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Abstract 

Gallium nitride (GaN) semiconductor has the great advantage in the application of high-

temperature and high-frequency power electronic devices owing to its unique properties, such 

as wide band-gap, high electron saturation velocity, high breakdown field and high electron 

conductivity of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructure. 

AlGaN/GaN heterojunction field-effect transistor (HFET) and GaN metal-oxide-semiconductor 

field-effect transistor (MOSFET) are the classic devices of GaN-based field-effect transistors 

(FETs), which can be applied to microwave amplifying devices for wireless communication, 

military radar and power conversion devices for motor inverter. Device isolation is one of the 

primary processes for the fabrication of GaN-based FETs, and mesa structure is often adopted 

for device isolation through dry etching. However, dry etching damages increases high surface 

leakage current of the mesa-isolated region, leading to a high off-state current and power loss 

of AlGaN/GaN HFET. For the mesa-isolated linear GaN MOSFET, field isolation is impossible 

because a parasitic MOSFET exists in the mesa-isolated region, which widens the effective 

channel width, resulting in an overestimated mobility. Hence, developing the device isolation 

processes for AlGaN/GaN HFETs, field isolation processes for GaN MOSFET, and evaluating 

the isolation effectiveness of these processes are essential for GaN-based FETs. 

In this thesis, evaluation technology of isolation effectiveness was investigated on the 

basic of fabrication processes and test methods for AlGaN/GaN HFET and GaN MOSFET. The 

effective O2 plasma treatment process was established, the oxidation mechanism was analyzed, 

and isolation effectiveness of AlGaN/GaN HFETs with O2 plasma treatment were characterized 

and evaluated. The boron field implantation for GaN MOSFET was developed, the elimination 

of the parasitic MOSFET in the isolation region was examined using electrical testing of several 

MOSFET structures, and the field isolation effectiveness of GaN MOSFET and the influence 

of implantation damage on device performance for different isolation structures were 

characterized and evaluated. The contents and conclusions of this thesis are as follows: 

In chapter 2, the basic fabrication processes, test methods and evaluation technology of 

isolation effectiveness for AlGaN/GaN HFET and GaN MOSFETs were studied. On the basis 

of the fabrication processes of GaN-based FETs, device performances were characterized 

through the current-voltage (I–V) and capacitance-voltage (C–V) measurements, and the 

processes isolation effectiveness was evaluated through the transmission line model (TLM) 

structure and special MOSFETs fabricated in the isolation regions. In the TLM structure, the 

regions between every two ohmic electrodes were formed by different isolation processes, and 

the processes isolation effectiveness were evaluated by sheet resistance measurements or I–V 

characteristics of these regions. The circular MOSFETs were fabricated in the isolation regions 

to examine the existence of a parasitic MOSFET by I–V characteristics. The circular and linear 

MOSFETs with same fabrication processes were fabricated, the effectiveness of isolation 
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processes was evaluated through comparing their transfer characteristics, and the effect of field 

implantation on device performance was investigated through calculating the field-effect 

electron mobility and the density of interface traps (Dit) at SiO2/GaN interface. 

In chapter 3, the isolation effectiveness and oxidation mechanism of O2 plasma treatment 

for AlGaN/GaN HFETs were studied. The process of O2 plasma treatment on the mesa-isolated 

region of AlGaN/GaN HFETs was adopted, the optimal condition was established by I–V 

measurement on TLM structure, the oxidation effectiveness and mechanism of the mesa etching 

surface were analyzed through photoluminescence (PL) spectrum and X-ray photoelectron 

spectroscopy (XPS), and AlGaN/GaN HFETs with O2 plasma treatment were fabricated and 

characterized. The I–V results of TLM structure indicated that the isolation current were 

strongly dependent on treatment temperature and the depth of etching damage. Treatment at 

300 °C was confirmed to be the optimal condition, under which isolation current was reduced 

by four orders of magnitude to 10−11 A and photovoltaic response was suppressed, and the 

breakdown voltage of the mesa-isolated region increased from 171.5 to 467.2 V. The PL 

spectrum analysis showed a decrease in the density of defects related to the yellow 

luminescence band and the occurrence of defects related to the blue luminescence band. XPS 

results showed that O2 plasma treatment can form high amounts of Ga2O3 than O2 gas treatment, 

and the defect of substitutional oxygen on the nitrogen site was probably formed. The ––V 

characteristics of AlGaN/GaN HFETs presented a high on/off drain current ratio of 1.73107. 

In chapter 4, the isolation effectiveness and influence of implantation damage on device 

performance for boron ion implantation process in GaN MOSFETs were studied. The process 

of boron field implantation was developed and improved for GaN MOSFETs, the elimination 

of parasitic MOSFETs was confirmed by the I–V characteristics of circular MOSFETs 

fabricated in the isolation regions, and isolation effectiveness of process was evaluated through 

the comparison of I–V characteristics between circular and linear device. The influence of 

implantation damage on device performance for different isolation structures were evaluated 

by the field-effect electron mobility and Dit according to I–V and C–V tests. The process of 

boron field implantation was altered and subsequently conducted after all the high-temperature 

processes, and implanted regions with high resistivity were achieved. The circular MOSFET 

fabricated in the isolation region presented an extremely low drain current of 710−8 mA/mm, 

demonstrating that the parasitic MOSFET in the isolation region was eliminated by boron field 

implantation. The off-state drain current of the linear MOSFET was reduced from 310−5 

mA/mm of mesa isolation to 610−7 mA/mm of boron field implantation, which was only one 

order of magnitude higher than the 710−8 mA/mm of the circular device. Field isolation for 

GaN MOSFETs succeeded. The calculation of the field-effect electron mobility showed that 

implanting did not deteriorate the mobility. The Dit results indicated that the isolation structure 

of both mesa and implantation did not influence the interface state density.  

