
 

 

New Similarity Scale to Measure the Difference 

in Like Patterns with Noise 

 

 

  

 

 

 

 

 

 

January 01, 2014s 

 

 

 

Michihiro Jinnai 



i 

 

Abstract 
 

A new similarity scale called the Geometric Distance, that numerically evaluates the 

degree of likeness between two patterns is proposed. Traditionally, the similarity scales 

known as the Euclidean distance and cosine similarity have been widely used to measure 

likeness. Traditional methods do not perform well in the presence of noise or pattern 

distortions. In this paper, a new mathematical model for a similarity scale is proposed 

which overcomes these limitations of the earlier models, while improving the overall 

recognition accuracy. Experiments in speech vowel recognition were carried out under 

various SNR levels in a variety of noisy environments. In all cases a significant 

improvement in recognition accuracy is demonstrated, with the improvement most 

pronounced in the noisiest conditions. In fact, at a SNR of 5 dB in a subway, the 

recognition accuracy improved from 65% to 75% and at 20 dB SNR from 98.4% to 99.6% 

over the MFCC method. Numerical modeling of simple patterns is used to demonstrate 

the principles behind the Geometric Distance. 

 

Furthermore, we describe that there are the following three shortcomings with the above 

geometric distance algorithm. (1) Since standard and input patterns are normalized to 

have the same area, a pseudo difference in shapes occurs between them. (2) Since “shape 

variation” is calculated in each combination of the standard and input patterns, the 

processing overhead increases when the number of standard patterns increases. (3) Since 

reference patterns are evaluated for each movement position of a normal distribution, the 

computational memory overhead increases when the number of components of standard 

and input patterns increases. To counter these shortcomings, a new geometric distance 

algorithm is proposed. (1) It is derived without normalization of the standard and input 

patterns, so that the pseudo difference in shapes is removed. (2) It reduces the processing 

overhead by separating the calculation of “shape variation” into a registration process and 

a recognition process. (3) It reduces the computational memory overhead by sharing a 

single reference pattern. Experiments in vowel recognition were carried out using the 

same voice data as the above experiments. At a mean of 5 dB SNR, the recognition 

accuracy improved from 78% to 82% over the above algorithm. 

 

Moreover, in the above algorithm, we have performed the optimization of the Geometric 

Distance using the “clean vowels in the continuous speech” for vowel recognition. 

However, there is a shortcoming with the above optimization method because only the 
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clean vowels are used. To improve the shortcoming, we propose a new optimization 

method using the weighted random numbers generated by the computer and five patterns 

of long vowels, instead of the “clean vowels in the continuous speech”. By using our 

proposed method, we have checked the relationship between the variance of the normal 

distribution and the vowel recognition accuracy, and estimated the optimum variance 

value. Also, by using the estimated value, we have performed evaluation experiments for 

the “long vowels with actual noise of 5 dB SNR” and achieved the vowel recognition 

accuracy of 80.3%. We have verified the effectiveness of the proposed method. 
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Chapter 1

Introduction

Human beings, dogs, cats, and other such animals have “the sense of similarity” in hearing

and sight. To realize “the sense of similarity” using an algorithm called “similarity scale” is

an important subject for developing computer intelligence. In pattern recognition, a known

pattern stored in a PC memory is called as the “standard pattern”, and a pattern to be

compared is called the “input pattern”. The degree of likeness between the standard pattern

and the input pattern is evaluated using a similarity scale. If the similarity of the standard

and input patterns is close, then those two patterns are considered to be in the same category

and the input pattern is recognized. The similarity is often measured as a “distance” between

the two patterns.

Conventionally, the similarity scales known as the Euclidean distance and cosine similarity

have been widely used.[1, 2] Conventional similarity scales compare the patterns using a one-

to-one mapping. The result of the one-to-one mapping is that, the distance metric is highly

sensitive to noise, and the distance metric changes in a staircase pattern when a difference

occurs between peaks of the standard and input patterns.

To improve the shortcomings, various techniques have been applied. For example, in

speech recognition, the Itakura-Saito distance measure,[2, 3, 4] LLR,[5] WLR,[6, 7] WSM,[8]

and projection distance[9] have been proposed for the purpose of comparing the shapes of

the power spectra.[10] Besides, in pattern classification or clustering, image retrieval and

detection of abnormal vibration, many distance functions have been proposed for comparing

histograms.[11, 12, 13, 14, 15, 24]

A similarity scale is a concept that should intuitively concur with the human concept of

similarity in hearing and sight. Therefore, we need to develop a mathematical model for the

similarity scale so that we can perform numerical processing by computer. In this paper,

a mathematical model of the similarity scale is proposed to improve the shortcomings that

are found in the Euclidean distance, cosine similarity and others. A mathematical model

incorporating the following two characteristics is used.

<1> The distance metric must show good immunity to noise.

<2> The distance metric must increase monotonically when a difference increases between

peaks of the standard and input patterns.
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Then, we proposed an algorithm based on one-to-many point mapping to realize the math-

ematical model. Within the algorithm, the difference in shapes between the standard and

input patterns is replaced by the shape change of a reference pattern having the initial shape

of a normal distribution, and the magnitude of this shape change is numerically evaluated as

a variable of the moment ratio that is derived from the kurtosis.

Then, numerical experiments are carried out using some geometric patterns, and the

algorithm is confirmed to perform well. Finally, some speech recognition tests are carried

out using the proposed algorithm with real voices. The effectiveness of the mathematical

model and algorithm is evaluated based on the result of speech recognition. Chapter 2

describes the shortcomings that are found in the conventional similarity scales. Chapter

3 describes the mathematical model and algorithm of the new similarity scale, describes

numerical experiments, and describes that the algorithm performs well. Chapter 4 describes

the speech recognition tests that have been carried out, and describes the effectiveness of the

mathematical model and algorithm.

Furthermore, we describe that there are the following three shortcomings with the above

algorithm. (1) Since the standard and input patterns are normalized to have the same

area, a pseudo difference in shapes occurs between the standard and input patterns and

the recognition performance of geometric distance becomes unpredictable. (2) Since “shape

variation” is calculated in each combination of the standard and input patterns if we use

multiple standard patterns and a single input pattern, the processing overhead increases when

the number of standard patterns increases. (3) Since positive and negative reference patterns

are evaluated for each movement position of the normal distribution, the computational

memory overhead increases in proportion to the square of the number of components of the

standard and input patterns.

In Chapter 6, we propose a new geometric distance algorithm that can realize the above

mathematical model and that can also improve the above shortcomings. (1) The new al-

gorithm is derived without normalization of the standard and input patterns, so that the

pseudo difference in shapes is removed and the recognition performance of geometric dis-

tance becomes stable. (2) The new algorithm reduces the processing overhead during an

input pattern recognition process by separating the calculation of “shape variation” into a

standard pattern registration process and an input pattern recognition process. (3) The new

algorithm reduces the computational memory overhead by sharing a single reference pattern.
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Chapter 5 describes the shortcomings that are found in the conventional algorithm. Chapter

6 describes the new algorithm, provides the evaluation results of the processing overhead and

the computational memory required for the algorithm, describes numerical experiments, and

describes that the algorithm performs well. Chapter 7 describes the speech recognition tests

that have been carried out, and describes the stabilized recognition performance.

Moreover, within the above algorithm, the difference in shapes between the standard and

input patterns is replaced by the shape change of a reference pattern having the initial shape

of a normal distribution, and the magnitude of this shape change is numerically evaluated

as a variable of the moment ratio. In such a case, from its principle, it is important to

optimize the shape (variance σ2) of the normal distribution that covers the standard and

input patterns. Until now, we have determined the optimum variance value of the normal

distribution using the “clean vowels in the continuous speech” for vowel recognition.

However, there is a shortcoming with the above optimization method. That is, the char-

acteristic <1> of the above mathematical model is ignored because only the clean vowels are

used. The optimization needs to be made to maximize the effect of the characteristics <1>

and <2> of the mathematical model simultaneously. Besides, since the optimum variance

value of the normal distribution needs to be re-calculated each time the speaker changes, a

low processing overhead is also required to calculate the optimum value. To improve the

shortcoming and to satisfy the requirement, in Chapter 9, we propose a new method to de-

termine the optimum variance value of the normal distribution for vowel recognition, where

we consider both characteristics <1> and <2> of the mathematical model and reduce the

processing overhead. We perform an experiment to estimate the optimum value by using our

proposed method. Also, we perform evaluation experiments of vowel recognition by using the

estimated value that we have calculated. Chapter 8 describes the shortcoming that is found

in the conventional optimization method of the new similarity scale. Chapter 9 describes the

new optimization method of the new similarity scale, and describes the optimization exper-

iment using the weighted random numbers generated by the computer and five patterns of

long vowels. Chapter 10 describes the evaluation experiments of vowel recognition that have

been carried out by using the calculated optimum value (estimated value), and describes the

effectiveness of the proposed method. Chapter 11 describes the conclusions and touches on

future work.

The proposed similarity scale can be applied widely to pattern recognition such as pattern

3



classification or clustering and image retrieval using the distance between histograms. This

paper explains this technique using power spectrum patterns of voice.
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Chapter 2

Conventional Similarity Scale

In this paper, for example, for the power spectrum of voice, a random variation of power

spectrum caused by noise and air turbulence such as fricative sound is defined as the “wobble”.

Also, the difference between peaks of the power spectra such as formant is defined as the

“difference”.

Conventional similarity scales Euclidean distance and cosine similarity compare the pat-

terns using a one-to-one mapping. The result of the one-to-one mapping is that, input

patterns with different shapes may have the same distance from the standard pattern when

the power spectrum patterns have the “difference” and “wobble”.

Figure 1(a) gives an example of the “difference” where the standard pattern has two peaks

in the power spectrum, and input patterns 1, 2 and 3 have a different position on the second

peak. However, each pattern is assumed to have variable τ in the relationship shown in Figure

1(a). Therefore, the standard pattern and the input patterns always have the same area. In

this case, the Euclidean distance and cosine similarity e1, e2 and e3 have the relationship of

e1 = e2 = e3 between the standard pattern and each of input patterns 1, 2 and 3. Therefore,

input patterns 1, 2 and 3 cannot be distinguished.

Figure 1(b) gives an example of the “wobble” where the standard pattern has a flat power

spectrum, input patterns 4 and 5 have the “wobble” on the flat power spectrum, and input

pattern 6 has a single peak. However, each pattern is assumed to have variable ρ in the

Figure 1. Typical examples of standard and input patterns.
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relationship shown in Figure 1(b). Therefore, the standard pattern and the input patterns

always have the same area. In this case, the Euclidean distance and cosine similarity e4, e5

and e6 have the relationship of e4 = e5 = e6 between the standard pattern and each of input

patterns 4, 5 and 6. Therefore, input patterns 4, 5 and 6 cannot be distinguished.

To deal with these shortcomings, the cepstrum is used as the feature parameter in the

speech recognition, for example.[16] The cepstrum is a result of taking the Inverse Fourier

transform of the logarithmic power spectrum. In particular, the Mel-Frequency Cepstrum

Coefficient (MFCC),[17] which is a combination of this cepstrum and Mel filter bank, is used

in many speech recognition systems.[18] Although this MFCC is the feature parameter that

can absorb a certain level of “difference” and “wobble” of the power spectrum, the remain-

ing “difference” and “wobble” are finally absorbed using statistical models and adaptation

techniques.[19, 20] Insufficient attention has been paid to date to the role of the similarity

scale in both speech and non-speech sound recognition. Therefore, we propose a new simi-

larity scale that we will introduce in the next section.
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Chapter 3

New Similarity Scale

A new algorithm based on a one-to-many point mapping is proposed to realize the mathe-

matical model. The difference in shapes between standard and input patterns is replaced

by the shape change of a normal distribution, and the magnitude of this shape change is

numerically evaluated as a variable of the moment ratio that is derived from the kurtosis. In

this method, when a “difference” occurs between peaks of the standard and input patterns

with “wobble” due to noise or similar occurrence, the “wobble” is absorbed and the distance

metric increases monotonically according to the increase of the “difference”. In the second

half of this section, numerical experiments are carried out using some geometric patterns with

the “difference” and “wobble”, and the proposed algorithm is confirmed to perform well.

3.1 Normal distribution and kurtosis

In statistical analysis, the normal distribution shown in the following equation is often used

for models exhibiting many phenomena.

f(u) =
1

σ
√
2π

exp

{
−1

2

(
u− µ
σ

)2
}

(1)

Where, µ is mean, and σ2 is variance. When the normal distribution is applied to a model

exhibiting phenomenon, it is important to check whether the phenomenon meets the normal

distribution or not. The kurtosis of a probability distribution is a measure of its relative

peakedness or flatness compared to the normal distribution. A positive kurtosis indicates

peakedness and a negative one, flatness relative to the normal distribution with the same

mean and variance. In Eq. (1), if the continuous value u is replaced by discrete value ui,

kurtosis a can be calculated using the following equation.

a=

{∑
i

f(ui)

}
·
{∑

i

(ui − µ)4 · f(ui)
}

{∑
i

(ui − µ)2 · f(ui)
}2 − 3 (2)

If a probability distribution of the phenomenon follows the normal distribution, then a = 0.

If it has peakedness relative to the normal distribution, then a > 0. Adversely, if it has
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Figure 2. Change of moment ratio A.

Figure 3. Change rate of moment ratio A.

flatness relative to the normal distribution, then a < 0. Eq. (2) shows a ratio of the forth

moment to the square of second moment around mean µ. When the proposed method is

used, a shape change around the component position needs to be detected based on the

center of each component position of the power spectrum as shown in Figure 7 of Section 3.7.

Therefore, we assume µ = 0 and change Eq. (2) as follows.

A=

{∑
i

f(ui)

}
·
{∑

i

(ui)
4 · f(ui)

}
{∑

i

(ui)
2 · f(ui)

}2 − 3 (3)

Eq. (3) shows a ratio of the forth moment to the square of second moment around the origin.

In this paper, Eq. (3) is called “Moment ratio A”.

Then, numerical experiments are carried out to study the relationship between moment
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Figure 4. Normal curve.

Table 1. Features of moment ratio A.

Figure 4 α Boundary area between α and β β γ

Increase of f(ui) A > 0 A ≈ 0 A < 0 —

ratio A and the increment value δ of bar graphs seen in Figures 2 and 3. Graphs in the upper

side of Figures 2(a)–(c) show the bar graphs each having m bars whose height is the same as

function value f(ui) of the normal distribution. Note that m = 11 and the bar graphs are

created by using the area of −2.1σ ≤ ui ≤ 2.1σ (σ = 1) of the normal distribution. On these

bar graphs, only a single bar increases by value δ in the center, an intermediate position,

and an end of the normal distribution. Here, the moment ratio A is calculated using Eq.

