Suffix Array 27

i

CONTENTS ii

3.3.3 Acquisition of Music Information 31

3.4 Experiments and Results . 32

3.4.1 Music Data . 33

3.4.2 Acoustical Analysis Settings 33

3.4.3 Experimental Results . 33

4 Audio Fingerprinting Systems in Real-Noise Conditions 35

4.1 Related Work . 35

4.2 Experiments and Results . 36

4.2.1 Music and Noise Data . 36

4.2.2 Experimental Results . 38

4.2.3 Impact of High Frequency Bands 38

4.2.4 Impact of Temporal Changes 42

5 Index Compression based on Compressed Suffix Array 46

5.1 Compressed Suffix Array . 46

5.1.1 Retention of Sorted Data . 46

5.1.2 Run Length Encoding . 47

5.1.3 Compression of the Data Order 50

5.1.4 Restoration of the Data Order 52

5.2 Search Based on Compressed Suffix Array 53

5.3 Experiments and Results . 57

5.3.1 Music Data . 57

5.3.2 Compression Settings . 57

5.3.3 Experimental Results . 58

6 Conclusions and Future Work 63

List of Figures

2.1 Frame segmentation . 6

2.2 The overview of Haitsma-Kalker fingerprint extraction scheme [1] . . 8

2.3 Hanning window . 13

2.4 Hamming window . 14

2.5 Audio fingerprint search . 18

3.1 Schematic diagram of search based on random permutation 25

3.2 Schematic diagram of search based on query multiplexing 26

3.3 The scheme of the method based on suffix array 28

3.4 Schematic diagram of sub-fingerprint sequence search 29

3.5 Sub-fingerprint block matching based on SA 32

3.6 Acquisition of music information . 32

4.1 Noise of frequency band near 1khHz 39

4.2 Accuracy under the noise of frequency band near 1khHz 39

4.3 Noise from crossing . 40

4.4 Noise from trunk road . 40

4.5 Noise from running cars (inner car) 41

4.6 Noise from trains in operation . 41

4.7 Noise from trains during standstills 42

4.8 Noise from crowds . 42

4.9 Noise from elevator hall . 43

iii

LIST OF FIGURES iv

4.10 Noise from vending machine by the road side 44

4.11 Noise from vending machine in the station 44

4.12 Noise from the passage of exhibition hall 44

4.13 Noise from the booth . 45

5.1 Compression of audio fingerprints index 54

5.2 The sorted data . 56

5.3 Data in original order . 56

5.4 Size of sub-fingerprints . 59

5.5 Size of index . 60

5.6 Total data size . 61

List of Tables

3.1 Suffixes of “mississippi” . 22

3.2 Sorted suffixes of “mississippi” . 22

3.3 Data T and sorted positions SA . 23

3.4 Results on real music data . 34

3.5 Results on corrupted music data . 34

4.1 Noise data classification . 37

4.2 Accuracy under mechanical noise . 38

4.3 Accuracy under human noise . 38

4.4 Numbers of approximate-silent intervals in noise data 43

5.1 SA and CSA . 55

5.2 Size of sub-fingerprints . 58

5.3 Size of index . 59

5.4 Total data size . 61

5.5 Search time . 62

v

Abstract

For an efficient and accurate music retrieval system, a huge search space has to

be explored, because a query audio clip can start at any position of any music in

the database, and also a query is often corrupted by significant noise and distortion.

Audio fingerprinting has recently attracted much attention in music information

retrieval, which provides a compact representation of the perceptually relevant parts

of the audio signals. For the audio fingerprinting-based music retrieval methods, a

large database is required in order to compare the fingerprints extracted from the

query. To retrieve music information from such database, an efficient search method

has to be developed.

In this thesis, we propose a fast Hamming space search method for audio fin-

gerprinting based on query multiplexing, by using a suffix array. Our method is

inspired by the Locality-Sensitive Hashing (LSH) algorithm, which is a probabilistic

algorithm for solving the nearest neighbor search in high-dimensional spaces. The

LSH algorithm employs multiple hash functions to maintain a high retrieval accuracy

and therefore requires a large amount of memory/storage for saving the hash tables.

For the Hamming space search, the LSH algorithm must maintain multiple database

sets at the same time which have been created by random permutations. To solve

such problem, the proposed method creates multiple multiplexed search queries of

sub-fingerprint sequence with different starting time, and therefore does not require

the expansion of the database. As a result, a large amount of memory/storage is

saved. The effectiveness of our method has been evaluated by experiments using a

database which contains 8,740 original songs, 800 artificially corrupted songs and

268 original queries.

We evaluate the performance of the audio fingerprinting system in real-noise

conditions by adding noise data (ten types of noise data) to the music data in

accordance with signalto-noise ratios (SNR). For the reason that the query music

could be distorted by external noise, such as the noise on a smart phone which

can be used anywhere, including some fairly noisy places such as shopping malls or

playgrounds (i.e., varieties of external noise are unavoidable and should be taken

into account), it is necessary to examine the robustness of the audio fingerprinting

system against the real noise in practical applications.

We also present a method for index compression using a compressed suffix array.

This method first sorts the audio fingerprints, and then compresses the index by

encoding the 8-bit data sequences with the Run Length Encoding. Vertical Code,

which represents a smaller value in a smaller size, is used to compress the array,

in which the positions of the sorted data are stored. Compared with the conven-

tional method, our method only needs an audio fingerprints database taking 30%

the original space as the music database consisting of 8,000 songs, and an index

space of around 80% as the database of 1,000 songs. Moreover, the entire space cost

is reduced to around 60%.

Chapter 1

Introduction

1.1 Backgrounds

With the development of the Internet and music compression technology, large

amounts of music is available for us. A music retrieval system would be neces-

sary and helpful to retrieve a song as we need from a large-scale music database.

As one of music retrieval systems, text retrieval can retrieve music by using a song

name, artist and so on. Music can be also retrieved by using lyrics. However, the

text retrieval does not work if there is no information represented by the text. The

retrival method using lyrics would also fail to work if there is no lyrics in music,

such as an intrumental song.

A retrieval method based on audio signals can avoid failure in these cases. For

example, a song suddenly catches your attention while you are watching TV. You like

the song so much that you still would like to know more about this song. However

it is the first time you heard the song and thus you do not know the song name or

artist. In this case, the recorded music would help.

A music retrieval system enables users to easily obtain information about an

unknown song such as song name, artist and album. Most music retrieval systems

adopt audio fingerprinting algorithm proposed by Haitsma and Kalker [1]. An audio

1

1.2. PURPOSE AND SIGNIFICANCE OF THE STUDY 2

fingerprint is a condensed feature that can be used to identify a song or quickly locate

similar songs in an audio database. Information for an unknown music clip can be

derived by using audio fingerprints generated from the music clip, together with an

audio database. Specifically, extract the audio fingerprints of the song you wish to

know, and then compare the fingerprints with that of the music in the database;

Among the songs in the database, select the music whose fingerprints are most

similar as the song you are looking for.

Content-based music information retrieval has become one of the most attrac-

tive application services pursued by many companies in recent years. For instance,

Shazama [2] and Gracenote [3] can return the artist, track, lyrics and more informa-

tion from a few seconds of music clip captured by a smart phone. Even more, the

song which has been identified can be also perchased directly.

1.2 Purpose and Significance of the Study

Audio fingerprints are not only used to retrieve music, but also for copyright pro-

tection, such as detecting illegal copying of digital contents and the distribution of

copyright-infringing songs on the Internet. Illegal copying can be detected by com-

paring the similarity of audio fingerprints extracted from the original music and the

music on the Internet respectively.

On the other hand, a large database to be searched is required for the identifica-

tion of the music by the audio fingerprinting. However, it takes a long time to search

in a brute-force method since the database to be explored is quite large. That is,

there is a need for efficient database searching method.

Some efficient retrieval methods based on audio fingerprinting have been pro-

posed, including a method using a hash table [4] and a tree-structured representation

of fingerprints [5]. However, the space cost increases in proportion to the growing

music database.

1.3. THESIS ORGANIZATION 3

In this study, we propose a fast space-saving method for exploring a huge Ham-

ming space which is suitable for audio fingerprinting systems building on the ideas

of Locality-Sensitive Hashing. We also compress the index of the audio fingerprints

by using the compressed suffix array to reduce the space cost by compressing the

index of the database.

1.3 Thesis Organization

The thesis is organized as follows:

Chapter 2 outlines the music retrieval method based on audio fingerprinting.

Beginning with introducing the audio fingerprinting, we illustrate the features and

advantages of audio fingerprinting, including a relatively compact representation

and that similar inputs are hashed to similar hash values. Then to review the most

popular audio fingerprint extraction algorithm which is proposed by Haitsma and

Kalker. The sign of power differences between successive frequecy bands is used in

this algorithm. For the distance between audio fingerprints, we use the bit error tate

to calculate. Finally, we give the main idea and processing of the audio fingerprint

search method.

Chapter 3 proposes a fast Hamming space search method based on query mul-

tiplexing. For the proposed method is inspired by the Locality-Sensitive Hashing

(LSH), the LSH is introduced first. As a typical LSH method, the retrieval method

based on random permutations requires for a huge amount of memory in order to

perform many random permutations on the original database in advance. We give

our mehod based on query multiplexing which costs much less space.

Chapter 4 gives a performance evaluation of audio fingerprinting systems in real-

noise conditions. We first review the main idea of the Hamming space search based

on query multiplexing and the related work on the audio fingerprinting algorithm

under additive noise. Then we evaluate the performance of audio fingerprinting

1.3. THESIS ORGANIZATION 4

systems in real-noise conditions by adding noise data (ten types of noise data) to

music data in accordance with signalto-noise ratios (SNR).

Chapter 5 presents an index compression method based on a compressed suffix

array in order to reduce the space. We first give the reason why a compressed suffix

array for index compression is used. Subsequently, the method how to compress the

index by using a compressed suffix array is elaborated. Run Length Encoding and

Vertical Code used for index compression are stated in this chapter. Finally, the

music retrieval method based on index compression using a compressed suffix array

is evaluated through experiments.

In Chapter 6, we conclude this thesis and disscuss the future work.

Chapter 2

Music Retrieval based on Audio

Fingerprinting

Audio fingerprinting is a kind of message digest (one-way hash function), and it

converts an audio signal into a relatively compact representation by using acoustical

and perceptional characteristics of the audio signals. For message digesting methods

used for authentication and digital signatures (e.g. MD5), slight difference in the

original objects results in totally different hash values. This means that two hash

values mapped from an original audio signal and a corrupted one are completely dif-

ferent, which drastically decreases the retrieval performance for ”corrupted” queries.

However, in audio fingerprinting, similar inputs are hashed to similar hash values.

Music retrieval based on audio fingerprinting involves some key problems: (1)

which type of audio fingerprints to use, (2) how to define the distance between

two fingerprints, and (3) how to retrieve from a huge database. We review these

problems next.

2.1 Audio Fingerprint Extraction

A variety of audio fingerprint extraction algorithms have been developed based on

different acoustic features, such as Fourier coefficients [6], Mel frequency cepstral

5

2.1. AUDIO FINGERPRINT EXTRACTION 6

coefficients [7], spectral flatness [8] and so on. In particular, the fingerprint extrac-

tion algorithm by Haitsma and Kalker [1] uses a feature of the energy difference

between frequency bands as follows: (1) frame segmentation, (2) frequency-domain

representation, (3) frequency band division, and (4) sub-fingerprint extraction.

(1) Frame segmentation

An input audio signal is segmented into frames, and then 32-bit sub-fingerprints

are extracted from each overlapping frame. Haitsma and Kalker used a frame length

of 0.37 second with an overlap factor of 31/32, so a sub-fingerprint was extracted

for every 11.6 milliseconds. The process of frame segmentation is shown in Figure

2.1.

Figure 2.1: Frame segmentation

(2) Frequency-domain representation

Sub-fingerprints are actually calculated in the frequency domain. Each frame

is first converted into a frequency domain by using FFT. The frames are weighed

by the Hanning window in order to reduce the influence of the boundary of the

frames. Window functions such as Hanning window and Fourier transform are to

be explained in the next section.

2.1. AUDIO FINGERPRINT EXTRACTION 7

(3) Frequency band division

For each frame, segment all the frequency bands lying in the range from 300Hz to

2000Hz into 33 non-overlapping frequency bands which have a logarithmical spacing.

These bands are set by the Bark scale based on the hunan auditory characteristics.

(4) Sub-fingerprint extraction

Next, a sub-fingerprint is calculated by checking the sign (plus or minus) of the

energy difference between two successive frequency bands. The sub-fingerprints are

calculated as follows: let E(n,m) be the power of frequency band m of frame n,

then the m-th bit of frame n, F (n,m), is determined by Equation (2.1):

F (n,m) =


1 if ED(n,m) > 0

0 if ED(n,m) ≤ 0,

(2.1)

where

ED(n,m) = E(n,m)− E(n,m+ 1)−
(
E(n− 1,m)− E(n− 1,m+ 1)

)
. (2.2)

By the above method, a 32-bit sub-fingerprint can be derived from one frame.

One sub-fingerprint is extracted per 11.6 milliseconds. That is, about 25,000 sub-

fingerprints can be generated from a 5-minute song.

Haitsma and Kalker [1] demonstrated that the sign of power differences be-

tween successive frequency bands was effective for identifying music, and was also

robust against various “corrupted” inputs such as compressed or delayed music.

The Haitsma and Kalker algorithm can be implemented by simple arithmetic, while

maintaining compact representation for generated audio fingerprints.

The overview of Haitsma-Kalker algorithm is shown in 2.2.

2.1. AUDIO FINGERPRINT EXTRACTION 8

Figure 2.2: The overview of Haitsma-Kalker fingerprint extraction scheme [1]

2.1.1 Fourier Transform

In this subsection, we describe the Fourier transform algorithm [9]. Fourier trans-

form(FT) can transform a mathematical function of time (or space) into a frequency

function. Fourier transform is defined by

H(f) =

∫ ∞

−∞
h(t) exp(−i2πft)dt. (2.3)

Here, t is the time, f represents the frequency and exp(x) = ex. If Equation (2.3)

is expressed as ω = 2πf , it becomes

H(ω) =

∫ ∞

−∞
h(t) exp(−iωt)dt. (2.4)

The digital signal used here is discrete Fourier transform (DFT), which is defined

by

Xk =
N−1∑
n=0

xn exp(−i2πkn/N). (2.5)

In (2.5), the sequence of N complex numbers x0, x1, · · · , xN−1 is transformed

2.1. AUDIO FINGERPRINT EXTRACTION 9

into an N -periodic sequence of complex numbers X0, X1, · · · , XN−1.

2.1.2 Fast Fourier Transform

Fourier transform is implemented by fast Fourier transform (FFT) on a computer.

According to the definition, the computation of Fourier transform is proportional

to N2, given N samples. FFT is an algorithm that reduces the computational

complexity. The principles of Fourier transform are to be explained in the following.

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier

transform (DFT) and its inverse. A Fourier transform converts time (or space) to

frequency and vice versa. An FFT rapidly computes such transformations. As a

result, fast Fourier transforms are widely used for many applications in engineering,

science, and mathematics.

For the discrete Fourier transform formula (2.5), suppose

WN = exp(−i2π/N), (2.6)

Equation (2.5) can be expressed as

Xk =
N−1∑
n=0

xnW
kn
N . (2.7)

Given N = 2Q, the calculation can be expressed by a matrix of a product of two

matrices, that is 2Q × 2Q.

If Q = 2, that is, N = 22 = 4, Equation (2.8) becomes

Xk =
3∑

n=0

xnW
kn
N , (2.8)

2.1. AUDIO FINGERPRINT EXTRACTION 10

where k = 0, 1, 2, 3. It also can be expressed by a matrix as



X0

X1

X2

X3


=



1 1 1 1

1 W4 W 2
4 W 3

4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4





x0

x1

x2

x3


, (2.9)

where

W4 = W 9
4 = exp(−i2π/4) = −i (2.10)

W 2
4 = W 6

4 = exp(−i2π2/4) = −1 (2.11)

W 3
4 = exp(−i2π3/4) = i (2.12)

W 4
4 = exp(−i2π) = 1. (2.13)

Interchanging the second and third rows, we can get



X0

X2

X1

X3


=



1 1 1 1

1 −1 1 −1

1 −i −1 i

1 i −1 −i





x0

x1

x2

x3


, (2.14)

which can be replaced by



X0

X2

X1

X3


=



1 1 0 0

1 −1 0 0

0 0 1 −i

0 0 1 i





1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1





x0

x1

x2

x3


. (2.15)

2.1. AUDIO FINGERPRINT EXTRACTION 11

Substitute the following



x0

x1

x2

x3


=



x0,0

x1,0

x2,0

x3,0


(2.16)

and change the second part of Equation (2.15) to



x0,1

x1,1

x2,1

x3,1


=



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1





x0,0

x1,0

x2,0

x3,0


=



x0,0 + x2,0

x1,0 + x3,0

x0,0 − x2,0

x1,0 − x3,0,


(2.17)

in the first stage of processing. Replace the first part of Equation (2.15) with



x0,2

x1,2

x2,2

x3,2


=



1 1 0 0

1 −1 0 0

0 0 1 −i

0 0 1 i





x0,1

x1,1

x2,1

x3,1


=



x0,1 + x1,1

x0,1 − x1,1

x2,1 − ix3,1

x2,1 + ix3,1


(2.18)

for the second stage of processing. Equation (2.14) can be expressed as



X0

X2

X1

X3


=



x0,2

x1,2

x2,2

x3,2


=



x0,1 + x1,1

x0,1 − x1,1

x2,1 − ix3,1

x2,1 + ix3,1.


(2.19)

Similarly, the matrix 2Q × 2Q can be decomposed into Q matrixes of 2Q × 2Q

which contains many elements of 0. The matrix operation, 2Q times in each stage,

2.1. AUDIO FINGERPRINT EXTRACTION 12

is so-called butterfly operation. That is, such operation as


xk,l = xk,l−1 +W pxk+N/2l,l−1

xk+N/2l,l = xk,l−1 −W pxk+N/2l,l−1

(2.20)

has 2Q−1 sets.

In this calculation, the multiplication process decreases since W pxk+N/2l,l−1 can

be shared. In other words, FFT reduces the computation.

2.1.3 Window Function

It is necessary for the discrete Fourier transform to reduce the influence of the ends

of the chosen frame. The reason is that the distortion of the harmonic component

occurs when the values of the leftmost and rightmost differ greatly. A window

function is applied to the signal in order to improve this situation, and the following

two conditions are required for the window function:

(a) Width of main-lobe is small,

(b) Amplitude of side-lobe is small.

(a) shows that the frequency resolution is high. However, there is a trade-off

between (a) and (b). That is, the larger the attenuation of the side lobe, the width

of the main lobe would increase.

Hanning window, one of the window functions has been used in Haitsma-Kalker

algorithm. Equation (2.21) shows the hanning window for k = 0, 1, · · · , N − 1.

The Hanning window when N = 256 is shown in Figure 2.3.

w(k) =


0.5− 0.5 cos (2πk/N − 1) if 0 ≤ k ≤ N − 1

0 if k < 0, N − 1 < k.

(2.21)

2.1. AUDIO FINGERPRINT EXTRACTION 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

w
(k

)

k

Figure 2.3: Hanning window

In Hanning window, both ends of the chosen signal to be cut out are 0. Both

ends outside the interval are weighted by the cosine function. Determining the

frequency response by a Fourier transform, the maximum value of the side lobe is

found to be −32 dB. The signal analysis is improved by the Hanning window since

side lobe is −13 dB when applying a Rectangular window (if a window function is

not multiplied).

The Hamming window used in this study is optimized from the Hannning window

[10]. Equation (2.22) shows the Hamming window function for k = 0, 1, · · · , N−1.

The Hamming window for N = 256 is shown in Figure 2.4, where the windows for

k < 0, and k > N − 1 are omitted.

w(k) =


0.54− 0.46 cos (2πk/N − 1) if 0 ≤ k ≤ N − 1

0 if k < 0, N − 1 < k.

(2.22)

Maximum value of side lobe of Hamming window is −42 dB. The result shows

an improvement of about −30 dB, compared with that of a Rectangular window.

2.1. AUDIO FINGERPRINT EXTRACTION 14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

w
(k

)

k

Figure 2.4: Hamming window

2.1.4 Bark Scale

The human auditory system consists of a series of bandpass filters. For example, if

there are two tones in the same time, human auditory system always hears one tone

while the other becomes inaudible. This phenomenon is caused by increase of the

minimum audible range, which is the so-called masking.

The auditory filter is a bandpass filter whose center frequency varies continuously

and has the following characteristics:

(a) The frequency analysis of acoustic signal is performed by a bandpass filter

which has a closest frequency to the signal.

(b) Those noise components affecting the masking are limited to the frequency

components of bandpass filter.