(3) for the bar graph whose shape is changed as described above. The obtained relationship

between values A and δ is shown in the lower side of Figures 2(a)–(c). For now we only

consider positive values of δ. From these graphs, it is discovered that A = 0.0 if δ = 0.0.

Also, A changes approximately linearly when value δ increases. Note that if only a single bar

increases by value δ in the graph with m bars, it is the same as when only a single bar with

an 1/m ratio increases by value δ. If value m changes (m is an odd numbered value), the

gradient of moment ratio graphs in the lower side of Figures 2(a)–(c) changes by the same

1/m weight. This property holds for all values of m and for any variance σ2 of the normal

distribution.

Figures 3(a) and (b) show the change rate of A (gi, where a change of δ occurs at the i-th

position) for a normal distribution and a single instance of δ. Change rate gi is described by

the following equation.

gi = A/δ (i = 1, 2, 3, · · · ,m) (4)

The g(1+m)/2, gl and gm are equal to the gradients of respective graphs shown in the lower

side of Figures 2(a)–(c). Next, in Figure 3(a), position i of the bar that has increased by

value δ is scanned from 1 to m, and Eq. (4) is calculated. Figure 3(b) shows a bar graph
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of the calculated value gi, where δ = 0.2. From Figure 3(b), gi > 0, gi ≈ 0 and gi < 0 are

found in the center, an intermediate position, and an end of the normal distribution.

The following summarizes the features of moment ratio A that have been obtained from

the above numerical experiments. Figure 4 shows a normal curve f(ui) with mean µ = 0

and variance σ2, and the moment ratio becomes A = 0. Also, if the value f(ui) exceeds the

value of the normal curve in area α shown in Figure 4, the moment ratio becomes A > 0.

If the value f(ui) increases in area β, the moment ratio becomes A < 0. If the value f(ui)

increases in the boundary area between α and β (close to area ui = ±0.7σ), the change of A

is small and it is A ≈ 0. Meanwhile, if the value f(ui) increases in area γ, A is unstable as

it becomes greater than or less than 0. They have been summarized on Table 1. This paper

uses area −2.1σ ≤ ui ≤ 2.1σ to obtain stable value A.

3.2 Creation of standard and input pattern vectors

An example of standard and input patterns, that have been created using the power spectrum

of standard and input voices, are given in Figures 5(a) and (b). Note that the power spectrum

is generated from the output of filter bank with the m frequency bands (where, m is an odd

number). Also, we suppose that the i-th power spectrum values (where, i = 1, 2, · · · ,m) of

standard and input voices are divided by their total energy and normalized power spectra

si and xi have been calculated. At this moment, the standard and input patterns have the

same area size. Here, we create a standard pattern vector s having si components, and an

input pattern vector x having xi components, and represent them as follows.

s = (s1 , s2, · · · , si, · · · , sm )T

x = (x1, x2, · · · , xi, · · · , xm)T (5)

Eq. (5) expresses the shapes of the power spectra of the standard voice and input voice by

the m pieces of component values of the pattern vector respectively. Note that in this paper

the width of each bar graph is 1/m for standard and input patterns shown in Figures 5(a)

and (b).
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Figure 5. Shape expression of pattern vectors.

3.3 Creation of reference pattern vectors

With the proposed algorithm, the difference in shapes between standard and input patterns

is replaced by the shape change of the normal distribution, and the magnitude of this shape

change is numerically evaluated as a variable of the moment ratio. However, in general, Eq.

(3) cannot be defined if the value f(ui) is negative. Therefore, we create a pair of reference

patterns that have the initial shape of a normal distribution so that the change of the value

f(ui) does not decrease. Figures 5(c) and (d) show the bar graphs, each having the same

height as function values r
(+)
i and r

(−)
i of their normal distribution. Here, we create a positive

reference pattern vector r(+) having r
(+)
i components, and a negative reference pattern vector

r(−) having r
(−)
i components, and represent them as follows.

r(+) = (r
(+)
1 , r

(+)
2 , · · · , r(+)i , · · · , r(+)m )T

r(−) = (r
(−)
1 , r

(−)
2 , · · · , r(−)i , · · · , r(−)m )T (6)

r(+) and r(−) are equivalent vectors. Eq. (6) expresses the shape of a normal distribution

by the m pieces of component values of pattern vector respectively. Note that the number

of components of Eq. (6) is supposed to be equal to the number of components of Eq. (5),
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Figure 6. Shape changes of reference patterns.

Table 2. Relationship between shape variation and shape changes of reference patterns.

Figure 6 (a) (b) (c) (d) (e)

Increase of r
(+)
i A(+)=0 A(+)>0 A(+)≈0 A(+)<0 A(+)≈0

Increase of r
(−)
i A(−)=0 A(−)>0 A(−)>0 A(−)>0 A(−)≈0

A(+) −A(−) D = 0 D ≈ 0 D < 0 D≪0 D ≈ 0

and all bar graphs of Figures 5(a)–(d) have the same width. Also, as shown in Figures 5(c)

and (d), the center axis of a normal distribution assumes to locate at the center of standard

and input patterns, and Eq. (6) is created using area −2.1σ ≤ ui ≤ 2.1σ of the normal

distribution. Note that σ = 1/4.2 as 2.1σ × 2 = (1/m)×m.

3.4 Shape changes of reference pattern vectors

A difference in shapes between standard pattern vector s and input pattern vector x is

replaced by the shape changes of positive reference pattern vector r(+) and negative reference

pattern vector r(−) using the following equation.

For i = 1, 2, 3, · · · ,m ;

• if xi > si, then r
(+)
i ←− r

(+)
i + |xi − si|

• if xi < si, then r
(−)
i ←− r

(−)
i + |xi − si| (7)

In Eq. (7), r
(+)
i and r

(−)
i on the right side show the component values of positive and negative

12



reference pattern vectors having the shape of the normal distribution, and those on the left

side show the components after the shape has changed. In Eq. (7), if component value xi of

the input pattern vector is greater than component value si of the standard pattern vector,

component value r
(+)
i of the positive reference pattern vector increases by |xi − si| from the

normal distribution value. Also, if xi is smaller than si, component value r
(−)
i of the negative

reference pattern vector increases by |xi − si| from the normal distribution value. Thus, the

values r
(+)
i and r

(−)
i do not decrease in Eq. (7). Figure 6 shows the shape of Eq. (7). However,

r(−) is shown upside down in order to compare it with r(+). Next, we explain Eq. (7) using

Figure 6.

• Figure 6(a) gives an example of the case where standard pattern and input pattern have

the same shape. Because values r
(+)
i and r

(−)
i of Eq. (7) do not change during this time, a

pair of the reference patterns shown in Figure 6(a) do not change in their shapes from the

normal distribution.

• Figures 6(b)–(d) respectively show an example exhibiting a small, medium, and large

“difference” of peaks between the standard and input patterns. If Eq. (7) is represented

by the shapes, as shown in Figures 6(b)–(d), value r
(−)
i increases at peak position i of each

standard pattern. At the same time, value r
(+)
i increases at peak position i of each input

pattern.

• Figure 6(e) typically shows the standard pattern having a flat shape and an input pattern

where a “wobble” occurs in the flat shape. Because values r
(+)
i and r

(−)
i increase alternatively

in Eq. (7) during this time, a pair of reference patterns shown in Figure 6(e) have small

shape changes from the normal distribution.

3.5 Moment ratios of reference pattern vectors

For the positive and negative reference pattern vectors whose shapes have changed by Eq.

(7), the magnitude of shape change is numerically evaluated as the variable of moment ratio.

The moment ratios of the positive and negative reference pattern vectors can be calculated

using the following equation that has been modified from Eq. (3).
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A(+)=

{
m∑
i=1

r
(+)
i

}
·
{

m∑
i=1

(Li)
4 · r(+)i

}
{

m∑
i=1

(Li)
2 · r(+)i

}2 − 3

A(−)=

{
m∑
i=1

r
(−)
i

}
·
{

m∑
i=1

(Li)
4 · r(−)i

}
{

m∑
i=1

(Li)
2 · r(−)i

}2 − 3 (8)

Where, Li (i = 1, 2, · · · ,m) is a deviation from the center axis of the normal distribution

shown in Figures 5(c) and (d).

3.6 Calculation of shape variation

The initial value of the moment ratio of both positive and negative reference pattern vectors

is equal to 0. Therefore, the amount of change of moment ratio in positive direction is A(+),

and the amount of change in negative direction is A(−). The total amount of change is the

difference between them. Thus, the difference in shapes between standard and input patterns

is calculated using the following equation, and it is defined as “Shape variation D”.

D = A(+) − A(−) (9)

Figure 6 and Table 2 show how D varies with r
(+)
i , r

(−)
i , A(+) and A(−).

• In (a), values r
(+)
i and r

(−)
i do not change. The shape variation becomes D = 0 as A(+) = 0

and A(−) = 0.

• In (b)–(d), because peak position i of the standard pattern locates in area α shown in

Figure 4, the moment ratio becomes A(−) > 0 when value r
(−)
i increases.

• In (b), because peak position i of the input pattern also locates in area α, the moment ratio

becomes A(+) > 0 when value r
(+)
i increases. The entire shape variation becomes D ≈ 0.

• In (c), because peak position i of the input pattern locates in the boundary area between α

and β, the moment ratio becomes A(+) ≈ 0 even when value r
(+)
i increases. The entire shape

variation becomes D < 0.

• In (d), because peak position i of the input pattern locates in area β, the moment ratio

becomes A(+) < 0 when value r
(+)
i increases. The entire shape variation becomes D ≪ 0.

• In (e), a pair of reference patterns have small shape changes from the normal distribution,
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and the shape variation becomes D ≈ 0 as A(+) ≈ 0 and A(−) ≈ 0. Also, if values r
(+)
i and r

(−)
i

increase randomly, the shape variation becomes D ≈ 0.

In Figure 3 (b), the bar graph of the change rate of moment ratio A decreases monotonically

from the center to the outer end. From this result and from above (a)–(d), we can understand

that value |D| increases monotonically according to the increase of the “difference” between

peaks of the standard and input patterns. Also, from (e), it is clear that D ≈ 0 for the

“wobble”.

3.7 Movement of normal distribution

In the previous section, we have determined the shape variation D by assuming that the

center axis of the normal distribution locates at the center of standard and input patterns

as shown in Figures 5 and 6. In this section, however, we determine the amount of shape

variation Dj for each j in the case where the center axis of the normal distribution moves to

any component position j (where, j = 1, 2, · · · ,m) of the standard and input patterns.

Figures 7(a) and (b) give an example of standard and input patterns. Also, Figures

7(c)–(f) show the positive and negative reference patterns when the center axis of the normal

distribution moves to positions 1, 3, j and m, respectively. Note that all bar graphs of

Figures 7(a)–(f) have the same width. Here, as shown in Figures 7(c)–(f), we create positive

and negative reference patterns for each j so that bar graphs 1 to nj of positive and negative

reference patterns correspond to area −2.1σj ≤ ui ≤ 2.1σj of the normal distribution. Where,

σj = nj/(4.2m) because 2.1σj × 2 = (1/m)× nj. As shown in Figure 7(e), the positive and

negative reference patterns do not necessarily cover the entire standard and input patterns.

Then, we process the ends so that the sensitivity to the “wobble” in the positive and

negative reference patterns is equated regardless of the movement position of the normal

distribution. In the positive and negative reference patterns shown in Figures 7(c)–(f), the

“white” bar graph corresponds to the component numbers i of the input pattern and, there-

fore, its value changes according to the “wobble” of the input pattern. However, the “gray”

bar graph does not correspond to it and its value does not change. Therefore, we set value nj

so that the number of white bar graphs is equated in all the positive and negative reference

patterns. In Figures 7(c)–(f), for an example, each positive and negative reference patterns

consists of 9 white bar graphs. By this means, the sensitivity to the “wobble” in the positive

and negative reference patterns is equated.
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Figure 7. Movement of normal distribution.

In the proposed algorithm, the values nj and σj must be set appropriately to the pattern

recognition application. In Section 4.3, an example method to set these values is given.

We can expand Eq. (6) as described above, create positive and negative reference pattern

vectors r
(+)
j and r

(−)
j which have different variance values of the normal distribution for each

movement position j, and represent them as follows.

r
(+)
j = (r

(+)
j1 , r

(+)
j2 , · · · , r

(+)
jk , · · · , r

(+)
jnj

)T

r
(−)
j = (r

(−)
j1 , r

(−)
j2 , · · · , r

(−)
jk , · · · , r

(−)
jnj

)T (10)

(j = 1, 2, 3, · · · ,m)
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Then, we replace the difference in shapes between standard pattern vector s and input pattern

vector x into the shape changes of the vectors r
(+)
j and r

(−)
j by using the following equation

instead of Eq. (7).

For i = 1, 2, 3, · · · ,m ;

when k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

• if xi > si, then r
(+)
jk ←− r

(+)
jk + |xi − si|

• if xi < si, then r
(−)
jk ←− r

(−)
jk + |xi − si| (11)

(j = 1, 2, 3, · · · ,m)

Note that (1+nj)/2 is the center component number of r
(+)
j and r

(−)
j , and i− j is a deviation

from the center component number. Also, if value k does not satisfy 1 ≤ k ≤ nj, we assume

that values r
(+)
jk and r

(−)
jk do not change. Figure 7 represents the shape of Eq. (11), and it

shows the example of the increase of values r
(+)
jk and r

(−)
jk . Then, the magnitude of the shape

change of r
(+)
j and r

(−)
j is numerically evaluated as the variable of moment ratio. The moment

ratio of r
(+)
j and r

(−)
j can be calculated by using the following equation instead of Eq. (8).

A
(+)
j =

{nj∑
k=1

r
(+)
jk

}
·
{nj∑
k=1

(Ljk)
4 · r(+)jk

}
{nj∑
k=1

(Ljk)
2 · r(+)jk

}2 − 3

A
(−)
j =

{nj∑
k=1

r
(−)
jk

}
·
{nj∑
k=1

(Ljk)
4 · r(−)jk

}
{nj∑
k=1

(Ljk)
2 · r(−)jk

}2 − 3 (12)

(j = 1, 2, 3, · · · ,m)

Note that value Ljk is a deviation from the center axis of the normal distribution that cor-

responds to position j. At this time, the shape variation Dj can be calculated by using the

following equation instead of Eq. (9).