In addition, the frequency bandwidth of the auditory filter is called critical band

(CB). Critical band is a function of the center frequency. The critical bandwidth

decreases with decreasing center frequency, and increases in size with increasing

center frequency. It is called Bark scale when the width of the critical band equals

1.

2.2. DISTANCE BETWEEN AUDIO FINGERPRINTS 15

The following conversion should be applied to transform frequency values f [Hz]

into Bark values:

Ω(f) = 13 tan−1(0.76f/1000) + 3.5 tan−1((f/7500)2). (2.23)

As a typical auditory filter, filter with Bark scale can be calculated by the fol-

lowing formula [11]:

Ψ(Ω) =



0 Ω < −1.3

102.5(Ω+0.5) −1.3 ≤ Ω ≤ −0.5

1 −0.5 < Ω < 0.5

10−1.0(Ω−0.5) 0.5 ≤ Ω ≤ 2.5

0 Ω > 2.5

(2.24)

The frequency band division for audio fingerprint extraction is completed by using

the Bark scale as stated above.

2.2 Distance between Audio Fingerprints

The sub-fingerprint is a 32-bit condensed summary extracted from a frame in an

input audio, and one sub-fingerprint does not have enough information to identify

the audio. To obtain sufficient information, a fingerprint block, which is a sequence

of sub-fingerprints, is used for matching audio sub-fingerprints. A fingerprint block

consisting of 256 sub-fingerprints was used in the experiments in [1].

Bit error rate is used as the distance between two fingerprint blocks. Let

FA(n,m), FB(n,m) be the sub-fingerprints extracted from audio clips A and B re-

spectively. The bit error rate of fingerprint block BER(A,B) of length N is formally

2.2. DISTANCE BETWEEN AUDIO FINGERPRINTS 16

defined as:

BER(A,B) =
1

32N

N−1∑
n=0

31∑
m=0

[FA(n,m) ∧ FB(n,m)]. (2.25)

The operator “∧” denotes bitwise operation XOR (exclusive or). The numerator

of Equation (2.25) calculates the Hamming distance between two fingerprint blocks,

which is divided by the bit length of fingerprint blocks (32N). That is, the number

of different bits between the sub-fingerprints sequences of FA(n,m), and FB(n,m).

BER(A,B) is the error rate per bit.

Specifically, the length of sub-fingerprint block is N = 3 in our study. Let FA[n]

and FB[n] be the sub-fingerprints of n-th frame extracted from audio clips A and

B, the sub-fingerprint blocks can be expressed by

FA[n], FA[n+ 1], FA[n+ 2], (2.26)

and

FB[n], FB[n+ 1], FB[n+ 2] (2.27)

respectively.

Values are given in hexadecimal format as follows:

FA[n] = 07 E4 FF F8, (2.28)

FA[n+ 1] = 07 E4 FE F8, (2.29)

FA[n+ 2] = 07 F4 7E F8. (2.30)

FB[n] = 1F E0 E7 FC, (2.31)

FB[n+ 1] = 07 E0 FE FC, (2.32)

FB[n+ 2] = 07 F0 7E 7C. (2.33)

2.3. AUDIO FINGERPRINT SEARCH 17

FA[n] and FB[n] can be expressed in binary format as

FA[n] = 0000 0111 1110 0100 1111 1111 1111 1000 (2.34)

and

FB[n] = 0001 1111 1110 0000 1110 0111 1111 1100. (2.35)

Hence,

FA[n] ∧ FB[n] = 0001 1000 0000 0100 0001 1000 0000 0100, (2.36)

and the Hamming distance between FA[n] and FB[n] is 6. Similarly, the Hamming

distance between FA[n+1] and FB[n+1] is 2, and 3 between FA[n+2] and FB[n+2]

The Hamming distance between the sub-fingerprint block starting from FA[n]

and FB[n] respectively becomes 11. According to (2.25), BER can be determined

by

BER(A,B) =
11

32× 3
= 0.115. (2.37)

That is, the bit error rate is 11.5 %

2.3 Audio Fingerprint Search

Most music retrieval methods based on audio fingerprinting have the following

stages. First, fingerprint blocks are extracted from each song in the database. Be-

cause of the unknown position of the query, all variations of starting point should

be considered. Therefore, each song allows extracting quite a number of fingerprint

blocks by shifting all the frames to fingerprint blocks one by one. When a query

is given, many fingerprint blocks are also extracted from the query. Thus, music

retrieval involves finding the fingerprint block in the database that is most similar

to the fingerprint block derived from the query.

The scheme of audio fingerprint search can be dipicted by Figure 2.5. The left

2.3. AUDIO FINGERPRINT SEARCH 18

part of the figure denotes the sub-fingerprint sequece obtained from the query, and

the right part shows of that obtained from the music in the database, which contains

N songs and i takes values from 0 to N−1. As shown in Figure 2.5, audio fingerprint

search is actually to calculate the Hamming distance between the sub-fingerprint

block Qx extracted from query and Dy from each song in the database.

Figure 2.5: Audio fingerprint search

The search space of audio fingerprinting is huge. For example, a fingerprint

database containing 10,000 songs each with an average length of 5 minutes would

result in approximately 250 million fingerprint blocks in total using the algorithm in

[1]. The number of distance calculations would be several to several dozen times as

large as 250 million by brute-force search taking account of matching the fingerprint

blocks. Many ways of reducing the number of calculations have been proposed,

such as using a hash table (lookup table) for sub-fingerprints [1], a tree-structured

representation of sub-fingerprints [5], and a hash table consisting of peak values in

the frequency domain and duration between the two peaks [4]. However, with these

methods the size of the hash table grows rapidly with the bit error rates between

the query and songs in the database increasing. Therefore, a fast Hamming space

searching method is urgently required.

Chapter 3

Fast Hamming Space Search based

on Query Multiplexing

In this chapter, we propose a fast retrieval method based on query multiplexing using

a suffix array for audio fingerprinting systems [12]. Suppose that audio fingerprints

are represented by binary bit vectors, and the Hamming distance is used for the

distance between two audio fingerprints. We first outline the search methods for

Hamming space based on Locality-Sensitive Hashing, and then review the suffix

array that is employed in our method. Finally, we give a new retrieval method

based on query multiplexing.

3.1 Retrieval based on Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a hashing scheme for probabilistic searches of

large-scale high-dimensional data, rather than a specific algorithm. It includes the

hashing method for Hamming distance using bit sampling [14], the method for

Jaccard distance using min-wise independent permutation [15], the method based

on random projection for cosine distance [16], and the method using p-stable dis-

tribution for Lp distance [17]. The concept of LSH is to map the high-dimensional

vector data into hash values so that similar data are mapped to the same hash val-

19

3.1. RETRIEVAL BASED ON LOCALITY-SENSITIVE HASHING 20

ues with high probability. Generally, we cannot find a hash function which gives

the same hash values for similar high-dimensional data. LSH can maintain certain

retrieval accuracy by using multiple hash functions.

The audio fingerprint search is actually a Hamming space search. There are a few

Locality-Sensitive Hashing schemes proposed to reduce the problem in the Hamming

space. Indyk and Motwani proposed an LSH algorithm for Ham-ming space based

on the Point Location in Equal Balls (PLEB) problem [19], also Charikar [16] and

Ravichandran et al. [20] improved the algorithm by using random permutations of

binary vectors.

The concept of random permutations is as follows: given a set of n vectors

D = d1, d2, · · · , dn, where each vector consists of k binary bits, permutation σ is

defined as a bijection on {1, 2, · · · , k}, and then we can define that the bit vector

bσ(1), bσ(2), · · · , bσ(k) is a permutation of b1, b2, · · · , bk. The number of permutations

for k bits is k!, hence a random permutation is a random selection from these k!

permutations.

We can now create the data set Dσ by permuting all bits using σ for all elements

in the data set D, and also calculate the new query vector qσ from the query vector

q in the same way. The most similar vector to qσ can be found in the data set Dσ

by doing the following steps: Sort Dσ in lexicographic order, and then perform the

binary search. The binary search is carried out from the first bit to the last bit,

so if a different bit is located in the upper side (near the first bit), then the search

makes a mistake. On the other hand, if a different bit is located in the lower side,

the search can find the nearest vector. We expect to find the most similar vector by

making a number of random permutations σ, corresponding data set Dσ and search

for all data sets.

This is an overview of the LSH for Hamming space proposed by Charikar [16]

and Ravichandran [20]. The details of the theories and experimental analysis of this

method are discussed in [16] and [21].

3.2. SUFFIX ARRAY 21

3.2 Suffix Array

The Hamming space search based on query multiplexing uses a suffix array (SA)

to search audio fingerprint efficiently. We are to elaborate the suffix array in this

section.

3.2.1 Definition of Suffix Array

Suffix array is defined to be an array of integers providing the starting positions of

suffixes in lexicographical order. It is quite commonly applied in string search and

full text indices. We use a suffix array for string search as an example [22].

As the same as the original string, all the suffixes end at the same place with the

special sentinel letter that is unique, but start at different positions. Given a string

of length n

T = t0 t1 · · · tn−1, (3.1)

the suffixes of T can be expressed as

Ti = ti ti+1 · · · tn−1, (3.2)

in which i = 0, 1, · · · , n− 1.

For example, there are 11 suffixes given a string of “mississippi”, including

“mississippi”, “ississippi”, “ssissippi”, “sissippi”, “issippi”, “ssippi”, “sippi”, “ippi”,

“ppi”, “pi”, and “i”, as shown as in Table 3.1

The array keeping the starting positions of suffixes in lexicographical order is

so-called suffix array. That is, if

TSA[0] < TSA[1] < · · · < TSA[n−1], (3.3)

3.2. SUFFIX ARRAY 22

Table 3.1: Suffixes of “mississippi”
Starting position Suffix

0 mississippi
1 mississippi
2 mississippi
3 mississippi
4 mississippi
5 mississippi
6 mississippi
7 mississippi
8 mississippi
9 mississippi
10 mississippi

the suffix array should be

SA = SA[0], SA[1], · · · , SA[n− 1]. (3.4)

In Equation (3.3), “<” refers to an lexicographical order. Suffixes of “mississippi”

can be sorted in lexicographical order as shown in Table 3.2, where

SA = 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2. (3.5)

Table 3.2: Sorted suffixes of “mississippi”
Starting position Sorted suffix

10 i
7 ippi
4 issippi
1 ississippi
0 mississippi
9 pi
8 ppi
6 sippi
3 sissippi
5 ssippi
2 ssissippi

3.2. SUFFIX ARRAY 23

3.2.2 Binary Search on Suffix Array

The string search based on suffix array is to be desribed in this subsection. The

original string and suffix array are used in the string search based on suffix array.

The same string of “mississippi” is used for example. Let T denote the original

string and SA represent the suffix array.

Table 3.3: Data T and sorted positions SA
i T SA Sorted suffix

0 m 10 i
1 i 7 ippi
2 s 4 issippi
3 s 1 ississippi
4 i 0 mississippi
5 s 9 pi
6 s 8 ppi
7 i 6 sippi
8 p 3 sissippi
9 p 5 ssippi
10 i 2 ssissippi

The binary search is available since SA has stored the positions of sorted suffixes.

Binary search is an algorithm to find the position of a target value among the sorted

data. In each step, the alogorithm compares the target value with the value of the

middle element of the array to halve the searching data. If the values match, then a

matching element has been found and its position is retured as the result. Otherwise,

if the target value is smaller than the middle element, then the algorithm repeats

on the sub-array to the left of the middle element. If the target value is bigger, it

repeats to the right of the middle element.

The process of binary search algorithm on suffix array is demonstrated by a

pseudocode bellow. Let Q be the string to be searched on and T be the target

string, SA presents the suffix array of T and n is the length of T and SA. T x refers

to Tx, and it is assumed that Q is included in T in this algorithm.

function binary_search(char *Q, char *T, char *SA, int n)

3.2. SUFFIX ARRAY 24

{

int left = 0;

int right = n-1;

int middle = (left + right) / 2;

while (1)

{ middle = (left + right) / 2;

if (T_SA[mid] > Q)

{ right = middle;}

else if (T_SA[middle] < Q)

{ left = middle }

else {

return (SA[middle]);

}

}

}

For example, searching a substring Q = “sip” from string T = “mississippi”, the

process is as follows:

1. left = 0, right = 10, thus mid = 10/2 = 5,

TSA[5] = T9 = “pi”.

Since T9 < Q, left = 5, the algorithm repeats to the right.

2. left = 5, right = 10, therefore, mid = 15/2 = 7,

TSA[7] = T6 = “sippi”.

T6 == Q, the algorithm ends since Q has been matched.

Through the above process, “sip” is found to be included in “mississippi”.

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 25

Figure 3.1: Schematic diagram of search based on random permutation

3.3 Hamming Space Search based on Query Mul-

tiplexing

The principle of the Hamming space search based on random permutations is simple.

The binary search can certainly find the exact vector if there exists one vector the

same as the query. A similar vector which has a few different bits in the lower

side can be found too, but the problem is that sometimes it cannot find a similar

vector which has a few different bits in the upper side. To address this problem,

random permutations are used. The scheme of the search method based on random

permutations is shown in Figure 3.1.

In general, LSH-based methods use multiple hash functions. In the Hamming

space search based on the random permutation method, multiple random permuta-

tions can be regarded as multiple hash functions. However, the greatest disadvantage

of the retrieval method based on random permutations is the requirement for a huge

amount of memory in order to perform many random permutations on the original

database in advance. This increases the size of database required to at least several

to several dozen times larger than the size of the original database.

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 26

Figure 3.2: Schematic diagram of search based on query multiplexing

Based on the assumption that if one might multiplex the query vectors without

expanding the database, then Hamming space searching would require little mem-

ory, the fast Hamming space search method based on query multiplexing for audio

fingerprinting [12] is proposed. The scheme of the proposed method is shown in Fig-

ure 3.2. In the random permutation method, multiple random permutations (σ1, σ2

and σ3 in Figure 3.1) are applied to both the original database and query vector

in order to solve the problem of search omissions. On the other hand, in the pro-

posed method, only the query is multiplexed through the functions (ϕ1, ϕ2 and ϕ3

in Figure 3.2). The definition of functions ϕi is necessarily application-dependent.

3.3.1 Suffix Array Method

Suppose FPi[j] be the sub-fingerprint extracted from the j-th frame of song i, ni be

the total number of sub-fingerprint of song i, the sub-fingerprint of song i should be

FPi = FPi[0], FPi[1], · · · , FPi[ni − 1]. (3.6)

Given a database consisting of N songs, i ranges from 0 to N − 1. Let FP denote

the sub-fingerprints obtained from all the songs in a database, it can be expressed

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 27

as

FP = FP0, FP1, · · · , FPN−1

= FP0[0], FP0[1], · · · , FPN−1[nN−1 − 1]

= FP[0], FP[1], · · · , FP[n− 1]. (3.7)

Moreover, the suffix array should be

SA = SA[0], SA[1], · · · , SA[n− 1]. (3.8)

SA[i] in Equation (3.8) keeps the sorted positions of the sub-fingerprint of length 3

as follows:

FP[i], FP[i+ 1], FP[i+ 2]. (3.9)

FP and the sorted positions SA stated above are kept as the index of database.

The length of SA for an n-length FP is also n. In other words, SA and FP has the

same data size, and thus the total data size is twice the size of sub-fingerprint. That

is, the total size of n-length FP is 2n. However, the binary search can be used for

search since SA has kept the positions of sorted data.

Figure 3.3 shows the scheme of the method based on suffix array.

3.3.2 Music Retrieval based on Suffix Array

This method is based on the sub-fingerprint matching scheme. The functions ϕi

stated above create the multiplexed search queries of sub-fingerprint sequences from

the query audio clip [13]. By multiplexing queries of the sub-fingerprint sequence

instead of expanding the database vectors, the method greatly reduces the search-

ing space. Many sub-fingerprints are extracted by shifting the query into frames.

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 28

Figure 3.3: The scheme of the method based on suffix array

Moreover, there exists a great similarity between the overlapping sub-fingerprints

in the sequence of sub-fingerprint, so that multiplexed sub-fingerprints with slight

differences can be obtained as starting time of frame moving down. These sub-

fingerprints are used for queries multiplexing, which makes it possible to search for

a song without modifying the original database by using random permutations.

The flow of the proposed method is as follows: firstly, estimate several candidates

of starting position in the database those using sub-fingerprints obtained from the

query. Secondly, calculate the Hamming distance (bit error rate) for the fingerprint

blocks of query music data and estimated candidates.

Usually, one sub-fingerprint does not contain sufficient information for music

identification, so a sequence of sub-fingerprints (SSF) is employed for matching. Let

FP = FP1,FP2, · · · ,FPN denote the sub-fingerprints obtained from all the songs in a

database, manym-length (SSFs) (m is set to be 3 in [12]) can be derived by changing

the starting position of the fingerprint, and the i-th sub-fingerprint sequence is

defined as SSF i = (FP i,FP i+1, · · · ,FP i+m−1). Then, all SSFs are sorted by value

and their positions are stored in a one-dimensional array S = S1, S2, · · · , SN−m+1.

Array S, the same as a suffix array [22], contains the indexes to FP , and satisfies

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 29

Figure 3.4: Schematic diagram of sub-fingerprint sequence search

the following:

Sj = i iff SSF i = (FP i,FP i + 1, · · · ,FP i +m− 1)

is the j-th SSF in sorted oder (3.10)

The search process, as shown in Figure 3.4, can be summarized in the following

phases:

(1) Extract the sub-fingerprint sequence FP from query music.

(2) For all SSFs of query music, find candidate positions where the sub-fingerprints

obtained from the query locating in the database by performing a binary search

on array S.

(3) Assign to candidate position the start position of the FP, and calculate the

Hamming distance (bit error rate) between FP and the fingerprint block (128

sub-fingerprints) corresponding to the SSF .

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 30

(4) Finally, output the top n songs as final results.

In the binary search on array S, most similar SSFs can be found by checking

the neighbourhood positions of the searched block in array S. An index size that is

proportional to the length of the sub-fingerprint sequence in the database enables

the memory/storage required to be much less than required by conventional methods

such as the method based on random permutations.

Specifically, the process of music retrieval based on suffix array is desmonstrated

below:

1. Let Qi, i+2 be the 3-th sub-fingerprint derived from query Q,

Qi, i+2 = Q[i], Q[i+ 1], Q[i+ 2]. (3.11)

i ranges from 0 to nq − 128 if the length of Q is nq. FPi, i+2 refers to the

sub-fingerprint sequence derived from the database, and

FPSA[j], SA[j]+2

= FP[SA[j]], FP[SA[j] + 1], FP [SA[j] + 2]. (3.12)

For each Qi, i+2 (i = 0, 1, · · · , nq − 128), find the FPSA[j], SA[j]+2 that makes

bit error rate 0. The matching of sub-fingerprint block is to be performed for

the FPSA[j], SA[j]+2 derived above. The similarity is also determined by the

error rate even for the vicinity of the position where it has been matched in

binary search, so the matching with each sub-fingerprint block starting with

Q[i] becomes multiple.

2. For all FPSA[j], SA[j]+2 those match Qi, i+2, calculate the similarity of the two

sub-fingerprint blocks. For the length of sub-fingerprint block equals 128,

3.3. HAMMING SPACE SEARCH BASED ON QUERY MULTIPLEXING 31

calculate the error bit rate between Qi, i+127 and FPSA[j], SA[j]+127 as follows.

Qi, i+127 = Q[i], Q[i+ 1], · · · , Q[i+ 127], (3.13)

FPSA[j], SA[j]+127

= FP[SA[j]], FP[SA[j] + 1], · · · , FP[SA[j] + 127]. (3.14)

Figure 3.5 shows the process. Those songs containing a sub-fingerprint block

of FPSA[j], SA[j]+127 who has a bit error rate bellow the threshold are selected

as the candidates.

In Figure 3.5, there is only one sub-fingerprint block of FPSA[j], SA[j]+127 in

the database matched Qi, i+127. However, FPSA[j], SA[j]+127 should be multiple

actually, and multiple candidates of sub-fingerprint block for each Qi, i+127 can

be derived.

3. Oder all the candidates in ascending oder of bit error rate with Qi, i+127. Out-

put the songs containing the top sub-fingerprint block of FPSA[j], SA[j]+127 as

final results.

3.3.3 Acquisition of Music Information

Let j indicate the j-th song in database, and POS[j] be the starting position of sub-

fingerprint of song j in the sub-fingerprint sequence FP of all the songs in database.

All positions are stored as

POS = POS[0], POS, · · · , POS[N − 1], (3.15)

as shown in Figure 3.6. N is the number of songs in database. n0 = 0 and n1 = 100,

that is, sub-fingerprint of song 0 covers from FP[0] to FP[99], and song 1 from

3.4. EXPERIMENTS AND RESULTS 32

Figure 3.5: Sub-fingerprint block matching based on SA

FP[100] to FP[n2].