Dj = A
(+)
j − A

(−)
j (j = 1, 2, 3, · · · ,m) (13)

As shown in Figures 7(c)–(f), the value Dj is calculated from the respective positive and

negative reference patterns for each position j. Thus, if all positive and negative reference

patterns cover the peaks of standard and input patterns, all values |Dj| increase monotonically

according to the increase of the “difference” between peaks of the standard and input patterns
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Figure 8. Calculation in geometric distance.

as described in Section 3.6. Also, because the number of white bar graphs has been equated

in the positive and negative reference patterns, the shape variation equally becomes Dj ≈ 0

for the “wobble”.

3.8 Calculation of geometric distance

Using the m pieces of the shape variation Dj that we have obtained in Eq. (13), we can

calculate the difference in shapes between standard and input patterns by the following

equation and we define it as the “Geometric distance d”.

d =

√√√√ m∑
j=1

(Dj)2 (14)

As described above, the geometric distance can be calculated by using Eqs. (5) and (10)–(14)

sequentially. Note that d is the square root of a square sum of the m pieces of values Dj.

Thus, as described in the previous section, d also increases monotonically if all values |Dj|

increase monotonically according to the increase of the “difference” between peaks of the

standard and input patterns. Also, if the shape variation equally becomes Dj ≈ 0 for the

“wobble”, the geometric distance also becomes d ≈ 0.

3.9 Numerical experiments of geometric distance

To confirm that the geometric distance algorithm matches the mathematical model that we

have assumed in Chapter 1, we performed numerical experiments to calculate the geometric

distances of the standard and input patterns shown in Figure 1. However, we have developed
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Figure 9. Typical example of standard and input patterns.

Figure 10. Calculation in geometric distance.

Eq. (10) by using values nj = 27 (σj = nj/(4.2m) = 0.58) that are fixed regardless of

movement position value j. During this time, the number of white bar graphs of positive

and negative reference patterns is 11 for all j values. Note that we read Euclidean distances

e1 to e6 in Figure 1 as geometric distances d1 to d6 respectively.

Figure 8(a) shows the calculation result of geometric distances d1, d2 and d3 by increasing

value τ from 0.0 to 1.0 in Figure 1(a). From Figure 8(a), if value τ is fixed, we can deter-

mine that the geometric distance increases monotonically according to the increase of the

“difference” of the input pattern peak. Figure 8(b) shows the calculation result of geometric

distances d4, d5 and d6 by increasing value ρ from 0.0 to 1.0 in Figure 1(b). In Figure 8(b), if

value ρ is fixed, values d4 and d5 are smaller than value d6. That is, if input patterns 4, 5 and

6 have the same area, input patterns 4 and 5 have the energy that is distributed to multiple
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peaks as the “wobble” when compared with input pattern 6 that has the energy concentrated

on a single peak. Thus, the geometric distance of input patterns 4 and 5 is smaller than that

of input pattern 6. As a result, it is discovered that the change of geometric distance to the

“wobble” is small.

Moreover, Figure 9 shows input patterns 1, 2 and 3 of Figure 1(a) where uniformly

distributed random numbers are added to the power spectrum of all frequency bands, and they

are normalized so that the area of each input pattern becomes equal to the area of standard

pattern. However, as uniformly distributed random numbers, the values that uniformly

distribute within the range of 0 to 10% of average height 1 of the standard pattern are used

regardless of value τ . Figure 9 is developed by assuming that τ = 0.5. Figure 10 shows that

effect on geometric distances d1, d2 and d3 of increasing value τ from 0.0 to 1.0 in Figure 9.

Note that we have set to change the random number if value τ changes. From Figure 10,

if value τ is fixed within the range of 0.5 ≤ τ , it is discovered that the geometric distance

increases monotonically according to the increase of the “difference” of the input pattern peak

in the “wobble” due to random numbers. From the numerical experiments shown in Figures

8(a), (b) and Figure 10, we could verify that the geometric distance algorithm matches the

characteristics <1> and <2> of the mathematical model.

3.10 Calculation of median

Figure 11 shows a typical example of 5 shapes, each having a different position on the second

peak. We assume that the geometric distance between shape i and shape j is dij, determine

the value dij between shape i and other 4 shapes j respectively, and calculate mean value d̄i

using the following equation.

d̄i = (
∑
j
dij )/4 (15)

(i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5; i ̸= j)

Note that we have developed Eq. (10) under the conditions described in Section 3.9.

In Figure 11, because shape 1 has a larger “difference” of the second peak when compared

with shapes 4 and 5, we can estimate that mean value d̄1 of the geometric distance becomes

a large value. Meanwhile, because shape 3 has a smaller “difference” of the second peak

when compared with the other 4 shapes, we can estimate that mean value d̄3 becomes a

small value. Therefore, we determined shape i, that has the minimum mean value d̄i of the
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Figure 11. Example of calculation for median.

geometric distance, to be the median. Figure 11 shows the values d̄1 to d̄5 that have been

calculated by numerical experiments. From these values, it is discovered that values d̄1 and

d̄5 are large, but value d̄3 is minimal. Therefore, we have determined shape 3 to be the

median. The result of numerical experiment of Figure 11 matches the characteristic <2> of

the mathematical model.
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Chapter 4

Experiments of Vowel Recognition

To check the effectiveness of mathematical model and geometric distance algorithm described

in the previous section, we have performed the speech recognition experiments using the

geometric distance algorithm and actual voices. We used Japanese speech produced by one

female speaker in the experiments. We performed the experiments in the following two stages.

(Stage 1) First, we optimized the variance of the normal distribution using the “vowel in the

continuous speech” that is different from the voice data for the evaluation experiments.

(Stage 2) Next, we performed the evaluation experiments for the “clean vowel” and the “vowel

with noise” by using the optimized normal distribution.

Note that, in this section, a vowel without noise is called the “clean vowel”. Also, Stage 1

and Stage 2 are, respectively, divided into Substages Stage 1A, Stage 1B and Stage 1C and

Substages Stage 2A, Stage 2B and Stage 2C which are described in the following sections.

4.1 Voice data

(Stage 1A) First, we recorded the continuous speech (phonetically-balanced sentences) of the

subject female in a soundproof room and created speech data.

(Stage 2A) Next, we recorded each vowel (/a/, /i/, /u/, /e/, /o/) produced by the same

speaker in the soundproof room for a period of 2 seconds for each vowel. We repeated

this recording 6 times on one day each week over a period of 12 weeks, and we created

voice data of the 72 resultant sounds for each vowel (the vowels produced 6 times over

12 weeks). These 5 vowels in 72 voice data sounds are called “/a/01Clean”, “/i/01Clean”,

“/u/01Clean”,· · ·,“/e/72Clean”,“/o/72Clean” for each sound, according to the time sequence

of the sounds. Then, Babble, Car, Exhibition, and Subway noises[21] have been added

with the 20 dB, 10 dB and 5 dB SNR, and the voice data of “5 vowels × 72 sounds ×

4 noises ×3 SNRs” has been created. These voice data are also similarly referred to as

“/a/01Babble20dB” to “/o/72Subway5dB”.
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Figure 12. 23-rd dimensional power spectrum of vowel /a/.

4.2 Feature parameters

We have set the voice analysis conditions with the 8kHz sampling frequency, 16bit quan-

tization, 25msec frame width (Hamming window), 10msec frame period, 0.97 pre-emphasis

coefficient, 64Hz start frequency of the first filter bank, and 4000Hz end frequency of the

23-rd filter bank.

(Stage 1B) First, we sampled the vowel zone from the continuous speech data of Stage 1A,

and extracted the logarithmic power spectrum array of the 23-rd dimensional Mel filter bank

output (abbreviated as “power spectrum” hereafter).[22] We repeated them and finally ex-

tracted the power spectra of a total of 168 frames for each vowel. The power spectra of these

“5 vowels × 168 frames” are the feature parameters that have been extracted from the “vowel

in the continuous speech”.

(Stage 2B) Next, we sampled the central 100 frames from “5 vowels × 72 sounds” for

“/a/01Clean” to “/o/72Clean” voice data and from “5 vowels × 72 sounds × 4 noises × 3

SNRs” for “/a/01Babble20dB” to “/o/72Subway5dB” voice data, and extracted their power

spectrum. The power spectra of these “5 vowels × 72 sounds × 13 types × 100 frames” are

the feature parameters that have been extracted from the “clean vowel” and the “vowel with

noise”.

At the same time, we extracted the 12-th dimensional MFCC[22] under the same condi-

tions as those for Stage 2B in order to compare our proposed technique with the conventional

technique. The MFCCs of these “5 vowels × 72 sounds × 13 types × 100 frames” are the

feature parameters that have been extracted from the ”clean vowel” and the “vowel with

noise”.

Figure 12 gives an example of the 23-rd dimensional power spectrum that has been ex-

tracted from the “clean vowel /a/”. The power spectrum of Figure 12 has m = 23 in Eq.
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(5), and the standard and input patterns are created based on this value. Note that Figure

12 is referred to as the “1-frame power spectrum” in this paper.

4.3 Variance optimization of normal distribution

(Stage 1C) For vowel recognition, it is important to be able to accurately detect a “difference”

between the formants of the standard and input patterns. The proposed technique replaces

the amount of “difference” between the formants by the shape change of normal distribution

and detects it. In such a case, it is important to optimize the shape (variance σ2) of normal

distribution that covers the standard and input patterns. Therefore, we show the optimization

procedure in Subsections 4.3.1 and 4.3.2.

4.3.1 Subdivision of reference pattern

In the previous section, as shown in Figure 7, we have determined the geometric distance by

assuming that all bar graphs of the standard and input patterns and those of the positive and

negative reference patterns have the same width. In this case, because σj = nj/(4.2m) in

Figure 7(e), if the value nj is changed for each 2, the value σj changes as a discrete value for

each 1/(2.1m). Thus, if value m is small, the accuracy of optimum value σj drops. In order

to improve the accuracy, we subdivide the bar graph of the positive and negative reference

patterns.

Figures 13(a) and (b) show a typical example of bar graph of the standard and input

patterns consisting of the 23 bars. Figures 13(c) and (d) show the positive and negative

reference patterns when the center axis of normal distribution moves to positions 3 and j,

respectively. Here, as shown in Figure 13, for example, we use a single-bar graph of the

standard and input patterns and we subdivide the positive and negative reference patterns

into the 10-bar graph. Then, as shown in Figures 13(c) and (d), each of the positive and

negative reference pattern (where, j = 1, 2, · · · , 23) is configured by the same number of bars

of the white bar graph. In Figures 13(c) and (d), for example, the bar graph is structured

with 20.2 bars (where, ω = 20.2). This ω is the number of white bar graphs of the positive

and negative reference patterns. In Figure 13 (d), the relationship of ω = nj/10 and σj =

ω/(4.2m) = nj/10/(4.2m) (where, m = 23) is established. Thus, if the value nj is changed

for each 2, the value σj changes as a discrete value for each 0.1/(2.1m). The accuracy of the

optimum value σj is improved.
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Figure 13. Subdivision of reference patterns.

4.3.2 Optimization of σ

Figure 14, Figure 15 and Table 3 show the processing procedure to determine the optimum

value of σ (the optimum value of ω) using the “vowel in the continuous speech”. Figure 14

is a flowchart used to determine the optimum value by scanning value ω in the range of 3.0

to 23.0. In Step 1 of Figure 14, ω = 3.0 is set as the initial value. In Step 2, the positive

and negative reference pattern vectors that are equivalent to those of Figure 13 are created

according to the ω set value. Then, we explain Steps 3–7 by referring to Figure 15 and

Table 3. Table 3 shows the type and the number of the 23-rd dimensional power spectrum

that has been used for the standard and input patterns. The power spectra, each consisting

of 168 frames shown on the first row of Table 3, have been extracted from the “vowel in

the continuous speech” in Stage 1B of Section 4.2. In Step 3, a single standard pattern

is calculated for each vowel. Step 3 of Figure 15 shows the process required to determine
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Step 1 

Step 2

Create positive and negative reference pattern vectors 

Step 3 

Calculate standard pattern (median) for each vowel 

Step 4

Step 5

Calculate geometric distances and recognize input pattern 

Step 6

Step 7 Yes

Step 8
No

Calculate recognition accuracy for vowel in continuous speech 

Step 9

Step 10 Yes

No

Output figure 

Figure 14. Flowchart for optimizing normal distribution.

the median from the above 168 frames using the technique of Section 3.10, and to set the

standard pattern of each vowel. The power spectra, each consisting of one frame shown on

the second row of Table 3, are the standard patterns that have been determined for each

vowel. The power spectra, each consisting of 167 frames shown on the third row of Table 3,

are the patterns of the above 168 frames from which each standard pattern has been removed.

These “167×5” frames are the input patterns. In Step 4, N = 1 is set as the initial value

and, as shown in Step 4 of Figure 15, the first input pattern is specified from the “167×5”

frames. In Step 5, the geometric distance is calculated and the input pattern is recognized.

As shown in Step 5 of Figure 15, the geometric distance between the standard and input

patterns is calculated for each of the 5 vowels, and the minimum value is determined among

the 5 geometric distance values obtained. Then, the category to which the standard pattern

having the minimum value belongs is selected as the recognition result of the input pattern.
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Table 3. Power spectra for optimizing normal distribution.

/a/ /i/ /u/ /e/ /o/

Vowel in continuous speech 168 168 168 168 168

Standard pattern 1 1 1 1 1

Input pattern 167 167 167 167 167

/ a / / i / / u / / e / / o /
Vowel in continuous speech 168 168 168 168 168

(Step 3)  Median

Standard pattern 1 1 1 1 1

(Step 5) Geometric distance

(Step 4, 6, 7)       Input pattern 1

167 5

Figure 15. Diagram for optimizing normal distribution.

In Steps 6 and 7, value N is incremented by 1, the N -th input pattern is specified among the

“167×5” frames, and Step 5 is repeated. After the recognition result of all input patterns has

been obtained, in Step 8, the recognition accuracy is calculated by setting the total “167×5”

frames as the denominator and by setting the number of correctly recognized input patterns

as the numerator. In Steps 9 and 10, value ω is incremented by 0.2 until it reaches 23.0, and

the process of Steps 2–8 is repeated.

Figure 18 shows the relationship between the value ω and the recognition accuracy ob-

tained by the above process. From Figure 18, it is discovered that the recognition accuracy

becomes maximum if ω = 10.2. Thus, we determine ω = 10.2 as the optimum value and use

it in the following evaluation experiments.

4.4 Evaluation experiments

4.4.1 Vowel recognition with geometric distance

(Stage 2C) We have performed the evaluation experiments for the “clean vowel” and the

“vowel with noise” by using the value ω = 10.2 determined in the previous section. Figure

16, Figure 17 and Table 4 show the procedure. Table 4 shows the type and the number

of the 23-rd dimensional power spectrum that has been used for the standard and input

patterns. The power spectra, each consisting of 100 frames shown on the first row of Table
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Step 1 

Step 2

Create positive and negative reference pattern vectors 

Step 3 

Calculate standard pattern (median) for each vowel 

Step 4

Step 5

Calculate geometric distances and recognize input pattern 

Step 6

Step 7 Yes

Step 8
No

Calculate recognition accuracy for Subway 5dB 

Output figure 

Figure 16. Flowchart for vowel recognition.

4, have been extracted from “01Clean” of each vowel in Stage 2B of Section 4.2. “01Clean”

is the first “clean vowel” that was produced among 72 sounds in 12 weeks. Then, as shown

in Step 3 of Figure 17, the median was determined from the above 100 frames and it was

used as the standard pattern of each vowel. The power spectra, each consisting of one frame

shown on the second row of Table 4, are the standard patterns that have been determined

for each vowel. Also, the power spectra, each consisting of 100 frames shown in {1} to {13}

of Table 4, have been extracted from the “clean vowel” and the “vowel with noise” in Stage

2B of Section 4.2. Then, the power spectra of these “13×71×100×5” frames were used as

the input patterns. Figures 16 and 17 show the procedure for evaluation, by using both 5

standard patterns obtained from the “01Clean” and 71×100×5-frame input patterns shown

in {13} of Table 4. A similar process is also carried out if the 71×100×5-frame input patterns

shown in {1} to {12} are used. In Steps 2–8 of Figure 16 and Steps 3–7 of Figure 17, the

same process is executed as those of Figures 14 and 15. Then, the recognition accuracy is

calculated by setting the total “71×100×5” frames as the denominator and by setting the

number of correctly recognized input patterns as the numerator.
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Table 4. Power spectra for vowel recognition.

/a/ /i/ /u/ /e/ /o/

01 Clean 100 100 100 100 100

Standard pattern 1 1 1 1 1

02 Clean 100 100 100 100 100

{1} : Input pattern : : : : :

72 Clean 100 100 100 100 100

02 Babble 20dB 100 100 100 100 100

{2} : Input pattern : : : : :

72 Babble 20dB 100 100 100 100 100

: ... ... ... ... ...

: ... ... ... ... ...

02 Subway 5dB 100 100 100 100 100

{13} : Input pattern : : : : :

72 Subway 5dB 100 100 100 100 100

/ a / / i / / u / / e / / o /
01 Clean 100 100 100 100 100

(Step 3)  Median

Standard pattern 1 1 1 1 1

(Step 5) Geometric distance

(Step 4, 6, 7)       Input pattern 1

{13} 02-72 Subway 5dB 71 100 5

Figure 17. Diagram for vowel recognition.

4.4.2 Vowel recognition with MFCC

To compare the proposed technique with the conventional techniques, we performed the

evaluation experiments of vowel recognition using the 12-th dimensional MFCC. The MFCC

was extracted from the “clean vowel” and the “vowel with noise” in Section 4.2, and its type

and number are the same as those shown on Table 4. First, we determined the mean and

variance in each dimension using the 12-th dimensional MFCCs of 100 frames in “01Clean”,

and created the 12-th dimensional normal distribution. We created this 12-th dimensional

normal distribution for each vowel, and used it as the standard pattern of each vowel. Then,

we used the 12-th dimensional MFCCs of 13×71×100×5 frames shown in {1} to {13} as the

input patterns. We calculated the likelihood between the input pattern and the standard

pattern of each vowel, and determined that the category of the input pattern is equal to the

category of the standard pattern having the maximum likelihood among 5 standard patterns.
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Table 5. Vowel recognition accuracy with geometric distance. (ω = 10.2)

Babble Car Exhibition Subway Mean

Clean 99.99%

SNR 20 dB 99.90% 99.82% 99.00% 99.56% 99.57%

SNR 10 dB 99.26% 97.72% 83.80% 90.66% 92.86%

SNR 5 dB 94.14% 81.69% 61.42% 74.89% 78.04%

Table 6. Vowel recognition accuracy with MFCC.

Babble Car Exhibition Subway Mean

Clean 99.54%

SNR 20 dB 98.83% 97.55% 96.57% 98.43% 97.84%

SNR 10 dB 91.05% 80.92% 78.23% 83.57% 83.44%

SNR 5 dB 78.62% 68.10% 60.84% 64.67% 68.06%

4.5 Results of evaluation experiments

Tables 5 and 6 show the results of vowel recognition using the geometric distance and MFCC,

respectively. From these tables, it is learned that the recognition accuracy with the geometric

distance is higher than that with the MFCC in all cases. In particular, “mean” of 10 dB and

5 dB SNR has improved approximately by 10%. For both Tables 5 and 6, the recognition

accuracy of “Exhibition5dB” is low. This reason may be the insertion of a background male

voice in the “Exhibition”. Thus we confirm the effectiveness of the mathematical model and

the geometric distance algorithm.

4.6 Verification of optimum value

Table 5 shows the result of recognition accuracy using the optimum value ω = 10.2 that we

have determined from Figure 18. Here, in order to verify that the value ω = 10.2 is truly the

optimum value, we have scanned the value ω from 3.0 to 23.0 in Figure 16 and calculated the

recognition accuracy. Figures 19 and 20 show the calculated relationship between the value

ω and the recognition accuracy for the input patterns of the “clean vowel” and the “vowel

with 5 dB noise”, respectively. From Figures 19 and 20, we can find that the recognition

accuracy is almost maximum in the value ω = 10.2.
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Figure 18. Vowel recognition accuracy and optimum value ω.

Figure 19. Vowel recognition accuracy with geometric distance.

Figure 20. Vowel recognition accuracy with geometric distance.
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4.7 The reason why “vowel in continuous speech” was used for

optimization

In Subsection 4.3.2, we determine the optimum value ω using 168 frames of each “vowel in

the continuous speech” shown on the first row of Table 3. While in Subsection 4.4.1, we

determine the standard pattern using 100 frames of each vowel of “01Clean” shown on the

first row of Table 4. This section describes the reason why we have used the “vowel in the

continuous speech”.

Figure 19 shows the relationship between the value ω and the recognition accuracy ob-

tained from the “Clean” input patterns. These voice data have the variability with time of 12

weeks. In Figure 19, the recognition accuracy is 100% in part of the ω value range. From the

results of vowel recognition experiments, we have found that the recognition accuracy reaches

100% in the relatively wide ω value range in the variability with time below 4 weeks. In such

a case, we have a problem determining the maximum position of recognition accuracy. This

means that we will find it difficult to determine the optimum value of ω by using the voices

with few variations produced in a short period. Meanwhile, if the “vowel in the continuous

speech” is used, the power spectrum of the vowel changes appropriately even if the voices

are produced in a short period. Therefore, the maximum position of recognition accuracy is

most obvious as shown in Figure 18. Thus we use the “vowel in the continuous speech” to

determine the optimum value of ω.
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Chapter 5

Conventional Geometric Distance Algorithm

With the conventional algorithm described in Chapter 3, the standard and input patterns

are normalized to have the same area. Then, a difference in shapes between standard and

input patterns is replaced by a shape change of a normal distribution. If this method is

used, a pseudo difference in shapes may occur between standard and input patterns due to

normalization of power spectrum. As an example, Figures 21(a) and (b) show the standard

pattern, input patterns 1 and 2 having the same shape in the power spectrum. In the input

pattern 2, however, noise has been added to the power spectrum in frequency band fN , and

the input pattern 2 has been normalized to have the same area as the standard pattern. As

a result, a pseudo difference δ in shapes occurs at the peaks of the standard pattern and the

input pattern 2 as shown in Figure 21(b). Figures 21(c) and (d) show another example of

this. However, the input pattern 4 has been normalized to have the same maximum value as

the standard pattern. After normalization, a pseudo difference δ in shapes occurs again at

the peaks of the standard pattern and the input pattern 4 as shown in Figure 21(d). Because

the pseudo difference in shapes always occurs regardless of the use of any normalization

method, it results in an actual shape change of the normal distribution and the recognition

performance of geometric distance becomes unpredictable.

Moreover, with the conventional algorithm described in Chapter 3, we need to calculate

the moment ratios (shape variation) in each combination of standard and input patterns if

Figure 21. Pseudo difference in shapes.
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we use multiple standard patterns and a single input pattern. Hence the processing overhead

increases when the number of standard patterns increases. If the calculation of pattern

recognition is separated into a standard pattern registration process and an input pattern

recognition process, then the moment ratios (shape variation) are calculated during the input

pattern recognition process. Therefore, the calculation time of the input pattern recognition

process increases in proportion to the number of standard patterns.

However, with the conventional algorithm described in Chapter 3, we need to evaluate

positive and negative reference patterns for each movement position of the normal distribu-

tion. Therefore, the computational memory overhead increases in proportion to the square

of the number of components of the standard and input patterns.

Because of these shortcomings, we propose a new algorithm that we will introduce in the

next section.
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Chapter 6

New Geometric Distance Algorithm

In this section, we use the same mathematical model as the conventional algorithm. We

propose a new algorithm that can realize the mathematical model and that can also improve

the above shortcomings. Specifically, we use a weighting vector that consists of a rate of

change of the moment ratio, and create two weighted pattern vectors by performing the

product-sum operation using the weighting vector and the standard pattern vector and the

product-sum operation using the weighting vector and the input pattern vector. Then, we use

the angle between these weighted pattern vectors as a new geometric distance. As a result, we

can remove the pseudo difference in shapes and stabilize the recognition performance of the

geometric distance. Also, we can reduce the processing overhead during the input pattern

recognition process and reduce the computational memory overhead for the positive and

negative reference pattern vectors. In the second half of this section, numerical experiments

are carried out using some geometric patterns with the “difference” and “wobble”, and the

proposed algorithm is confirmed to perform well.

6.1 Properties of moment ratio

With the conventional algorithm, the difference in shapes between standard and input pat-

terns is replaced by the shape change of the normal distribution, and the magnitude of this

shape change is numerically evaluated as a variable of the moment ratio. If variable ui is

a discrete value, moment ratio A of function f(ui) can be calculated using the following

equation.

A=

{∑
i

f(ui)

}
·
{∑

i

(ui)
4 · f(ui)

}
{∑

i

(ui)
2 · f(ui)

}2 − 3 (16)

Then, numerical experiments are carried out to study the relationship between moment ratio

A and the increment value δ of bar graphs seen in Figures 22–24. The upper side of graphs

(a)–(c) of Figures 22–24 shows the bar graphs each having m bars whose height is the same

as function value f(ui) of the normal distribution. Note that, as described in Section 3.1,

m = 11 and the bar graphs are created by using the area of −2.1σ≤ui≤2.1σ (σ = 1) of the

normal distribution. On bar graphs of Figures 22(a)–(c), only a single bar increases by value
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δ in the center, an intermediate position, and an end of the normal distribution. In Figures

23(a)–(c), two bars of the graph increase by the same value δ. Also, in Figures 24(a)–(c),

only one bar increases by value δ and another bar increases by value 0.2 at the same time.

Here, the moment ratio A is calculated using Eq. (16) for the bar graph whose shape is

changed as described above. The obtained relationship between values A and δ is shown by

graphs (i) to (ix) in the lower side of graphs (a)–(c) of Figures 22–24.

From graphs (i) to (iii) shown in Figures 22(a)–(c), it is discovered that A = 0.0 if δ = 0.0.

Also, the value of A changes approximately linearly when value of δ increases. In Figures

23(a)–(c), graphs (i)+(ii), (ii)+(iii), and (i)+(iii) are the results obtained by addition of

graphs (i), (ii) and (iii) respectively. From these graphs, it is discovered that graphs (iv), (v)

and (vi) are approximated to respective graphs (i)+(ii), (ii)+(iii), and (i)+(iii). Also, from

Figures 24(a)–(c), it is discovered that the gradients of graphs (vii), (viii) and (ix) are equal

to those of graphs (i), (ii) and (iii) respectively, and that the intercepts on the vertical axis

are equal to the change amounts of moment ratio A if δ = 0.2 on graphs (ii), (iii) and (i)

respectively.

From the above description, it is discovered that we can plot approximate graphs (iv)

to (ix) using graphs (i) to (iii) if we have already plotted graphs (i) to (iii) using Eq. (16)

in advance. In other words, if the rate of change gi (i = 1, 2, · · · ,m) of moment ratio A

is calculated in advance based on the gradients of graphs (i) to (iii), we can determine the

product of gi multiplied by δi for each bar graph even when multiple bar graphs change

by different values δi. Also, we can calculate an approximate value of moment ratio A by

summing gi · δi for all i. This property holds for all values of m and for any variance σ2 of

the normal distribution.
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Figure 22. Change of moment ratio A.

Figure 23. Change of moment ratio A.

Figure 24. Change of moment ratio A.
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Figure 25. Power spectra of standard voice and input voice.

6.2 Creation of pattern vectors

Figure 25 gives an example of the power spectrum of standard and input voices. Note that

the power spectrum is generated from the output of filter bank with the m frequency bands

(where, m is an odd number). If the i-th power spectrum values (where, i = 1, 2, · · · ,m)

of standard and input voices are soi and xoi respectively, we create an original standard

pattern vector so having soi components, and an original input pattern vector xo having

xoi components, and represent them as follows. In Eq. (17), the function of “T” means a

transposed matrix.

so = (so1 , so2, · · · , soi, · · · , som )T

xo = (xo1, xo2, · · · , xoi, · · · , xom)T (17)

Moreover, the component values soi and xoi are divided by the summation of soi and the

summation of xoi respectively, and normalized power spectra si and xi have been calculated.

Then, we create a standard pattern vector s having si components, and an input pattern

vector x having xi components, and represent them as follows.

s = (s1 , s2, · · · , si, · · · , sm )T

x = (x1, x2, · · · , xi, · · · , xm)T (18)

If we assign constants cs and cx to the summation of soi and the summation of xoi respectively

in Eq. (17), we can show the relationship between component values of Eqs. (17) and (18)

as follows.

si = soi/cs

xi = xoi/cx (i = 1, 2, 3, · · · ,m) (19)

Also, the component values soi and xoi are divided by the maximum value of soi and the max-

imum value of xoi respectively, and normalized power spectra s′i and x
′
i have been calculated.
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Figure 26. Creating weighting vector.

Then, we create a standard pattern vector s′ having s′i components, and an input pattern

vector x′ having x′i components, and represent them as follows.

s′ = (s′1 , s
′
2, · · · , s′i, · · · , s′m )T

x′ = (x′1, x
′
2, · · · , x′i, · · · , x′m)T (20)

If we assign constants c′s and c′x to the maximum value of soi and the maximum value of

xoi respectively in Eq. (17), we can show the relationship between component values of Eqs.