Figure 3.6: Acquisition of music information

For instance, suppose the information of FP[i] to be searched, given

POS[j] ≤ i < POS[j + 1], (3.16)

FP[50] is found to be the sub-fingerprint of song 0.

3.4 Experiments and Results

We carried the experiments on a database of 8,740 original songs and 800 artificially

corrupted and 268 original queries, in order to evaluate the fast Hamming space

3.4. EXPERIMENTS AND RESULTS 33

search based on query multiplexing.

3.4.1 Music Data

The database contained 8, 740 songs in mp3 format from CDs or the Internet. There

were many genres in the database such as pop, classical, and folk music. An index

of the number of each song was created. Music clips uploaded to YouTube were

used for the queries. Audio data were extracted from various types of videos, such

as promotional video and live video. Many of the music data were of poor quality,

including music following and followed by long silences, and music with various types

of noise such as hand-clapping, cries of excitement, and other environmental noise.

268 songs were used for evaluation data, which are roughly classified by hand.

3.4.2 Acoustical Analysis Settings

The Haitsma-Kalker algorithm was used for fingerprints extraction in our experi-

ments. However, there were some different points: 1) the length of each frame is

1.024 seconds, 2) 32 milliseconds for frame shift, 3) an improved Hamming window;

and 4) the length of sub-fingerprints block is 128 instead of 256.

Although these settings seem rough compared with those given by Haitsma and

Kalker [1], these parameters were determined by many preliminary experiments and

the resulting proposed algorithm gave a high accuracy.

3.4.3 Experimental Results

The query multiplexing and binary search reduced search space and time greatly.

Retrieval times varied as the query music, and each song was retrieved in approx-

imately 0.4 to 0.6 seconds. Moreover, the retrieval time per sub-fingerprint block

did not exceed 0.1 milliseconds. The algorithm is considered competent and fast.

The retrieval accuracy on real data is shown in Table 3.4. The retrieval rate for

3.4. EXPERIMENTS AND RESULTS 34

Table 3.4: Results on real music data

Category Notes Audio Music Accuracy
Original
music

Non-noise PV music faith-
ful to the orig-
inal music with
little noise if any.

104 96.2%

With noise Declared to be
original but with
obvious noise.

22 100%

Live data Live audio, most
of which contain
voices, cheering
and applause,
and other noise.

142 83.1%

Table 3.5: Results on corrupted music data

Corruption Accuracy

superimposition of white noise −5dB 98.5%

0dB 100%

10dB 100%

Low-pass filter 1kHz 100%

“original music” was 96.2%, and that for “live music” was 83.1%. The difference

was due to the different melody of the live clip from that of the original music. The

evaluation data of original music were divided into two classes with regard to noise,

but the results did not show any influence of noise. Experimental results showed

that the proposed method delivered accurate, fast retrieval.

Results on artificially corrupted music data shown in Table 3.5 indicated that the

method was highly robust to superimposition of white noise, and it was sufficient to

retrieve the music if there was low bass left.

Chapter 4

Audio Fingerprinting Systems in

Real-Noise Conditions

4.1 Related Work

With the development of music compression technology and widespread availability

of recorded music, content-based music information retrieval has become one of the

most attractive application services to be pursued by many companies in recent

years [23][24]. But a smart phone can be used anywhere, including some fairly

noisy places such as shopping malls or playgrounds (i.e., varieties of external noise

are unavoidable and should be taken into account) [25], that is, the query music

could be distorted by external noise. For this reason, it is necessary to examine the

robustness of audio fingerprinting systems against real noise in practical applications

[26]. In this chapter, we evaluate the performance of audio fingerprinting systems

in real-noise conditions by adding noise data (ten types of noise data) to music data

in accordance with signal-to-noise ratios (SNR) [27].

There are several studies having reported on the audio fingerprinting algorithm

under additive noise. Balado et al. [28] and Doets et al. [29] focused on the bit

error rate (BER) under additive white-noise conditions, but both failed to consider

35

4.2. EXPERIMENTS AND RESULTS 36

robustness against varieties of noise in a real environment. Furthermore, although

Park et al. [30][31] discussed the performance of music retrieval in five types of noise

conditions, their study lacked sufficient discussion on the relationship between the

retrieval accuracy and frequency-temporal characteristics under each type of noise.

Moreover, we focus on the relationship between retrieval accuracy and noise type,

as well as figuring out the type of noise against which robustness achieves high [32].

For the search algorithm, we employ a fast Hamming space search method proposed

in [12].

4.2 Experiments and Results

First, we carried out experiments on the original query data before superimposing

the noise data. Second, we used the noisy query data in experiments to ascertain how

much the noise in a real environment affects the performance of audio fingerprinting

systems.

4.2.1 Music and Noise Data

In the experiments, we used the database of 8,740 songs in mp3 format that was used

in [12]. First, 104 songs were selected randomly from the database as the original

query data, and then another 96 songs were added to the query data to cover as

many genres as possible (e.g., pop performances, hip-hop, and classical). These

original query data were downsampled from 44.1 kHz to 16 kHz and quantized to a

2-channel 16-bit linear PCM in wav format.

We selected ten types of noise data from the JEIDANOISE database, corre-

sponding to environments in which a smart phone is most likely to be used for

music retrieval. The details of the noise data are described in Table 4.1, according

to the locations and main noise sources [33]:

We generated the noisy query data by adding the noise data to the original query

4.2. EXPERIMENTS AND RESULTS 37

Table 4.1: Noise data classification

Noise types Main noise sources
Noise canrs(2000cc) (N1) Aerodynamic noise and engine

noise
Trains (N2) Gap between rail cars, panto-

graph and lower part of cars
(aerodynamic noise from bogies,
etc.)

Crossroad (N3) Cars, bikes, and engine noise
when waiting

Trunk road (N4) Cars and bikes
Elevator hall of the hotel (N5) Footsteps, human speech and the

bell of the elevator
Crowds (N6) Human speech
Vicinity of
ticket vending
machines of
station

In concourse
(N7-a)

Human speech, falling coins and
footsteps

Beside the road
(N7-b)

Human speech, falling coins, foot-
steps, payphones, and running
trains

Exhibition hall In booth (N8-a) Human speech, music and sound
effects of the events through
speakers

Passage (N8-b) Human speech and door open-
ing/closing of exit/entrance

4.2. EXPERIMENTS AND RESULTS 38

data in accordance with the SNR, and the noisy query data were then compressed

to mp3 format.

4.2.2 Experimental Results

Experiments carried out on the original query data achieved an accuracy of 100%.

By contrast, Table 4.2 and Table 4.3 show the results of our experiments carried out

on the noisy query data. Table 4.2 provides the results from mechanical noises that

contained little human speech. These noises consisted mainly of noise from running

cars or trains. Table 4.3 shows the results from human noise, mainly from human

speech.

Table 4.2: Accuracy under mechanical noise
SNR Accuracy(%)

N1 N2 N3 N4
20dB 99.5 98.5 93.5 92.5
10dB 96.0 93.5 75.5 75.0
0dB 78.0 77.0 68.0 67.5
-5dB 74.5 73.0 61.5 58.5
20dB 72.0 68.5 51.5 48.0

Table 4.3: Accuracy under human noise
SNR Accuracy(%)

N5 N6 N7-a N7-b N8-a N8-b
20dB 88.5 76.0 74.5 77.0 72.5 73.5
10dB 73.5 71.5 66.0 67.5 64.0 67.5
0dB 65.5 57.5 47.0 51.5 27.5 49.5
-5dB 56.5 36.0 7.0 24.0 0.5 20.0
20dB 34.5 2.0 1.5 0 0 0

4.2.3 Impact of High Frequency Bands

As stated in Section 2, the audio fingerprinting extraction is based on the calculation

of energy differences between the successive frequency bands. In addition, the impact

4.2. EXPERIMENTS AND RESULTS 39

Figure 4.1: Noise of frequency band near 1khHz

Figure 4.2: Accuracy under the noise of frequency band near 1khHz

of noise on accuracy depends on how much noise that affects the characteristics

included. In other words, the more the high frequency bands of noise are within the

range of the frequency bands used in audio fingerprinting (from 300Hz to 2 kHz),

the more severe their influence on accuracy.

Figure 4.1 dipicts the noise produced by computer. Audio fingerprint uses low

frequency bands, and the noise lies in high frequency bands near 1khHz, therefore,

the energy difference would be affected by the decrease of SNR. Figure 4.2 shows

the accuracy under the noise of frequency band near 1khHz.

4.2. EXPERIMENTS AND RESULTS 40

Figure 4.3: Noise from crossing

Figure 4.4: Noise from trunk road

As shown in Table 4.2, the experiments perform well under each type of mechan-

ical noise. The accuracy maintains above 48%, even with an SNR of -10dB. This

indicates that there is still music information left for the energy difference in the

frequency bands which have been used in audio fingerprinting, even if noise data are

superimposed on it.

For noise from N1 (car interior, shown in Figure 4.5), as well as N3 in Figure

4.3 and N4 in Figure 4.4, the higher frequency bands are lower than 300Hz and

thus have little impact on accuracy. For N2, the noise from trains produced by the

wheels above 1600Hz and bogies in a range from 500Hz to 800 Hz (see Figure 4.6)

falls to a greater extent in the frequency bands used in audio fingerprinting, and the

accuracy remains high. This is attributable to multiple standstills during which the

4.2. EXPERIMENTS AND RESULTS 41

Figure 4.5: Noise from running cars (inner car)

Figure 4.6: Noise from trains in operation

noise declines to a low level (see Figure 4.7).

With respect to noise that is mainly from human beings (shown in Table 4.3),

except for N5 (elevator hall), the accuracy falls swiftly with an SNR of -10dB (e.g.,

noise from crowds as shown in Figure 4.8). The reason is that the energy of the hu-

man voice concentrates in relatively low frequency bands and the long-term average

spectrums are nearly flat up to 800Hz. However, in an elevator hall, the accuracy

remains above 34% even with an SNR of below -10dB. This is because human speech

is so sparse that only footsteps are heard and high frequency bands such as those of

an elevator bell only lie above 3 kHz infrequently (see Figure 4.9). Hence the energy

difference of human speech is small and it does not perform poorly. For noise in the

vicinity of ticket vending machines, the high frequency bands of noise by the road

4.2. EXPERIMENTS AND RESULTS 42

Figure 4.7: Noise from trains during standstills

Figure 4.8: Noise from crowds

side (see Figure 4.10) lie above 3kHz, therefore the accuracy is higher than that of

noise in the station (see Figure 4.11). For the same reason, the accuracy of noise

from the passage of exhibition hall (see Figure 4.12) is higher than that of booth

(see Figure 4.13).

4.2.4 Impact of Temporal Changes

Temporal changes in noise can also impact results. On one hand, the noise level

is very low during standstills (e.g., a quiet period after one train passes and until

the next train comes), which is one of the reasons why results under the noise from

trains and the elevator hall are better. On the other hand , the noise level can also

drop in a relatively quiet period.

4.2. EXPERIMENTS AND RESULTS 43

Figure 4.9: Noise from elevator hall

Table 4.4: Numbers of approximate-silent intervals in noise data
Silence length (s) Numbers of intervals

N1 N2 N3
0.37-1 2 8 14
1-3 3 1 9
3-5 1 1 5
>5 3 2 1

To ascertain how much a relatively quiet period affects the results, we investi-

gated the number of approximate-silent intervals during a 2-minute period of the

noise data, according to the frame length used in the Haitsma-Kalker algorithm:

0.37s. Here, the approximate-silent interval refers to the sound of noise data below

26dB. The results are shown in Table 4.4.

There are multiple approximate-silent intervals in noise from N1, N2 and N3,

which helps to improve the accuracy of the retrieval. For N2, although it is quite

noisy when trains travel an intersection, the noise drops quite low during standstills

to such an extent that we may not feel it, therefore the characteristics are believed

to remain in the standstills and it is still possible to recognize the music with a

relatively high accuracy. Although there are no approximate-silent intervals in the

noise from N4 (trunk road) and N5 (elevator hall), the accuracy stays high due to

the existence of long quiet intervals. Among the four types of noise in Table 4.2, the

4.2. EXPERIMENTS AND RESULTS 44

Figure 4.10: Noise from vending machine by the road side

Figure 4.11: Noise from vending machine in the station

Figure 4.12: Noise from the passage of exhibition hall

4.2. EXPERIMENTS AND RESULTS 45

Figure 4.13: Noise from the booth

experiment performs worst for all SNR under noise from N4, probably due to the

fact that the cars move too quickly and noisily when travelling the trunk road.

The experiments show that the retrieval accuracy under noise from running cars

remains higher than other noise when lowering the SNR, even if the original music

could not be heard clearly. The reason is that the noise is high in frequency bands

lower than 300Hz, which makes the influence on retrieval accuracy small. For noise

data containing standstills, such as noise from trains and an elevator hall, it is

possible to retrieve a portion of music due to the low noise at the standstills, which

results in less impact on the retrieval accuracy. For noise that is mainly from human

speech, however, the accuracy drops sharply with an SNR of -10dB. The frequency

bands of human speech correspond to a greater degree to the frequency bands used as

characteristics in audio fingerprinting; therefore, the more noise in these frequencies,

the greater effect on retrieval performance.

Chapter 5

Index Compression based on

Compressed Suffix Array

In this chapter, we elaborate the proposed method of index compression for music

retrieval by using a compressed suffix array [34][35]. By taking advantage of the fact

that the repetitive characters occur frequently in high bits of the sorted audio finger-

print data, the proposed method compresses the index of the sorted sub-fingerprints

by encoding the 8-bit data sequences with the Run Length Encoding [36].

5.1 Compressed Suffix Array

5.1.1 Retention of Sorted Data

The proposed method does not directly maintain the sub-fingerpints FP those are

extracted from all the songs in the database [37]. Instead, the sorted sub-fingerprints

are kept. We use SFP to denote the sub-fingerprints, which have been sorted. That

is, use

SFP = SFP[0], SFP[1], · · · , SFP[n− 1] (5.1)

where

SFP[i] = FP[SA[i]] (5.2)

46

5.1. COMPRESSED SUFFIX ARRAY 47

to reduce the space cost by keeping the compressed SFP. In our method, SA is

different from the conventional methods based on suffix array, because we only use

the complete suffix.

SA[i] in (5.2) stores the positions of suffixes of the sorted sub-fingerpints se-

quence, which is expressed by

FP[i], FP[i+ 1], · · · , FP[n− 1]. (5.3)

SFP is split into pieces in an interval of M1. Suppose SFPk as the block of SFP,

SFP = SFP0, SFP1, · · · , SFPn/M1 (5.4)

can be derived from

SFPk = SFP[kM1], SFP[kM1 + 1], · · · , SFP[(k + 1)M1 − 1]. (5.5)

The reason of using the block as the process unit of SFP is that the required restora-

tion should be performed instantaneously during searching.

5.1.2 Run Length Encoding

In order to compress the sorted sub-fingprints SFP, the Run Length Encoding (RLE)

is performed for each segmented block SFPk. RLE is an encoding technique, in

which a series of repetitive data symbols are compressed into a shorter code, which

indicates the length of a code and the data being repeated. RLE is not suitable for

many kinds of data, because the compression efficiency would be deteriorated as the

run length gets shorter. In other words, the index cannot be compressed with the

RLE directly since there are 232 kinds of data in the sorted sub-fingerprints SFP.

The proposed method divides each sub-fingerprint (32 bits, 4 bytes) into units

of 8 bits (one byte), and then perform Run-Length Encoding (RLE) over the 8-bit

data sequences. The repetitive characters in the same unit are removed from the

5.1. COMPRESSED SUFFIX ARRAY 48

8-bit sequence.

Given a sorted sub-fingerprint block SFPk, the value of the m-th byte can be

represented by SFPk(n, m). The m-th byte of the 8-bit data sequence is expressed

as

SFPk(0, m), SFPk(1, m), · · · , SFPk(M1 − 1, m), (5.6)

where m = 0, 1, 2, 3, since the sub-fingprint is 32-bit.

The 8-bit sequence is arranged because the bit values in the upper side are

probably to be the same since SFP has been sorted. And thus it is easy to compress.

For example, given that the segmentation intervalM1 (M1 = 8) of the sub-fingerprint

SFP, the SFP0 can be expressed as

SFP0 = 00 00 00 00,

00 00 00 00,

00 00 00 01,

00 00 00 01,

00 00 01 01,

00 00 01 01,

00 00 11 01,

00 00 11 11

(5.7)

By fetching values of the highest bits in SFP0 only, we can get

SFP0(0, 3), SFP0(1, 3), · · · , SFP0(7, 3)

= 00, 00, 00, 00, 00, 00, 00, 00 (5.8)

By performing RLE, the values in Equation 5.8 becomes values in Equation (5.9)

5.1. COMPRESSED SUFFIX ARRAY 49

since the repetitive characters of 00 occurs 8 times.

00, 00, 08 (5.9)

Similarly, the second highest byte in SFP0 shown as in (5.10). And by performing

RLE, we can get the same encoded data as in (5.9).

SFP0(0, 2), SFP0(1, 2), · · · , SFP0(7, 2)

= 00, 00, 00, 00, 00, 00, 00, 00. (5.10)

The third highest byte in SFP0 is

SFP0(0, 1), SFP0(1, 1), · · · , SFP0(7, 1)

= 00, 00, 00, 00, 01, 01, 11, 11 (5.11)

where 00 occurs four times, 01 and 11 occur twice respectively. So we can get

00, 00, 04, 01, 01, 02, 11, 11, 02. (5.12)

Finally, the lowest byte is shown as

SFP0(0, 0), SFP0(1, 0), · · · , SFP0(7, 0)

= 00, 00, 01, 01, 01, 01, 01, 11 (5.13)

and its RLE encoded data is

00, 00, 02, 01, 01, 05, 11. (5.14)

5.1. COMPRESSED SUFFIX ARRAY 50

By replacing the 8-bit data sequences in SFP0 with the derived codes in (5.9),

(5.12) and (5.14), we get the RLE encoded data as

EFP0 = 00 00 08 00,

00 08 00 00,

04 01 01 02,

11 11 02 00,

00 02 01 01,

05 11. 00, 00,

(5.15)

In other words, SFP0 shown as (5.7) becomes (5.15) by RLE. The bigger the size of

database, the longer the Run (a series of repetitive characters) length becomes and

subsequently the compression efficiency increases.

The sorted sub-fingerprints SFP is compressed and maintained by EFP as the

sub-fingerprints of the database. EFP is the encoded data sequence of SFPk.

EFP = EFP0, EFP1, · · · , EFPn/M1 (5.16)

In addition, information at the end of block is required because EFPk is changeable

in length. Let LENk be the length of EFPk, the tail information of EFPk is retained

in

LEN = LEN0, LEN1, · · · , LENn/M1 . (5.17)

5.1.3 Compression of the Data Order

Since the order of the original database has been lost, we use Ψ as shown in (5.18)

to represent the original order.

Ψ[i] =


SA−1[SA[i] + 1] if SA[i] 6= n− 1

SA−1[0] if SA[i] = n− 1.

(5.18)

5.1. COMPRESSED SUFFIX ARRAY 51

Ψ is possible to be compressed because that it is a partially monotonous increase.

The reason for emplying a partial monotonous increase is that, if there are repetitive

values, the sorted order can be determined according to the next and subsequent

values.

Vertical Code, a code that represents a smaller value in a smaller size, is used

for the difference d of Ψ in the compression of Ψ. The difference of Ψ, d[i] is shown

as in (5.19). d[0] is undesired, because the sampling Ψs of Ψ is stored in order to

speed up the retrieval process. If d[i] ≤ 0, it is always monotonically increasing with

the growth of n.

d[i] =


Ψ[i]−Ψ[i− 1]− 1 if i 6= 0

0 if i = 0.

(5.19)

We divide Ψ into blocks dk in an interval ofM2, and encode each block dk by Vertical

Code. In other words, we use block Ψ[0], · · · ,Ψ[n/M2] for

Ψk = Ψ[M2k], · · · ,Ψ[M2(k + 1)− 1]. (5.20)

The head data Ψ[M2k] is retained in Ψs as a sampling.

Similarly, we divide d[i] into blocks in an interval of M2. That is, use block

d0, , dn/M2 for dk = d[M2k], · · · , d[M2(k + 1) − 1]. First, we obtain the bit mask

MSB[k] which is required in representation of data in the block from the maximum

value of d[i]. Then, we store the value of the q-th bit of the binary representation of

d[kM2 + p] in the p-th bit of Vk[q]. In other words, the size of the Vk (the maximum

value of q for each Vk) equals MSB[k]. By making M2 a multiple of 8, Vk[q] can be

processed in bytes.

For the block dk of the difference d, the value of the j-th bit is denoted as dk(i, j).