(17) and (20) as follows.

s′i = soi/c
′
s

x′i = xoi/c
′
x (i = 1, 2, 3, · · · ,m) (21)

Eqs. (17),(18) and (20) express the shapes of the power spectra of the standard voice and

input voice by the m pieces of component values of the pattern vector respectively. Note

that in this paper the width of each bar graph is 1/m for power spectrum shown in Figure

25. The area and the maximum values usually differ between so and xo shown in Figure 25.

Meanwhile, the area of s and x are the same and the maximum values of s′ and x′ are the

same.
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6.3 Creation of weighting vector

From the conventional algorithm, as shown in Figure 26(a), we created positive and negative

reference pattern vectors r
(+)
j and r

(−)
j having function values r

(+)
jk and r

(−)
jk of the normal

distribution as components for each movement position j, and represented them as follows.

r
(+)
j = (r

(+)
j1 , r

(+)
j2 , · · · , r

(+)
jk , · · · , r

(+)
jnj

)T

r
(−)
j = (r

(−)
j1 , r

(−)
j2 , · · · , r

(−)
jk , · · · , r

(−)
jnj

)T (22)

(j = 1, 2, 3, · · · ,m)

Figures 26(a) and (b) show the rate of change of A (gjk, where a change of δ occurs at the

k-th position, k = 1, 2, · · · , nj ) for a normal distribution and a single instance of δ. Note that

each bar graph has nj bars. The rate of change gjk is described by the following equation.

gjk = A/δ (k = 1, 2, 3, · · · , nj ) (23)

(j = 1, 2, 3, · · · ,m )

The gj(1+nj)/2, gjl and gjnj
correspond to the gradients of respective graphs shown in the lower

side of Figures 22(a)–(c). Next, in Figure 26(a), position k of the bar that has increased by

value δ is scanned from 1 to nj, and Eq. (23) is calculated. Figure 26(b) shows a bar graph

of the calculated value gjk, where δ = 0.2. Here, we create a weighting vector gj having gjk

components, and represent it as follows.

gj = (gj1, gj2, · · · , gjk, · · · , gjnj
)T (24)

(j = 1, 2, 3, · · · ,m)

Eq. (24) expresses the rate of change of moment ratio A by the m pieces of component values

of the vector. As r
(+)
j and r

(−)
j are equivalent vectors in the initial state, the weighting vector

calculated from r
(+)
j and the weighting vector calculated from r

(−)
j are equal to each other.

Thus, symbols (+) and (−) are omitted in Eq. (24). Also, the curve shown in Figure 26(b)

is the envelope curve of the gjk bar graph, that has been calculated assuming the value nj is

sufficiently large, and it is called “Weighting curve” in this paper. As shown in Figures 26(a)

and (b), the normal curve corresponds to the weighting curve, and the positive and negative

reference pattern vectors correspond to the weighting vector.
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6.4 Approximate calculation of moment ratio

With the conventional algorithm, a difference in shapes between standard pattern vector s

and input pattern vector x has been replaced by the shape changes of positive and negative

reference pattern vectors r
(+)
j and r

(−)
j using the following equation.

For i = 1, 2, 3, · · · ,m ;

when k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

• if xi > si, then r
(+)
jk ←− r

(+)
jk + |xi − si|

• if xi < si, then r
(−)
jk ←− r

(−)
jk + |xi − si| (25)

(j = 1, 2, 3, · · · ,m)

With the conventional algorithm, moment ratios of r
(+)
j and r

(−)
j , whose shapes have changed

according to Eq. (25), have been calculated using the following equation.

A
(+)
j =

{nj∑
k=1

r
(+)
jk

}
·
{nj∑
k=1

(Ljk)
4 · r(+)jk

}
{nj∑
k=1

(Ljk)
2 · r(+)jk

}2 − 3

A
(−)
j =

{nj∑
k=1

r
(−)
jk

}
·
{nj∑
k=1

(Ljk)
4 · r(−)jk

}
{nj∑
k=1

(Ljk)
2 · r(−)jk

}2 − 3 (26)

(j = 1, 2, 3, · · · ,m)

In Section 6.1, we determined the product value gjk · |xi − si| using the rate of change gjk

of moment ratio A and increment |xi − si|, and demonstrated that we can calculate the

approximate value of the moment ratio A by summing gjk · |xi−si| for all i. Thus, the values

A
(+)
j and A

(−)
j of Eq. (26) can be calculated approximately using the following equation.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

• for all i where xi > si

A
(+)
j ≈

m∑
i=1

gjk · |xi − si|

• for all i where xi < si

A
(−)
j ≈

m∑
i=1

gjk · |xi − si| (27)

(j = 1, 2, 3, · · · ,m)
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If value of k does not satisfy 1 ≤ k ≤ nj, we assume gjk = 0. Next, we consider the signs

and replace |xi − si| by (xi − si), and rewrite Eq. (27) as follows.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

• for all i where xi > si

A
(+)
j ≈ +

m∑
i=1

gjk · (xi − si)

• for all i where xi < si

A
(−)
j ≈ −

m∑
i=1

gjk · (xi − si) (28)

(j = 1, 2, 3, · · · ,m)

The approximate value of moment ratio can be calculated by product-sum operation using

Eq. (28), instead of calculating the moment ratio directly using Eq. (26).

6.5 Approximate calculation of shape variation

From the conventional algorithm, the difference in shapes between standard and input pat-

terns has been calculated using the following equation, and it has been defined as “Shape

variation Dj”.

Dj = A
(+)
j − A

(−)
j (j = 1, 2, 3, · · · ,m) (29)

Thus, the value Dj of Eq. (29) can be calculated approximately by substituting Eq. (28)

into Eq. (29) as follows.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

Dj ≈
m∑
i=1

gjk · (xi − si)

=
m∑
i=1

gjk · xi −
m∑
i=1

gjk · si (30)

(j = 1, 2, 3, · · · ,m)

From Eq. (30), it is discovered that the value Dj can be separated into the product-sum

operation using the component value gjk of weighting vector and the component value xi of

input pattern vector, and the product-sum operation using the component value gjk and the

component value si of standard pattern vector.
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6.6 Creation of weighted pattern vectors

We assign sg(j) and xg(j) to the two product-sum operations given by Eq. (30) respectively,

and represent them as follows.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

sg(j) =
m∑
i=1

gjk · si

xg(j) =
m∑
i=1

gjk · xi (31)

(j = 1, 2, 3, · · · ,m)

Then, we create a weighted standard pattern vector sg having sg(j) components, and a

weighted input pattern vector xg having xg(j) components, and represent them as follows.

sg = (sg(1) , sg(2), · · · , sg(j), · · · , sg(m) )
T

xg = (xg(1), xg(2), · · · , xg(j), · · · , xg(m))
T (32)

From Eqs. (30) and (31), the value Dj can be represented approximately as follows.

Dj ≈ xg(j) − sg(j) (j = 1, 2, 3, · · · ,m) (33)

From Eq. (33), it is discovered that the value Dj can be obtained by subtracting the com-

ponent value sg(j) of weighted standard pattern vector from the component value xg(j) of

weighted input pattern vector.

6.7 Approximate calculation of geometric distance

Using the conventional algorithm, we have calculated the difference in shapes between stan-

dard and input patterns using the following equation and we have defined it as the “Geometric

distance d”.

d =

√√√√ m∑
j=1

(Dj)2 (34)

Thus, the value d of Eq. (34) can be calculated approximately by substituting Eq. (33) into

Eq. (34) as follows. Note that d̃ is an approximate value of the geometric distance d.

d ≈
√√√√ m∑

j=1

(xg(j) − sg(j))2 = d̃ (35)

As described above, the value d̃ can be calculated by using Eqs. (18), (24), (31), and (35)

sequentially. From Eqs. (31) and (35), we can find that the value d̃ can be separated into
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Figure 27. Typical examples of standard and input patterns.

Figure 28. Calculations in geometric distances d and d̃.

the product-sum operation using the standard pattern vector and the product-sum operation

using the input pattern vector.

6.8 Numerical experiments of geometric distance d̃

To confirm the approximation accuracy of d̃ shown in Eq. (35), we performed numerical

experiments to calculate the geometric distances d1 to d6 defined by Eq. (14) and the ap-

proximate values d̃1 to d̃6 of the standard and input patterns shown in Figure 27. However,

as described in Section 3.9, we have developed Eqs. (22) and (24) by using values nj = 27

(σj = nj/(4.2m) = 0.58) that are fixed regardless of movement position j of the normal

distribution. Figures 28(a) and (b) show the results of experiments. We can find that values

d1 to d6 and d̃1 to d̃6 are almost identical.
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6.9 Creation of original and weighted pattern vectors

We assign sog(j) to the product-sum operation using the component value gjk of weighting

vector and the component value soi of original standard pattern vector given by Eq. (17), and

assign xog(j) to the product-sum operation using the component value gjk and the component

value xoi of original input pattern vector, and represent them as follows.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

sog(j) =
m∑
i=1

gjk · soi

xog(j) =
m∑
i=1

gjk · xoi (36)

(j = 1, 2, 3, · · · ,m)

Then, we create an original and weighted standard pattern vector sog having sog(j) compo-

nents, and an original and weighted input pattern vector xog having xog(j) components, and

represent them as follows:

sog = (sog(1) , sog(2),· · ·, sog(j),· · ·, sog(m) )
T

xog = (xog(1), xog(2),· · ·, xog(j),· · ·, xog(m))
T (37)

Eq. (37) shows the original and weighted pattern vectors that are created without normal-

ization of the power spectrum. Also, we assign s′g(j) to the product-sum operation using gjk

and s′i given by Eq. (20), and assign x′g(j) to the product-sum operation using gjk and x′i, and

represent them as follows.

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

s′g(j) =
m∑
i=1

gjk · s′i

x′g(j) =
m∑
i=1

gjk · x′i (38)

(j = 1, 2, 3, · · · ,m)

Then, we create a weighted standard pattern vector s′g having s′g(j) components, and a

weighted input pattern vector x′
g having x′g(j) components, and represent them as follows:

s′g = (s′g(1) , s
′
g(2), · · · , s′g(j), · · · , s′g(m) )

T

x′
g = (x′g(1), x

′
g(2), · · · , x′g(j), · · · , x′g(m))

T (39)

Eq. (39) shows the weighted pattern vectors that are created with normalization of power

spectrum using their maximum values.
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Figure 29. Relationship among weighted pattern vectors.

6.10 Relationship among weighted pattern vectors

Eq. (19) is substituted into Eq. (31), and the following equation is obtained using Eq. (36).

When k= i−j+(1+nj)/2 (where, 1≤k≤nj) ;

sg(j) =
m∑
i=1

gjk · (soi/cs)

= sog(j)/cs

xg(j) =
m∑
i=1

gjk · (xoi/cx)

= xog(j)/cx (40)

(j = 1, 2, 3, · · · ,m)

Similarly, Eq. (21) is substituted into Eq. (38), and the following equation is obtained using

Eq. (36).

s′g(j) = sog(j)/c
′
s

x′g(j)= xog(j)/c
′
x (j = 1, 2, 3, · · · ,m) (41)

Figure 29 is a schematic diagram of the m-th dimensional pattern space, and it shows six

vectors, those are sog and xog given by Eq. (37), sg and xg given by Eq. (32), and s′g

and x′
g given by Eq. (39). Note that all vectors begin at origin o. From Eq. (40), we

can understand that sg(j) and sog(j) are proportional with constant 1/cs, and that xg(j) and

xog(j) are proportional with constant 1/cx. Also, from Eq. (41), we can understand that

s′g(j) and sog(j) are proportional with constant 1/c′s, and that x′g(j) and xog(j) are proportional

with constant 1/c′x. Therefore, as shown in Figure 29, vectors s′g, sg and sog have the same

direction. Also, vectors x′
g, xg and xog have the same direction.
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6.11 Derivation of new geometric distance

From Eq. (35), it is clear that the geometric distance d̃ can be calculated as the Euclidean

distance between the weighted standard pattern vector sg and the weighted input pattern

vector xg. Thus, in Figure 29, we determine the distance between end points of sg and xg

as value d̃. Also, if we use Eq. (20) instead of Eq. (18) to determine the standard and

input pattern vectors, the geometric distance d̃′ can be calculated as the Euclidean distance

between s′g and x′
g. Thus, in Figure 29, we determine the distance between end points of s′g

and x′
g as value d̃′. From Figure 29, it is clear that values d̃ and d̃′ are changed according to

the normalizing method used. To improve on this, we can calculate an angle dA between sog

and xog shown in Figure 29 by the following equation and we define it as the new “Geometric

distance dA”.

cos(dA) =

m∑
j=1

sog(j) · xog(j)√√√√ m∑
j=1

(sog(j))
2

√√√√ m∑
j=1

(xog(j))
2

(42)

The geometric distance dA is not affected by the normalizing method used. If dA is used,

we can expect that the shortcoming of the pseudo difference in shapes between the standard

and input patterns due to normalization of power spectrum is improved and the recognition

performance becomes stable. Therefore, in order to confirm that dA matches the mathemati-

cal model, we perform numerical experiments in Section 6.14. Also, to confirm the stabilized

recognition performance of dA, we carry out the speech recognition tests in Chapter 7.

6.12 Sharing weighting vector

In Eq. (22), we have created the m pieces of positive and negative reference pattern vectors

(normal curves). Figure 30(a) gives an example of three normal curves among these curves.

Note that the center axis of the normal curve is drawn in component position j. In Eq.

(24), we have created the m weighting vectors (weighting curves) from Eq. (22) as shown in

Figure 26. The weighting curves created from every normal curve in Figure 30(a) are shown

in Figure 30(b). This paper uses a fixed bar width of each graph for both standard and input

patterns even when the variance value of the normal distribution has changed. In which case,

as shown in Figure 30(b), the maximum and minimum values of those weighting curves are

the same respectively, and those weighting curves match when expanded or compressed in

the direction of the horizontal axis. Thus, we thought to reduce the computational memory
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Figure 30. Sharing weighting vector.

overhead by sharing a single weighting vector instead of m vectors. Figure 30(c) shows the

weighting curve that has been created from the normal curve of variance σ2 = 1. Figure

30(c) also shows a bar graph having the same height as the function value of weighting curve.