Similarly, we use Vk(i, j) to represent the j-th bit of Vk. There is a relationship

5.1. COMPRESSED SUFFIX ARRAY 52

between dk and Vk shown as follows:

Vk(i, j) = dk(j, i). (5.21)

5.1.4 Restoration of the Data Order

In this subsection, we elaborate the restoration of Ψ. The sampling Ψs of Ψ is

used for the restoration of Ψ. As stated above, Ψ represents the order of data in

the sorted sub-fingerprints SFP, which can be expressed by Ψs and d which is the

difference of Ψ.

Ψ[i] = Ψs[p] +

q∑
k=1

dp[k] + q, (5.22)

In the above equation,

p = i/M, (5.23)

q = i mod M. (5.24)

However, in the case of Ψ[i] > n, Equation (5.22) becomes

Ψ[i] = Ψ[i] mod n. (5.25)

Ψs[p] can be calculated as follows by using d:

Ψs[p] =

p−1∑
k=0

SUM[k] + dp[0] + pM2. (5.26)

The sum of dp from 1 to q is shown in the second part of (5.22). Since d is represented

5.2. SEARCH BASED ON COMPRESSED SUFFIX ARRAY 53

by the Vertical Code, the sum can be determined by (5.27)

q∑
k=1

dp[k] =

MSB[p]∑
k=0

{popcount(Vp[k]&MASKq) << k}, (5.27)

wherein popcount(x) is the number of bits with the value of 1 in the data x [38].

The “|” denotes OR operation, “&” is AND operation and “<<” represents the left

shift operation.

MASKq = {(1 << q)|((1 << q)− 1)} − 1. (5.28)

Through the above process, we can get Ψ[i] from Ψs, V and MSBV by the

following equation.

Ψ[i] = Ψs[p] +

MSB[p]∑
k=0

{popcount(Vp[k]&MASKq) << k}+ q. (5.29)

The restoration is fast owing to the use of bit operation.

5.2 Search Based on Compressed Suffix Array

The proposed method is based on a compressed suffix array that performs a binary

search directly on SFP, which is the sorted sub-fingerprints. In fact, the search

method based on compressed suffix array is to find the sub-fingerprints block that

has the smallest error bit rate with the sub-fingerprints block extracted from the

query music.

SFP[i], SFP[Ψ[i]], · · · , SFP[Ψj[i]]. (5.30)

In (5.30), p = i/M and Ψj[i] indicates the repetition of i = Ψ[i] for j times.

Figure 5.1 shows the overflow of the whole search based on compressed suffix array.

The process of retrieval method based on compress suffix array can be divided

into three stages as follows:

5.2. SEARCH BASED ON COMPRESSED SUFFIX ARRAY 54

Figure 5.1: Compression of audio fingerprints index

1. For the sub-fingerprints sequence with a length of 3 derived from query Q

which is represented by

Qi, i+2 = Q[i], Q[i+ 1], Q[i+ 2], (5.31)

we perform a binary search over the sub-fingerprints sequence with a length

of 3 derived from the database, which can be expressed as

SFPj, j+2 = SFP[j], SFP[Ψ[j]], SFP[Ψ2[j]]. (5.32)

As the same, by following the existing methods, we employ the bit error rate

to evaluate the similarity.

2. For the SFPj, j+2 explored in Equation 5.32, we calculate the similarity of the

sub-fingerprint blocks. That is, calculate the bit error rate of Qi, i+127 and

SFPj, j+127, since the length of the block fingerprint is 128. The music data

which contains SFPj, j+127 will be selected as candidates if its bit error rate is

below the threshold value.

5.2. SEARCH BASED ON COMPRESSED SUFFIX ARRAY 55

3. We arrange the candidates in order of the bit error rate, and generate the

output music with lower bit error rates as the results.

In contrast, the music retrieval method based on a suffix array performs a binary

search, by employing the sub-fingerprints FP extracted from all songs in the database

and a suffix array SA of the sorted positions of the sub-fingerprints sequences with

a length of 3. Table 5.1 gives the comparison of SA and CSA.

Table 5.1: SA and CSA
SA CSA

i T SA Sorted Suffix F Ψ

0 m 10 i i 4
1 i 7 ippi i 6
2 s 4 issippi i 9
3 s 1 ississippi i 10
4 i 0 mississippi m 3
5 s 9 pi p 0
6 s 8 ppi p 5
7 i 6 sippi s 1
8 p 3 sissippi s 2
9 p 5 ssippi s 7
10 i 2 ssissippi s 8

As shown as in Figure 5.2, the SA-based method derives the sorted data according

to T , and the CSA-based method gets the sorted data by F directly.

In the search, comparisons of the second and subsequent elements are also re-

quired. That is, it is necessary to obtain the same order in the results as in the

original data. SA-based method derives the sorted data by using T , where

T [SA[i]], T [SA[i] + 1], · · · , T [SA[i] + j], · · · ., (5.33)

while the CSA-based using F and Ψ as shown in (5.32) above.

Figure 5.3 shows the data in the original order. SA-based method directly derives

the data in original order by using T .

5.2. SEARCH BASED ON COMPRESSED SUFFIX ARRAY 56

Figure 5.2: The sorted data

Figure 5.3: Data in original order

5.3. EXPERIMENTS AND RESULTS 57

5.3 Experiments and Results

We carried the experiments on a database of 8,740 original songs, in order to evaluate

the index compression based on the compressed suffix array. Similar to the suffix

array-based method, the Haitsma-Kalker algorithm was used for the fingerprint

extraction in our experiments in different acoustical analysis settings.

5.3.1 Music Data

In index compression experiments, we selected three sets of music from the database,

corresponding to 1,000 songs, 2,000 songs and 4,000 songs respectively. Then the

indexes of each set were created, in order to obtain the rate of change on the size

and the time.

The fingerprint extraction algorithm in our experiments satisifies: 1) the length

of each frame is 1.024 seconds, 2) 32 milliseconds for frame shift, 3) an improved

Hamming window; and 4) the length of sub-fingerprints block is 128 instead of 256.

5.3.2 Compression Settings

The segmentation interval M2 for both the order of data Ψ that have been sorted

and the difference d was assigned respectively with the value of 32, that is M2 = 32.

This was because the length of the sub-fingerprints was 32. For Vertical Code, the

segmentation interval of the block is equivalent to the number of bits of V . That is,

according to M2 = 32, V is able to be maintained in 32-bit data structure.

Similarly, we assign the segmentation interval M1 with the value of 32 for the

sorted sub-fingerprints SFP, and the same value for the sampling interval M3 of the

SA’s sampling SAs in order to obtain the song number.

5.3. EXPERIMENTS AND RESULTS 58

5.3.3 Experimental Results

In this subsection, we are to compare the proposed method for index compression

based on a compressed suffix array and the suffix array-based method. The experi-

mental results are given in four parts: (1) the size of the sub-fingerprints data, (2)

the size of compressed index, (3) the total data size, and (4) the search time.

(1) The size of the sub-fingerprints data

The existing methods always keep the sub-fingerprints FP extracted from all the

songs of the database directly. The proposed method first sorts the fingerprints FP

and then encodes the sorted FP by RLE. The sizes of sub-fingerprints are shown in

Table 5.2 and Figure 5.4.

Table 5.2: Size of sub-fingerprints

songs SA-based method (MB) Proposed method (MB) Compression rate (%)
1,000 30.0 13.2 44.0
2,000 58.1 23.3 40.1
4,000 123.4 45.5 36.9
8,000 255.5 84.6 33.1

The compression rate in Table 5.2 was determined by Equation (5.34). The

compression rate got higher as the number of songs increased. This is probably

because that the Run (a series of repetitive characters) length got longer as the

sub-fingerprints increased.

Compression rate =
Data size in proposed method

Data size in conventional method
× 100% (5.34)

(2) The size of compressed index

The conventional methods based on suffix array always save the sorted positions

SA of FP directly. The proposed method stores Ψ by Vertical Code in order to

obtain the order of data SFP. Table 5.3 and Figure 5.5 show the size of SA and Ψ.

5.3. EXPERIMENTS AND RESULTS 59

Figure 5.4: Size of sub-fingerprints

Table 5.3: Size of index

songs SA-based method (MB) Proposed method (MB) Compression rate (%)
1,000 29.5 23.2 78.6
2,000 57.0 46.3 81.2
4,000 121.3 101.4 83.6
8,000 251.4 214.1 85.2

5.3. EXPERIMENTS AND RESULTS 60

Figure 5.5: Size of index

The size of the data Ψ for SA increased with the number of songs in the database.

That is, the compression efficiency became poor with the increase in the size of the

database. For Ψ[i], Ψ[i + 1] increases when SFP[i] = SFP[i + 1]. If the types of

sub-fingerprint were increased by increasing the number of music, the adjacent data

would not necessarily be the same even if the data existed in the sorted data. In

other words, the monotonically increasing portion got reduced, which was the cause

of the deterioration in compression efficiency.

(3) The total data size

Finally, we illustrate the total data size of sub-fingerprints, SA and Ψ. Ta-

ble 5.4 and Figure 5.6 show the total data sizes of the conventional method and

proposed method. The total data size of the conventional method is the sum of

sub-fingerprints and SA. The total data size of the proposed method, besides the

sorted FP and Ψ, also took the sampling SA−1
s of SA−1 which was necessary for the

acquisition of the song number into account. The size of SA−1
s becomes n/M3 + 1

when the total number of sub-fingerprints takes n.

5.3. EXPERIMENTS AND RESULTS 61

Table 5.4: Total data size

songs SA-based method (MB) Proposed method (MB) Compression rate (%)
1,000 59.5 37.3 62.7
2,000 115.1 71.4 62.0
4,000 244.7 150.8 61.6
8,000 506.9 306.7 60.5

Figure 5.6: Total data size

5.3. EXPERIMENTS AND RESULTS 62

In general, the compression rate achieved about 60% for each song in the database.

In addition, the compression rate got slightly higher with the increase in the number

of music. This was due to the height of the compression rate of the sub-fingerprints.

(4) The search time

During the search, the songs used as queries were the same as the database, and

had the same length as the original songs. We used the results of a query per 10

seconds, because a query should last seven seconds at least. That is, for a query of

Sq seconds, the search time per 10 seconds could be denoted by

Ss

Sq

× 10 [seconds] (5.35)

if the search took Ss seconds.

Table 5.5 shows the average search time for each song in all sets of music data.

Slow-down factor (SLF) indicates the multiple slices of time taken by the proposed

method, compared with the conventional method. That is, the smaller SLF is, the

faster the proposed method. SLF was determined by (5.36).