Here, the right half of the weighting curve is used to create a bar graph for reducing the

computational memory overhead. And we create a weighting vector g having gk0 (where,

k0 = 1, 2, · · · , n) components whose values are the same as the height of bar graph, and

represent it as follows.

g = (g1, g2, · · · , gk0 , · · · , gn, 0, · · · , 0)T (43)

However, we assume that value n is sufficiently large when compared with the number of
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√
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Figure 31. Flowchart for calculating geometric distance dA.

components nj of Eq. (24). Also, if n < k0, we insert an appropriate number of values

gk0 = 0. Eq. (43) is the weighting vector that represents Eq. (24), and Eq. (43) consists of

both n components expressing the shape of weighting curve and an appropriate number of

component values 0.

As shown by the thick-line weighting curve of Figure 30(b), the difference between compo-

nent numbers i and j is (i− j) for the weighting vector gj given by Eq. (24). The difference

between the component number at the center and the component number at the rightmost

end position is (nj − 1)/2. On the other hand, as shown in Figure 30(c), the difference be-

tween component numbers k0 and 1 is (k0−1) and the difference between component numbers

n and 1 is (n − 1) for the weighting vector g given by Eq. (43). As described above, each

weighting curve of Figure 30(b) can be obtained by expanding or compressing the weighting

curve of Figure 30(c) in the direction of the horizontal axis. Therefore, if the component

number i of Figures 30(a) and (b) corresponds to k0 of Figure 30(c), the ratio of (i − j) to

(nj − 1)/2 is equal to the ratio of (k0 − 1) to (n− 1). 2(i− j)/(nj − 1) = (k0 − 1)/(n− 1) is

satisfied. If we consider that the weighting curve is bilaterally symmetric, we can calculate

value k0 using equation k0 = 1 + 2|i − j| · (n − 1)/(nj − 1). Note that k0 is rounded to an

integer value. If value n is sufficiently large, we can reduce the rounding error. In this way,

the values sog(j) and xog(j) can be calculated by using the following equation instead of Eq.

(36).
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Figure 32. Diagram for calculating product-sum value.

When k0 = 1 +
2(n− 1)

(nj − 1)
· |i− j| ;

sog(j) =
m∑
i=1

gk0 · soi

xog(j) =
m∑
i=1

gk0 · xoi (44)

(j = 1, 2, 3, · · · ,m)

Note that the component number k of Eq. (36) corresponds to k0 of Figure 30(c) or Eq. (44).

Using Eq. (44), we can calculate both sog(j) and xog(j) by simply creating a single g instead

of creating gj for each movement position j of the normal distribution. In this manner, the

computational memory of g is fixed to the value n in Eq. (43). While in Eq. (24), the

memory of gj increased in proportion to the square of the value m (in proportion to the

value nj×m). This paper assumes that n = 2101. As described above, we can reduce the

computational memory overhead by sharing a single weighting vector.
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(a) Conventional algorithm
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(b) New algorithm
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Figure 33. Flowcharts for conventional algorithm and new algorithm

during input pattern recognition process.

6.13 Procedure for calculating geometric distance dA

Figure 31 shows a flowchart for calculating the new geometric distance dA. From Figure

31, it is clear that we can calculate the value sog(j) in advance during the standard pattern

registration process. Moreover, Figures 32(a) and (b) show the flow of product-sum operations

given by Eq. (44). Note that the curve in the figure is the weighting curve shown in Figure

30(c), and symbol ▽ is a multiplier and symbol Σ is an adder. In Figure 32(a), by using

multiplier ▽, we calculate the product gk0 · soi using the component value gk0 of weighting

vector and the component value soi of original standard pattern vector. By using adder Σ,

we calculate the product-sum by addition of the product gk0·soi for i (where, i = 1, 2, · · · ,m),

and use it as the component value sog(j) of original and weighted standard pattern vector.

Similarly, in Figure 32(b), we calculate the original and weighted input pattern vector by

the product-sum operation using the original input pattern vector and the weighting vector.
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Figure 34. Calculation in geometric distance dA.

From Figures 32(a) and (b), it is discovered that the values sog(j) and xog(j) are calculated

from soi and xoi, respectively, by weighting of the weighting curve.

Figures 33(a) and (b) show a comparison between calculation amounts of the conventional

algorithm and the new algorithm during the input pattern recognition process. From the

conventional algorithm, if we calculate the geometric distances d betweenN standard patterns

and a single input pattern, we need to calculate Eqs. (25), (26), (29) and (34) sequentially

in each combination of standard and input patterns during the input pattern recognition

process. With the new algorithm, we can obtain the N parts of dA values by performing a

single time calculation of xog(j) and an N times of cosine similarity calculation during the

input pattern recognition process. From Figures 33(a) and (b), it is discovered that we can

reduce the processing overhead during the input pattern recognition process.

6.14 Numerical experiments of geometric distance dA

To confirm that the algorithm of geometric distance dA matches the mathematical model

that we have assumed in Chapter 1, we performed numerical experiments to calculate the

geometric distances dA of the standard and input patterns shown in Figure 27. Note that we

used the same nj value as Section 6.8. Also, note that we read geometric distances d̃1 to d̃6

in Figure 27 as new geometric distances dA1 to dA6 respectively.

Figures 34(a) and (b) show the results of experiments. From the figures, we can find that

dA4 < dA5 in Figure 34(b) although d̃4 = d̃5 in Figure 28(b). Here, m = 11 for the standard

and input patterns shown in Figure 27. From the experiments, we found that the larger value

was switched between dA4 and dA5 when value m increased. Also, the two graphs became
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close to position dA4 shown in Figure 34(b). However, the difference between dA4 and dA5 is

small because we use m = 23 in the experiments of vowel recognition performed in the next

section. From the numerical experiments described above, we can verify that the algorithm

of geometric distance dA matches the characteristics < 1> and < 2> of the mathematical

model.
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Chapter 7

Experiments of Vowel Recognition

To confirm that the geometric distance dA removes the pseudo difference in shapes and the

recognition performance becomes stable, we have performed the speech recognition experi-

ments using the geometric distance dA and actual voices. We used the same Japanese speech

and feature parameters as those used in the experiments with the conventional geometric

distance algorithm described in Section 4.2. Similar to the speech recognition experiments

of the conventional algorithm, we performed the experiments in the following two stages.

(Stage 1) First, we optimized the variance of the normal distribution using the “vowel in the

continuous speech” that is different from the voice data for the evaluation experiments.

(Stage 2) Next, we performed the evaluation experiments for the “clean vowel” and the “vowel

with noise” by using the optimized normal distribution.

7.1 Variance optimization of normal distribution

Similar to the speech recognition experiments of the conventional algorithm, we determine the

optimum value of the variance σ2 of the normal distribution (the optimum value of ω) using

the “vowel in the continuous speech”. This is equivalent to determining the optimum value

of the positive and negative reference pattern vectors given by Eq. (22) and to determining

the optimum value of the weighting vector gj given by Eq. (24). And we convert gj into

g as shown in Figures 30(b) and (c) and reduce the computational memory overhead. The

value ω is incremented by 0.2 from 3.0 to 23.0, and the recognition accuracy of the “vowel in

the continuous speech” is calculated. Figure 35 shows the relationship between the value ω

and the recognition accuracy obtained by the above process. From Figure 35, it is discovered

that the recognition accuracy becomes maximum if ω = 11.0. Thus, we determine ω = 11.0

as the optimum value and use it in the following evaluation experiments.

7.2 Evaluation experiments and their results

We have performed the evaluation experiments for the “clean vowel” and the “vowel with

noise” using the value ω = 11.0 determined in the previous section. Table 7 shows the result
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Table 7. Vowel recognition accuracy with new geometric distance dA. (ω = 11.0)

Babble Car Exhibition Subway Mean

Clean 99.97%

SNR 20 dB 99.93% 99.88% 99.22% 99.49% 99.63%

SNR 10 dB 98.80% 98.80% 88.77% 93.36% 94.93%

SNR 5 dB 92.34% 88.10% 67.96% 80.03% 82.11%

of vowel recognition using the new geometric distance dA. From Table 7, it is learned that the

recognition accuracy with dA is equalized regardless of noise type[21] when compared with the

conventional geometric distance d. In particular, the recognition accuracy of “Exhibition5dB”

has improved from 61.42% to 67.96%. Also, “mean” of 5 dB SNR has improved from 78.04%

to 82.11%. Thus we confirm that the geometric distance dA removes the pseudo difference

in shapes and the recognition performance becomes stable.

7.3 Verification of optimum value

Table 7 shows the result of recognition accuracy using the optimum value ω = 11.0 that we

have determined from Figure 35. Here, in order to verify that the value ω = 11.0 is truly

the optimum value, the value ω is incremented by 0.2 from 3.0 to 23.0 and the recognition

accuracy of the “clean vowel” and the “vowel with noise” is calculated. Figures 36 and 37

show the calculated relationship between the value ω and the recognition accuracy for the

input patterns of the “clean vowel” and the “vowel with 5 dB noise”, respectively. From

Figures 36 and 37, we can find that the recognition accuracy is almost maximum in the value

ω = 11.0.
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Figure 35. Vowel recognition accuracy and optimum value ω.

Figure 36. Vowel recognition accuracy with new geometric distance dA.

Figure 37. Vowel recognition accuracy with new geometric distance dA.
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Chapter 8

Conventional Optimization Method

Up to this stage, as shown in Figures 18, 19, 20, 35, 36 and 37, we have checked the relationship

between the variance of the normal distribution and the vowel recognition accuracy, using

the “clean long vowels having the variability with time of 12 weeks” and the “clean vowels in

the continuous speech”. From the results of vowel recognition experiments, we have found

that the recognition accuracy reaches 100% in a wide variance value range of the normal

distribution in the variability with time below 4 weeks if the “clean long vowels having the

variability with time” are used. In such a case, we have a problem determining the location of

the maximum recognition accuracy. This means that we will find it difficult to determine the

optimum variance value of the normal distribution by using the “clean long vowels produced

in a short period”. Meanwhile, if the “clean vowels in the continuous speech” are used, the

power spectrum of the vowel changes minimally even if the voices are produced in a short

period. Therefore, the location of the maximum recognition accuracy is most obvious. Owing

to the above reason, the conventional optimization method estimates the optimum variance

value of the normal distribution using the “clean vowels in the continuous speech”. And the

evaluation experiments of vowel recognition are performed for the “clean long vowels” and

the “long vowels with actual noise” using the estimated value.

However, there is the shortcoming in the above optimization method where the charac-

teristic <1> of the above mathematical model is ignored because only the clean vowels are

used. The optimization needs to be made to maximize the effect of the characteristics <1>

and <2> of the mathematical model simultaneously. In this case, the shortcoming seemed

to be able to be solved by optimization using the “long vowels with actual noise”. In other

words, optimization is achieved under conditions where the “wobble” caused by the actual

noise corresponds to the characteristic <1> of the mathematical model, and the “difference”

between the formants of the standard and input patterns corresponds to the characteristic

<2>. In this method, however, it is necessary to record all of actual noise in the daily life,

create the voice data of long vowels including the actual noise each time the speaker changes,

and calculate the optimum value using such voice data. This requires a huge processing

overhead, and practical problems remain. As an improvement, we propose a new method

that can determine the optimum value with a low processing overhead in the next section.
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This method simulates the actual noise in the daily life with a small amount of synthetic

noise generated by the computer. Note that the “long vowel” is abbreviated as the “vowel”

hereafter.
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Chapter 9

New Optimization Method

In this section, we have adopted a method to add “wobble” directly to the pattern (the log-

arithmic power spectrum) whose shape is compared in order to apply the geometric distance

to the general pattern recognition. Generally, in the study of speech recognition, the micro-

phone output signal of the actual noise equivalent to the SNR is added to the microphone

output signal of the clean vowel, and the voice data is created. Then, this voice data is

multiplied by the window function (the “Hamming window” in this research) to calculate

the logarithmic power spectrum. If the effect of the window function is considered, this is

approximately equivalent to the calculation of the logarithmic power spectrum after adding

the power spectrum of the actual noise equivalent to the SNR to the power spectrum of the

clean vowel. It is replaced by the direct addition of “wobble” caused by the actual noise to

the logarithmic power spectrum of the clean vowel. The proposed method uses weighted ran-

dom numbers generated by the computer instead of the “wobble” caused by the actual noise.

This means that the weighted random numbers generated by the computer are added to the

logarithmic power spectrum of the clean vowel and it is used as the input pattern. Also, the

logarithmic power spectrum of the clean vowel is used as the standard pattern. In this case,

both the characteristics <1> and <2> of the mathematical model are well considered. In

this section, we check the relationship between the variance of the normal distribution and

the vowel recognition accuracy, using both the standard and input patterns as created above

and the algorithm of the geometric distance dA defined in Eq. (42). Then, we determine

the optimum variance value of the normal distribution. In this section, we carry out the

optimization experiment using the same voice data as described in Section 4.1.

9.1 Difference pattern of actual noise

In order to determine the best weighted random numbers to be added instead of the “wob-

ble” caused by the actual noise, we check the “wobble” of the logarithmic power spectrum

caused by the actual noise. An example is shown at the left and center of Figure 38. They

are the logarithmic power spectrum arrays of the 23rd dimensional Mel filter bank output

(abbreviated as “logarithmic power spectrum” hereafter).[22] Note that the bar graph at the

left of Figure 38 shows the logarithmic power spectrum that is extracted from the voice data
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Figure 38. Subtraction of clean vowel from vowel with car 5dB.

Figure 39. Difference patterns of actual noises.

created by adding the microphone output signal of Car noise equivalent to the SNR of 5 dB

to the microphone output signal of the clean vowel /a/. Also, the bar graph at the center of

Figure 38 shows the logarithmic power spectrum that is extracted from the clean vowel /a/.

Then, the bar graph at the right of Figure 38 shows a difference pattern that is created by

subtracting the latter logarithmic power spectrum from the former logarithmic power spec-

trum. This difference pattern shows the “wobble” of the logarithmic power spectrum caused

by the actual noise. Furthermore, Figures 39(a)–(d) show the difference patterns which have

been calculated by the above method, using the 10th, 50th and 90th frames of the central

100 frames of the clean vowel /a/ produced for a period of 2 seconds, and using the actual

noises of Babble, Car, Exhibition and Subway. From Figure 39, we can understand that

the difference pattern of the actual noise changes randomly with time while maintaining a

constant shape.

9.2 Addition of weighted random numbers

The m-th dimensional logarithmic power spectrum of the clean vowel /a/ is shown at the

center of Figure 38, where m = 23. If the i-th logarithmic power spectrum values (where,

i=1, 2, · · · ,m) of a clean standard vowel and a clean input vowel are si and xi, respectively,
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Figure 40. 23rd dimensional noise patterns.

Table 8. Function ni of Noise 1 to Noise 6.

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Noise 6

ni = α1

ni = α2 i

ni = α3 (24 − i)

ni = α4 (13 − i)

ni = α4

ni = α4 (i − 11)

ni = α5 i

ni = α5 × 12

ni = α6 × 12

ni = α6 (24 − i)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 11)

(i = 12)

(13 ≤ i ≤ 23)

( 1 ≤ i ≤ 11)

(12 ≤ i ≤ 23)

( 1 ≤ i ≤ 12)

(13 ≤ i ≤ 23)

1

we create a standard pattern vector s having si components, and an input pattern vector x

having xi components, and represent them as follows. In Eq.(45), the function of “T” means

a transposed matrix.

s = ( s1, s2 , · · · , si, · · · , sm )T

x = (x1, x2, · · · , xi, · · · , xm)T (45)

Figure 40 shows six types ofm-th dimensional noise patterns as Noise 1 to Noise 6. They have

been generated as a typical example of difference patterns of the actual noise as explained

in Figures 39(a)–(d). Also, if the i-th value (i= 1, 2, · · · ,m) of the noise pattern shown in

Figure 40 is ni, Table 8 shows ni as the function of i. Note that values α1 to α6 are the

constants which are calculated by the experiment described in the next section. Here, we
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Figure 41. Addition of weighted random numbers to clean vowel.

create a noise pattern vector n having ni components, and represent it as follows.

n = (n1, n2, · · · , ni, · · · , nm)
T (46)

Next, if variable Rnd is random numbers uniformly distributed within the range of 0.0 to

1.0, as shown in the following equations, we assign soi to the component value si of standard

pattern vector, and assign xoi to the addition of the component value xi of input pattern

vector and the weighted random numbers ni ·Rnd.

soi = si

xoi = xi + ni ·Rnd (i = 1, 2, 3, · · · ,m) (47)

Then, as shown in Eq. (17), we create an original standard pattern vector so having soi

components, and an original input pattern vector xo having xoi components, and represent

them as follows.

so = ( so1, so2, · · · , soi, · · · , som )T

xo = (xo1, xo2, · · · , xoi, · · · , xom)T (48)

so is the original standard pattern vector which has been created from the logarithmic power

spectrum of clean standard vowel, and xo is the original input pattern vector which has been

created from the logarithmic power spectrum of clean input vowel, added by the weighted

random numbers generated by the computer. Figure 41 shows the shape of the second formula

of Eq. (47) using the noise pattern of Noise 2. The bar graph at the left of Figure 41 shows

the shape of input pattern vector x given by Eq. (45), and the bar graph at the right of

Figure 41 shows the shape of original input pattern vector xo given by Eq. (48).
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9.3 Calculation of component value ni of noise pattern vector

In Section 4.1, the microphone output signals of Babble, Car, Exhibition and Subway noise

were added to those of the clean vowel with the 20 dB, 10 dB and 5 dB SNR, and the voice

data was created. From these voice data, the logarithmic power spectrum was calculated, and

the input pattern was created. Then, the shapes were compared between the standard and

input patterns. On the other hand, in this section, as shown in Eq. (47), the input pattern

is created by the direct addition of the weighted random numbers ni ·Rnd to the logarithmic

power spectrum value xi of the clean vowel, and their shapes are compared. Therefore, we

need to calculate each component value ni of the noise pattern vector that is equivalent to

each SNR used in Section 4.1. In other words, in Figure 40 and on Table 8, we need to

calculate values α1 to α6 that are equivalent to the above SNR. The following explains their

calculation.

When the microphone output signal of the clean vowel is passed through the Mel fil-

ter bank with the m frequency bands, we assume that the power spectrum array Xi (i =

1, 2, · · · ,m) is obtained. If the reference value of power spectrum is X0, the logarithmic

power spectrum array xi (i=1, 2, · · · ,m) that corresponds to Xi can be calculated from the

first formula of the following equation. Also, if the component value ni (i= 1, 2, · · · ,m) of

noise pattern vector is added to this logarithmic power spectrum array xi (i= 1, 2, · · · ,m),

value xi+ni (i=1, 2, · · · ,m) is obtained. The relationship between the value xi+ni and its

corresponding power spectrum array Xi+Ni (i=1, 2, · · · ,m) can be represented as the second

formula of the following equation.

xi = 10 log10
Xi

X0

( ni > 0 )

xi + ni = 10 log10
Xi +Ni

X0

(i = 1, 2, 3, · · · ,m) (49)

Figure 42 shows the relationship between Xi and xi between Xi+Ni and xi+ni given by Eq.

(49) for the i-th frequency band of the filter bank. This section aims to calculate the value ni

that is equivalent to the SNR of 5 dB. The following equation can be obtained as an inverse

function of Eq. (49).

Xi = X0 · 10xi/10

Xi +Ni = X0 · 10(xi+ni)/10 (i = 1, 2, 3, · · · ,m) (50)

In Eq. (50), we can obtain the following equation by substituting the first formula into the
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Figure 42. Relationship between power spectrum and logarithmic power spectrum.

second formula.

Ni = X0 · 10xi/10 (10ni/10 − 1) (i = 1, 2, 3, · · · ,m) (51)

In Eq. (47), if the variable Rnd is random numbers uniformly distributed within the range

of 0.0 to 1.0, xoi=xi+ni · Rnd and, therefore, xoi uniformly distributes within the range of

xi to xi+ni. Figure 42 shows the probability density function of the flat shape which has

function value 1/ni in range [xi, xi+ni] on axis x. As shown in Figure 42, if we only focus on

the i-th frequency band of the filter bank, it is appropriate to express the weighted random

numbers ni · Rnd as the uniformly distributed random numbers ni · Rnd. The weighted

random numbers ni · Rnd means the multiplication of different weight ni to each of the i-

th frequency band. In this section, we use them in differently ways as necessary. Because

the gradient of logarithmic curve x=10 log10X/X0 is dx/dX=(10 log10e)/X, the probability

density function p(X) on axis X, which corresponds to the probability density function 1/ni

on axis x, is described by the following equation.

p(X) =
10 log10 e

niX
(i = 1, 2, 3, · · · ,m) (52)

Thus, Figure 42 shows the probability density function which has function value p(X) =

(10 log10 e)/(niX) in range [Xi, Xi+Ni] on axis X. From the following equation, we can

confirm that the total area of probability density function p(X) is equal to 1. Here, we can
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obtain the fifth formula of Eq. (53) by substituting Eq. (49) into the fourth formula of Eq.

(53). ∫ Xi+Ni

Xi

p(X) dX =
∫ Xi+Ni

Xi

10 log10 e

niX
dX

=
10 log10 e

ni

∫ Xi+Ni

Xi

1

X
dX

=
10 log10 e

ni

{
loge(Xi +Ni)− logeXi

}
(53)

=
1

ni

{
10 log10

Xi +Ni

X0

− 10 log10
Xi

X0

}
=

1

ni

{
(xi + ni)− xi

}
= 1 (i = 1, 2, 3, · · · ,m)

Where, if the uniformly distributed random numbers ni · Rnd are added to the logarithmic

power spectrum xi of the clean vowel on axis x, we assume that the power spectrum on axis

X, which corresponds to xi+ni ·Rnd, is X. Now, expected value Ei[X] of the power spectrum

X can be calculated by the following equation.

Ei[X] =
∫ Xi+Ni

Xi

X · p(X) dX

=
∫ Xi+Ni

Xi

X · 10 log10 e

niX
dX (54)

= (10 log10 e) · 1

ni

· Ni (i = 1, 2, 3, · · · ,m)

We can obtain the following equation by substituting Eq. (51) into Eq. (54).

Ei[X] = (10 log10 e) · X0 · 10xi/10 · 10ni/10 − 1

ni

(55)

(i = 1, 2, 3, · · · ,m)

On axis X of Figure 42, the average energy of power spectrum of the clean vowel is Xi,

and the average energy of power spectrum, which corresponds to the uniformly distributed

random numbers ni · Rnd, is Ei[X]−Xi. Therefore, the signal-to-noise ratio (SNR) of the

entire frequency band can be calculated by the following equation.

SNR = 10 log10

m∑
i=1

Xi

m∑
i=1

(Ei[X]−Xi)

= 10 log10

m∑
i=1

Xi

m∑
i=1

Ei[X]−
m∑
i=1

Xi

(56)
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We can obtain the following equation by substituting Eqs. (50) and (55) into Eq. (56).

SNR = 10 log10

X0

m∑
i=1

10xi/10

(10 log10 e) · X0

m∑
i=1

10xi/10 · 10ni/10 − 1

ni

−X0

m∑
i=1

10xi/10

= 10 log10

m∑
i=1

10xi/10 (57)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10ni/10 − 1

ni

−
m∑
i=1

10xi/10

}

Furthermore, we assign ψ(n1, n2, · · · , nm) to the right side of Eq. (57) that is subtracted by

the left side, and represent it as follows.

ψ(n1, n2, · · · , nm) = 10 log10

m∑
i=1

10xi/10 (58)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10ni/10 − 1

ni

−
m∑
i=1

10xi/10

}
− SNR

In Eq. (58), xi is the logarithmic power spectrum value of the clean vowel, and we can set

its value using the voice data. Therefore, Eq. (58) is the function of ni (i=1, 2, · · · ,m).

Next, we show that ψ(n1, n2, · · · , nm) decreases monotonically when each ni (i=1, 2, · · · ,m)

increases. For that purpose, we assign ϕ1(ni) to term (10ni/10 − 1)/ni of Eq. (58) as follows,

and we check its increase or decrease.

ϕ1(ni) =
10ni/10 − 1

ni

(i = 1, 2, 3, · · · ,m) (59)

Here, we can obtain the following equation by differentiating Eq. (59) by ni.

ϕ′
1(ni) =

(
10ni/10 − 1

ni

)′

=
(loge 10

1/10) ni 10
ni/10 − 10ni/10 + 1

n2
i

(60)

=
ϕ2(ni)

n2
i

(i = 1, 2, 3, · · · ,m)

Furthermore, we assign ϕ2(ni) to the numerator of Eq. (60) as follows, and we check its

positive or negative.

ϕ2(ni) = (loge 10
1/10) ni 10

ni/10 − 10ni/10 + 1 (61)

(i = 1, 2, 3, · · · ,m)
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Figure 43. Graph of function ψ(α2).

Table 9. Solution α2 of ψ(α2)=0 ( Noise 2 : ni = α2i ).

α2 /a/ /i/ /u/ /e/ /o/

SNR 5 dB 0.1740 0.1642 0.1769 0.1701 0.1843

SNR 3 dB 0.2484 0.2340 0.2519 0.2426 0.2623

SNR 1 dB 0.3421 0.3216 0.3457 0.3337 0.3595

For that purpose, we calculate Eq. (61) if ni=0 and its derived function as follows.

ϕ2( 0 ) = 0 (62)

ϕ′
2(ni) = (loge 10

1/10)2 ni 10
ni/10 > 0 ( ni > 0 ) (63)

(i = 1, 2, 3, · · · ,m)

From Eqs. (62) and (63), it is clear that ϕ2(ni)>0. Then, from Eq. (60), it is clear that

ϕ′
1(ni)> 0 and, therefore, Eq. (59) is a monotonically increasing function. From the above,

it is clear that the value of Eq. (58) decreases monotonically when each ni (i=1, 2, · · · ,m)

increases.

In this paper, each ni (i = 1, 2, · · · ,m) is related to each other by the parameter αk

(k= 1, 2, · · · , 6) as shown on Table 8. In the case of Noise 1 to Noise 6 shown on Table 8,

each ni increases monotonically when each αk increases and, therefore, the value of Eq. (58)

decreases monotonically. In particular, ni=α2i (i=1, 2, · · · ,m) for Noise 2, and Eq. (58) can

be rewritten as follows.

ψ(α2) = 10 log10

m∑
i=1

10xi/10 (64)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10α2i/10 − 1

α2i
−

m∑
i=1

10xi/10

}
− SNR

67



Figure 44. Addition of random noise to clean vowel.

Figure 43 shows a relational graph between α2 and ψ(α2) obtained through numerical analysis

of Eq. (64). Note that we assumed that SNR=5 in Eq. (64). Also, we have substituted

the mean value of each logarithmic power spectrum, calculated from the central 100 frames

of the clean vowel /a/, into xi (i = 1, 2, · · · ,m). As shown in Figure 43, Eq. (64) is a

monotonically decreasing function, and it is clear that we can uniquely determine a solution

α2 of ψ(α2)=0 through numerical analysis. As described above, we could obtain solution

α2=0.1740 of ψ(α2)=0 from Figure 43. Table 9 shows the values of α2 which are obtained

for each vowel and for each SNR when SNR=5, SNR=3 and SNR=1 and if the noise pattern

of Noise 2 and “01Clean” (shown in Section 4.1) of each vowel are used. “01Clean” is the

first “clean vowel” that was produced among 72 sounds in 12 weeks.

The above calculation procedure is summarized below. First, in Eq. (50), power spectra

Xi and Xi+Ni on axis X shown in Figure 42 are expressed by logarithmic power spectra

xi and xi+ni on axis x. Also, in Eq. (55), expected value Ei[X] of power spectrum X on

axis X, which corresponds to xi+ni · Rnd on axis x, is expressed by xi and ni. Then, we

calculate the SNR on axis X using Eq. (56), substitute Eqs. (50) and (55) into Eq. (56).

Therefore, the SNR is expressed by xi and ni in Eq. (57). We substitute the mean value of

the logarithmic power spectra of the clean vowel into xi. Now, Eq. (57) is an equation of m

variables with unknowns ni (i=1, 2, · · · ,m). In this paper, each ni (i=1, 2, · · · ,m) is related

by the parameter αk (k=1, 2, · · · , 6) as shown on Table 8. Therefore, Eq. (57) is rewritten

by Eq. (64). Eq. (64) is an equation of single variable with unknown α2. And we calculate

solution α2 and obtain value ni that is equivalent to the SNR of 5 dB.

By using the above calculation procedure, the value of each αk (k=1, 2, · · · , 6) is calculated

for the noise patterns of Noise 1 to Noise 6, and Table 9 of each noise pattern is obtained.

Then, the weighted random numbers ni · Rnd, which is equivalent to the SNR, is generated

by the computer. Figure 44 shows the process where the weighted random numbers ni ·Rnd
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(i=1, 2, · · · ,m) equivalent to the SNR of 5 dB are added to the logarithmic power spectrum

xi (i=1, 2, · · · ,m) of the clean vowel /a/, using Noise 4 and Eq. (47), and then the component

value xoi (i=1, 2, · · · ,m) of the original input pattern vector is created. It is clear that the

shape of the weighted random numbers, shown at the center of Figure 44, is similar to the

difference pattern of the actual noise shown in Figure 39.