SLF =
Search time in proposed method

Search time in conventional method
(5.36)

Table 5.5: Search time
Songs SA-based method (s) Proposed method (s) SLF
1,000 0.001 0.012 12.0
2,000 0.001 0.012 12.0
4,000 0.002 0.016 8.0
8,000 0.003 0.017 5.7

Table 5.5 indicates that the proposed method took more time for search. How-

ever, the slow-down factor tended to decrease with the increase of songs in database.

Chapter 6

Conclusions and Future Work

In this thesis, we have proposed a fast Hamming space search method for the audio

fingerprinting systems. Our method is inspired by the Locality-Sensitive Hashing

(LSH) algorithm, which is a probabilistic algorithm for solving the nearest neighbor

search problem in high-dimensional spaces. LSH uses multiple hash functions to

maintain a high retrieval accuracy and therefore requires a large amount of mem-

ory/storage for saving hash tables. Instead of maintaining multiple database sets

created by random permutations, the proposed method creates multiplexed search

queries composed of sub-fingerprint sequence with different starting time, and does

not require expansion of the database. Experimental results showed that the pro-

posed method delivered accurate, fast retrievals.

The robustness of the fast Hamming space search method based on query multi-

plexing against the real noise has been examined through the expriments. The ex-

periments indicated that frequency bands of human speech correspond to a greater

degree to the frequency bands used as characteristics in audio fingerprinting. There-

fore, more noise in these frequencies has a greater effect on the retrieval performance.

As a result, the retrieval accuracy under noise from machanic noise remained higher

than other noise, even if the original music could not be heard clearly. By contrast,

the accuracy decreased under noise from human beings.

63

64

We also presented a method of index compression using a compressed suffix array

in order to reduce the space. The experimental results shows that this method can

save much space. Our method took more time for search, which maybe due to the

data structure. However, the multiples of search time tended to decrease with the

increase of songs in database.

Our future work will focus on the use of a large-scale database in order to enhance

the retrieval speed. The flexible application of the music database for music to be

searched will be also considered in the future.

Acknowledgments

I would like to express my sincere gratitude to all those who helped me during my

Ph.D study.

First of all, I would like to express my heartfelt gratitude to Prof. Kenji Kita,

my supervisor, for his professional guidance and his patience in supervisions. I am

deeply grateful for his consistent encouragement and illuminating instruction on my

Ph.D study and research.

Also, I would like to thank Prof. Masami Shishibori, Prof. Fuji Ren, Prof.

Motoyuki Suzuki, and Dr. Kazuyuki Matsumoto, who have instucted and helped

me a lot in the past three years.

Finally my sincere gratitute would go to my friends and the members of A2

group, especally Narumi Saito, Yusaku Daito and Masashi Onishi, who helped me

work out my problems during the difficult course of the thesis.

65

References

[1] J. Haitsma and T. Kalker. Highly Robust Audio Fingerprinting System. Pro-

ceedings of the 3rd International Conference on Music Information Retrieval

(ISMIR 2002), pp.107–115, 2002.

[2] Shazam: http://www.shazam.com/.

[3] Gracenote: http://www.gracenote.com/.

[4] A. Li-Chun Wang. An Industrial-Strength Audio Search Algorithm. Proceedings

of the 4th International Conference on Music Information Retrieval (ISMIR

2003), pp.7–13, 2003.

[5] M. L. Miller, M. Acevedo. Rodriguez, and I. J. Cox. Audio Fingerprinting:

Nearest Neighbor Search in High Dimensional Binary Spaces. Journal of VLSI

Signal Processing, Vol.41, No.3, pp.285–291, 2005.

[6] D. Fragoulis, G. Rousopoulos, T. Panagopoulos, C. Alexiou, and C. Pa-

paodysseus. On the Automated Recognition of Seriously Distorted Musical

Recordings. IEEE Transactions on Signal Processing, Vol.49, No.4, pp.898–908,

2001.

[7] B. Logan. Mel Frequency Cepstral Coefficients for Music Modeling. Proceedings

of the International Symposium on Music Information Retrieval (ISMIR 2000),

2000.

66

REFERENCES 67

[8] E. Allamanche. AudioID: Towards Content-based Identification of Audio Ma-

terial. 110th AES Convention, pp.5380, 2001.

http://www.aes.org/e-lib/browse.cfm?elib=10019.

[9] S. Nakamura. Beginners Digital Fourier Transform. Tokyo Denki University

Press, 1989.

[10] L. D. Enochson and R. K. Otnes. Programming and Analysis for Digital Time

Series Data, pp.142, 1968.

[11] H. Hermansky. Perceptual Linearpredictive (PLP) Analysis Speech. Journal of

the Acostic Society of America, Vol.87, No.4, 1990.

[12] Q. Xiao, Y. Daito, K. Matsumoto, M. Suzuki, and K. Kita. Fast Search Method

for Audio Fingerprinting Systems Based on Query Multiplexing. IEEJ Trans-

actions on Electronics, Information and Systems, Vol.132, No.9, pp.1481-1487,

2012.

[13] Q. Xiao, M. Suzuki, and K. Kita. Fast Hamming Space Search for Audio Fin-

gerprinting Systems. The 12th International Society for Music Information Re-

trieval Conference, pp.133–138, 2011.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions

via Hashing. 25th International Conference on Very Large Data Bases (VLDB

1999) , pp.518–529, 1999.

[15] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise

Independent Permutations. Proceedings of the 30th Annual ACM Symposium

on Theory of Computing, pp.327–336, 1998.

[16] M. S. Charikar. Similarity Estimation Techniques from Rounding Algorithms.

Proceedings of the 34th Annual ACM Symposium on Theory of Computing,

pp.380–388, 2002.

REFERENCES 68

[17] M. Datar, N. Immorlica, P. Indyk, and V. S.Mirrokni. Locality-Sensitive Hash-

ing Scheme Based on p-Stable Distributions. Proceedings of the 20th Annual

Symposium on Computational Geometry, pp.253–262, 2004.

[18] B. Kulis and K. Grauman. Kernelized Locality-Sensitive Hashing for Scalable

Image Search. Proceedings of the 12th IEEE International Conference on Com-

puter Vision (ICCV 2009), 2009.

[19] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing

the Curse of Dimensionality. Proceedings of the 30th Annual ACM Symposium

on Theory of Computing, pp.604–613, 1998.

[20] D. Ravichandran, P. Pantel, and E. Hovy. Randomized Algorithms and NLP:

Using Locality Sensitive Hash Functions for High Speed Noun Clustering. Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Linguis-

tics, pp.622–629, 2005.

[21] G. S. Manku, A. Jain, and A. D. Sarma. Detecting Near-Duplicates for Web

Crawling. Proceedings of the 16th international conference on World Wide Web,

pp.141–149, 2007.

[22] U. Manber and G. Myers. Suffix Arrays: A New Method for On-line String

Searches. SIAM Journal on Computing, Vol.22, No.5, pp.935–948, 1993.

[23] T. Yamada, T. Nakajima, N. Kitawaki, and S. Makino. Performance Estimation

of Noisy Speech Recognition Considering Recognition Task Complexity. 11th

Annual Conference of the International Speech Communication Association,

pp.2042-2045, 2010.

[24] C. Bandera, A. M. Barbancho, L. J. Tardn, S. Sammartino, and I. Barbancho.

Humming Method for Content-based Music Information Retrieval. 12th Inter-

national Society for Music Information Retrieval Conference (ISMIR 2011),

pp.49-54, 2011.

REFERENCES 69

[25] V. Chandrasekhar, M. Sharifi, and D. A. Ross. Survey and Evaluation of Finger-

printing Schemes for Mobile Query-by-Example Application. 12th International

Society for Music Information Retrieval Conference (ISMIR 2011), pp.801-806,

2011.

[26] B. Niedermayer, S. Bck, and G. Widmer. On the Importance of Real Audio

Data for MIR Algorithm Evaluation at the Note-Level - A Comparative Study.

12th International Society for Music Information Retrieval Conference (ISMIR

2011), pp.543-548, 2011.

[27] W. Yoon and K. Park. A Noise Robust Content-based Music Retrieval System.

IEEE international conference on consumer electronics, pp.1-2, 2009.

[28] F. Balado, N. J. Hurley, E. P. McCarthy, and G. C. M. Silvestre. Performance

of Philips Audio Fingerprinting under Additive Noise. 32nd IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.209-212,

2007.

[29] P. J. O. Doets and R. L. Lagendijk. Extracting Quality Parameters for Com-

pressed Audio from Fingerprints. 6th International Conference on Music Infor-

mation Retrieval (ISMIR 2005), pp.498-503, 2005.

[30] M. Park, H. Kim, and S. H. Yang. Frequency-Temporal Filtering for a Ro-

bust Audio Fingerprinting Scheme in Real-Noise Environments. ETRI Journal,

Vol.28, No.4, pp.509-512, 2006.

[31] M. Park, H. Kim, Y. M. RO, and M. Kim. Frequency Filtering for a Highly Ro-

bust Audio Fingerprinting Scheme in a Real-Noise Environment, IEICE Trans.

Inf. Syst., Vol.E89-D, NO.7, pp.2324-2327, 2006.

[32] Q. Xiao, Y. Daito, M. Suzuki, and K. Kita. Performance Evaluation of Audio

Fingerprinting Systems in Real-Noise Conditions. The 2012 IET International

REFERENCES 70

Conference on Frontier Computing - Theory, Technologies and Applications,

pp.61–66, 2012.

[33] T. Kurita. Development of External-Noise Reduction Technologies for

Shinkansen High-Speed Trains. Journal of Environment and Engineering, Vol.6,

No.4, pp.805-819, 2011.

[34] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with

Applications to Text Indexing and String Matching. 32nd ACM symposium on

Theory of computing, 2000.

[35] D. Okanohara and K. Sadakane. Practical Entropy-Compressed Rank Select

Dictionary. Algorithm Engineering and Experiments (ALENEX 2007), 2007.

[36] Q. Xiao, N. Saito, K. Matsumoto, X. Luo, Y. Yokota, and K. Kita. Index

Compression for Audio Fingerprinting Systems Based on Compressed Suffix

Array. International Journal of Information and Education Technology, Vol.3,

No.4, pp.455-460, 2013.

[37] N. Saito. Index Compression for Audio Fingerprinting Systems. Tokushima Uni-

versity Master Thesis, 2012.

[38] R. Gonzalez, S. Grabowski, V. Makinen, and G. Navarro. Practical Implemen-

tation of Rank and Select Queries. 4th International Workshop on Experimental

and Efficient Algorithms (WEA 2005), pp.27-38, 2005.