Finally in this section, we discuss the relationship between the area (or energy) of the

weighted random numbers generated by the computer and that of the difference pattern

of actual noise. After calculating the average area of the weighted random numbers of 5

dB SNR and that of the difference pattern of 5 dB SNR, using the central 100 frames of

each vowel produced for a period of 2 seconds, we have found that the former value is 16.2%

greater than the latter value. We suppose that there are two causes for that as follows. First,

in the calculation of the weighted random numbers, we substituted the mean value of the

logarithmic power spectra, calculated from the central 100 frames of each vowel produced for

a period of 2 seconds, into Eq. (64), and obtained solution αk (k=1, 2, · · · , 6). These frames

are overlapped for the 25 msec frame width and 10 msec frame period. In the calculation

of the difference pattern, we calculated the SNR using the microphone output signal of the

entire interval of 2-second vowel. We suppose that those average areas are different because

the calculation intervals of SNR differ between them. Second, we obtained the logarithmic

power spectrum value xi (i=1, 2, · · · ,m) of the clean vowel using the Hamming window, and

substituted this value into Eq. (64) in order to obtain solution αk. Therefore, we suppose

that an effect of the Hamming window appears as described at the beginning of Chapter 9.

In Section 10.2, based on our experiments, we will discuss the estimation error of optimum

value caused by the above area difference.

9.4 Creation of original pattern vectors

Here, we use the αk (k=1, 2, · · · , 6) values obtained in the previous section, and create the

original standard pattern vector and original input pattern vector given by Eq. (48), by

applying the αk values to the same voice data as those used in Chapter 4. Note that the

original standard pattern vector is abbreviated as “the standard pattern”, and the original

input pattern vector is abbreviated as “the input pattern” hereafter. Table 10 shows the

type and the number of the 23rd dimensional logarithmic power spectrum that has been

used for the standard and input patterns in the optimization experiment. The logarithmic

power spectra, each consisting of 100 frames shown on the first row of Table 10, have been
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Table 10. Logarithmic power spectra for optimizing normal distribution.

/a/ /i/ /u/ /e/ /o/

01 Clean 100 100 100 100 100

Standard pattern 1 1 1 1 1

01 Clean with SNR 5dB random noise

{1} of Noise 1

Input pattern 100×50 100×50 100×50 100×50 100×50
01 Clean with SNR 5dB random noise

{2} of Noise 2

Input pattern 100×50 100×50 100×50 100×50 100×50

: :

... ... ... ... ...

01 Clean with SNR 5dB random noise

{6} of Noise 6

Input pattern 100×50 100×50 100×50 100×50 100×50

extracted from “01Clean” of each vowel. Then, as described in Section 3.10, the median is

determined from the above 100 frames and it is used as the standard pattern of each vowel.

The logarithmic power spectra, each consisting of one frame shown on the second row of

Table 10, are the standard patterns that have been determined for each vowel.

Also, the logarithmic power spectra, each consisting of 100×50 frames shown in {1} to {6}

of Table 10, have been created by adding the weighted random numbers to the logarithmic

power spectra, each consisting of 100 frames of the above “01Clean”, using Eq. (47) and the

noise patterns of Noise 1 to Noise 6 shown in Figure 40 when SNR=5. During this time, the

uniformly distributed random numbers Rnd are generated repeatedly and the logarithmic

power spectra, each consisting of 100×50 frames, are created. Then, the logarithmic power

spectra of these 6×100×50×5 frames are used as the input patterns.

As described above, in the optimization experiment, we create the standard pattern and

the input pattern by using the weighted random numbers generated by the computer and

five patterns of “clean vowel 01Clean”.

9.5 Variance optimization of normal distribution

We determine the optimum value of the variance σ2 of the normal distribution (the optimum

value of ω) using both the standard and input patterns created in the previous section and the

algorithm of the geometric distance dA shown in Eq. (42). Similar to the vowel recognition

experiments in Chapters 4 and 7, the value ω is incremented by 0.2 from 3.0 to 23.0, and
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Figure 45. Vowel recognition accuracy and optimum value ω.

the recognition accuracy of the input pattern is calculated by using 100×50×5-frame input

patterns shown in {1} to {6} of Table 10. Figure 45 shows the calculated relationship between

the value ω and the recognition accuracy by six thin lines, respectively. Also, these six curves

are averaged and the average recognition accuracy is shown by thick lines in Figure 45. From

Figure 45, it is discovered that the recognition accuracy curve of Noise 1 is higher than

each curve of Noise 2 to Noise 6 in the all ω value range. We suppose the cause as follows.

Within the geometric distance algorithm, the “wobble” caused by the random numbers is

replaced by the shape change of the reference pattern having the initial shape of the normal

distribution. During this time, the shape of the noise pattern of Noise 1 is flat (or uniform)

as shown in Figure 40 and, therefore, we suppose that the “wobble” is absorbed effectively.

Furthermore, from Figure 45, it is discovered that the peak of recognition accuracy is at

the same location for each of the Noise 1 to Noise 6 curves. We can see that the average

recognition accuracy of Noise 1 to Noise 6 becomes maximum if ω=10.6. Thus, we determine

ω=10.6 as the optimum value and use it in the following evaluation experiments. When

we have performed the optimization experiment using the input pattern, each consisting of

100×10 frames, instead of the input pattern, each consisting of 100×50 frames shown in {1}

to {6} of Table 10, we could obtain almost the same curves as the recognition accuracy curves

shown in Figure 45. The optimum value was ω=10.6. This shows that we can reduce the

processing overhead to obtain the optimum value.
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Chapter 10

Evaluation Experiments of Vowel Recognition

To check the effectiveness of optimization method described in the previous section, we have

performed the evaluation experiments for the “clean vowel” and the “vowel with actual noise”

using the value ω=10.6 determined in the previous section and the algorithm of the geometric

distance dA shown in Eq. (42). The value ω=11.0 is used in Section 7.1, but the value ω=10.6

is used for the evaluation experiments in this section. Except for this value, we have performed

the evaluation experiments of vowel recognition using the same voice data and the method

as those used in Chapter 7.

10.1 Evaluation experiments and their results

In the optimization experiment of the previous section, we determined the optimum value

(estimated value) of ω=10.6 by using only the “clean vowel 01Clean” that was produced

first among 72 sounds in 12 weeks as shown on Table 10. Similar to the vowel recognition

experiments in Chapter 7, in the evaluation experiments of this section, the median was

determined from 100 frames of the above “clean vowel 01Clean” and it was used as the

standard pattern of each vowel. On the other hand, the “clean vowel 02Clean to 72Clean”

produced in the 2nd to 72nd sounds were used as the input patterns. In addition, the actual

Babble, Car, Exhibition and Subway noises were added to these “clean vowel 02Clean to

72Clean” with the 20 dB, 10 dB and 5 dB SNR, and the input patterns were created.

Table 11 shows the result of evaluation experiments. As shown on Table 11, the average

recognition accuracy of the “vowel with actual noise of 5 dB SNR” is 80.28% in the evaluation

experiment where the optimum value (estimated value) of ω=10.6 is used.

Table 11. Vowel recognition accuracy with geometric distance dA. (ω = 10.6)

Babble Car Exhibition Subway Mean

Clean 99.98%

SNR 20 dB 99.92% 99.86% 99.22% 99.56% 99.64%

SNR 10 dB 98.52% 97.94% 88.16% 93.97% 94.65%

SNR 5 dB 91.68% 82.13% 66.85% 80.44% 80.28%
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Figure 46. Recognition accuracy of clean vowel.

Figure 47. Recognition accuracy of vowel with actual noise.

Figure 48. Vowel recognition accuracy and optimum value ω.
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10.2 Verification of optimum value

Table 11 shows the result of recognition accuracy using the optimum value (estimated value)

of ω=10.6 that we have determined from Figure 45. Here, in order to verify that the value

ω=10.6 is truly the optimum value, the value ω is incremented by 0.2 from 3.0 to 23.0 and the

recognition accuracy of the “clean vowel” and the “vowel with actual noise of 5 dB SNR” is

calculated. Figures 46 and 47 show the calculated relationship between the value ω and the

recognition accuracy for the input patterns of the “clean vowel” and the “vowel with Babble

5dB, Car 5dB, Exhibition 5dB, and Subway 5dB”, respectively. From Figures 46 and 47, we

can find that the recognition accuracy is almost maximum in the value ω=10.6.

Furthermore, the four curves of actual noise, shown in Figure 47, are averaged and this

average recognition accuracy is shown by a thick line in Figure 48. In the calculation of the

average recognition accuracy for Noise 1 to Noise 6 shown by thick lines in Figure 45, the

values of SNR=5, SNR=3 and SNR=1 are used respectively, and their results are shown by

three thin lines in Figure 48. Note that the average recognition accuracy curves of 5 dB SNR

shown by the thick lines in Figure 45, are the same as that shown by the thin line in Figure

48. In Figure 48, the recognition accuracy curves of the optimization experiments using the

“vowel with weighted random numbers” are shown by three thin lines, but the recognition

accuracy curve of the evaluation experiment using the “vowel with actual noise” is shown by

one thick line. From Figure 48, it is clear that the four curves of recognition accuracy have

the same features and that the locations of the maximum recognition accuracy almost match

each other. This means that we can estimate the optimum variance value of the normal

distribution, using the “vowel with weighted random numbers” instead of the “vowel with

actual noise”. From Figure 48, it is also clear that the weighted random numbers of 3 dB

SNR is equivalent to the actual noise of 5 dB SNR for the average recognition accuracy. We

suppose the cause as follows. Within the geometric distance algorithm, the “wobble” of input

pattern is replaced by the shape change of the reference pattern having the initial shape of

the normal distribution. During this time, the “wobble” caused by the random numbers is

more random than the actual noise and, therefore, we suppose that the “wobble” is absorbed

effectively.

At the end of Section 9.3, we described the difference between the area (or energy) of the

weighted random numbers of 5 dB SNR and that of the difference pattern of actual noise of

5 dB SNR. Next, we discuss this. In Figure 48, we can obtain the value ω=10.6 even when
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we use any of the recognition accuracy curves, shown by three thin lines, in the optimization

experiment. Now, on Table 9, the value α2 of 1 dB SNR is almost 2 times that of 5 dB SNR.

In other words, the area of noise pattern of 1 dB SNR is almost 2 times larger than that of

5 dB SNR case. This is similar to other αk values. When compared with this change, the

16.2% difference shown in Section 9.3 is small. They show that the difference between their

areas does not affect the estimation of optimum value.

From the average recognition accuracy curve of the “vowel with actual noise of 5 dB

SNR” shown by thick line in Figure 48, it is discovered that the recognition accuracy becomes

maximum if ω=11.0. It is discovered that the recognition accuracy is 80.28% if ω=10.6 and

the recognition accuracy is 82.11% if ω=11.0. The difference between them is 1.83% and it

is small. From the recognition accuracy curve of the “clean vowel” shown in Figure 46, it is

discovered that the recognition accuracy is 99.98% if ω=10.6 and the recognition accuracy is

99.97% if ω=11.0. The difference between them is small. This shows that we can determine

the optimum value of ω using the “vowel with weighted random numbers”.

In this paper, as shown in Figures 45 and 48, we have used the vowel recognition accuracy

as the objective function in order to estimate the optimum variance value. Meanwhile, we

used a statistic T of “Welch’s T -test” as the objective function and performed the optimization

experiment for bird vocalisations.[25] If we compare the two results, we find that the former

objective function curves and the latter objective function curve have the same features.
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Chapter 11

Conclusions and Future Work

We have proposed a new similarity scale that replaces the difference in shapes between the

standard and input patterns by the shape change of a normal distribution, and that numeri-

cally evaluates the magnitude of the shape change as a variable of the moment ratio. At this

time, if the number of bar graphs of the standard and input patterns is limited in the actual

application of pattern recognition, we have shown that we can avoid the reduced accuracy

by subdivision of bar graphs of positive and negative reference patterns. We have performed

the vowel recognition experiments and verified the effectiveness of the mathematical model

and the geometric distance algorithm.

Furthermore, we have used the weighting vector that consists of the rate of change of

the moment ratio, and created two weighted pattern vectors by performing the product-sum

operation using the weighting vector and the standard pattern vector and the product-sum

operation using the weighting vector and the input pattern vector. Then, we have proposed

a new algorithm that uses the angle between these weighted pattern vectors as the geometric

distance. At this time, we have evaluated the processing overhead and the computational

memory required for the new algorithm. Also, we have performed the vowel recognition

experiments, and confirmed that the recognition performance becomes stable.

Moreover, we have proposed a new optimization method of the geometric distance to de-

termine the optimum variance value of the normal distribution, using the weighted random

numbers generated by the computer and five patterns of vowels. At this time, we have per-

formed the vowel recognition experiments using the “vowel with weighted random numbers”

and the “vowel with actual noise”, respectively, and checked the relationship between the

variance of the normal distribution and the vowel recognition accuracy. The results have

shown that the curves of their vowel recognition accuracy have the same features and that

the locations of the maximum recognition accuracy almost match each other. This means

that we can estimate the optimum variance value of the normal distribution using the “vowel

with weighted random numbers” instead of the “vowel with actual noise”. Then, we have

used the estimated value obtained from the “vowel with weighted random numbers” and

performed the evaluation experiments for the “vowel with actual noise of 5 dB SNR”, and

verified the effectiveness of our proposal.

76



Finally, we describe future work. This paper describes the vowel recognition experiments

that we have carried out using only the vowels produced by one female speaker. We will

continue the vowel recognition experiments using various types of voice data and will verify

their effectiveness by evaluating the applicable range of mathematical model and algorithm.

Also, this paper uses the geometric distance for one-dimensional patterns. We extend the

concept of Geometric Distance so that it can be applied to two-dimensional patterns such as

voice prints and images.[23]

This paper shows that we have obtained the estimated value of ω=10.6 using each noise

pattern of Noise 1 to Noise 6. On the other hand, we have found that the true optimum

value is ω=11.0 in the evaluation experiments where we used four types of actual noises

of Babble, Car, Exhibition, and Subway. In order to reduce the difference between them,

we will perform the optimization experiments using more types of noise patterns and will

perform the evaluation experiments using more types of actual noises. We will compare the

results of those experiments, find out the type of noise pattern to be required at minimal

for optimization, and improve our optimization method so that we can determine a more

accurate estimation value and reduce the processing overhead by using less types of noise

patterns. We will apply the results of the algorithm proposed in this paper and the emotional

expression analysis of text[26, 27] to our project named Recognizing Human Emotion and

Creating Machine Emotion.[28, 29] Also, we will perform the optimization experiments using

the normal random numbers, instead of the uniformly distributed random numbers, and will

compare the results of these experiments.
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