Key words: Gallium nitride; device isolation; field isolation; AlGaN/GaN HFET; GaN 

MOSFET 
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Chapter 1 Introduction 

1.1 Material advantages of GaN 

Since the 1950s, after the initial replacement of vacuum tubes by solid-state devices, 

semiconductor power devices have taken a dominant role with silicon serving as the base 

material and started the Second Electronic Revolution. However, silicon reached its limitation 

of physic property after decades of development. Gallium nitride (GaN) as a member of wide 

band-gap semiconductors has been viewed as a promising candidate to fulfill the requirements 

of high-frequency, wide bandwidth, high-temperature, and high power in the applications of 

automobile, wireless communications, military radar. 

 

1.1.1 Material growth and properties 

It is widely believed that Johnson et al. [1] first reported on the synthesis of GaN via the 

reaction of metallic Ga and NH3 stream in 1932. For early GaN investigations of 1960s and 

1970s, only the growth of GaN powder [2-8] and single crystalline GaN needles [9-11] could 

be achieved, and the popular epitaxial film growth methods were reactive sputtering [12-16], 

chemical vapor deposition (CVD) [17-22] and reactive molecular beam epitaxy (RMBE) [23]. 

The first large area GaN was formed on sapphire substrate through the hydride vapor phase 

epitaxy (VPE) method reported by H.P. Maruska et al in 1969, using flowing HCl vapor over 

metallic Ga, causing the formation of GaCl which was transported downstream and reacted 

with NH3 [24]. However, GaN grown by this approach had large n-type background carrier 

concentrations, typically 1019 cm−3. The origin of centers that give rise to background n-type 

conductivity is conflicting between nitrogen vacancies [25, 26] and residual impurities such as 

O and Si [27, 28]. Due to the compensation of n-type background carrier, the p-type doping in 

GaN was difficult. Until 1989, H. Amano et al [29] initially realized p-type conduction with 

Mg-doped GaN by the low-energy electron-beam irradiation (LEEBI) treatment and the hole 

concentration was 21016 cm−3. In 1991, S. Nakamura et al [30, 31] succeeded in growing p-

type GaN using MOCVD. 

Another difficulty hindered the growth of high-quality GaN film was the lack of substrate 

material. Although so many years’ efforts were expended to grow GaN and develop devices, 

high-quality, large single crystalline and cost-effective GaN native substrate are now in progress. 

Crystals are generally grown from liquid phase or gas phase. The challenges to the liquid-phase 

growth of GaN bulk crystal are 1) the high vapor pressure of N on GaN for melt-grown crystal 

techniques [32-34], as shown in Figure 1.1; 2) the low solubility of N in the Ga metal melts at 
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reasonable temperatures and pressures for solution-grown techniques [35-37]. Accordingly, the 

vapor-phase growth is widely used for epitaxial film growth of GaN due to its inherently slow 

growth rate. 

 

 

Figure1. 1 Equilibrium N2 pressure over GaN(s) + Ga(l) system based on Ref. [32] and 

melting points TM from Ref. [34]. The dashed line was calculated for ideal gas [38] and the 

solid line was fitted with experimental data. 

 

The preference of substrates towards sapphire could be attributed to hexagonal symmetry, 

simple pre-growth cleaning, and the stability under high concentrations of ammonia and 

hydrogen at high-temperature. But good epitaxial films could not be obtained due to the lattice 

mismatch as well as thermal mismatch between the GaN and sapphire until the late 1980s. S. 

Yoshida et al [23, 39] reported the initially deposition of AlN buffer layer on the sapphire, H. 

Amano et al [40] and I. Akasaki et al [41] obtained high-quality GaN epitaxial films using AlN 

buffer layer via metalorganic chemical vapor deposition (MOCVD), S. Nakamura et al [42] 

first reported the GaN epitaxial film with an n-type background concentration of 41016 cm−3 
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using the GaN buffer layer. 6H-SiC and Si are also popular substrates: the former has a low 

lattice mismatch, good electrical conductivity and low film stress; the later has large wafer size, 

low cost and integration of Si devices. Nowadays, GaN wafers using sapphire, 6H-SiC and Si 

as substrate have been commercial available, which gives support to the wide range of 

electronic and optoelectronic applications. 

GaN semiconductor has great application potential in high-power and high-frequency 

electronic devices because of its excellent material properties, such as wide band-gap, high 

electron saturation velocity, high breakdown field and high electron conductivity of the two-

dimensional electron gas (2DEG) in AlGaN/GaN heterostructure. Table 1.1 summarized the 

material properties of GaN and other semiconductor. 

 

Table 1. 1 Material properties of GaN and other semiconductor [43]. 

Material properties Si GaAs 4H-SiC GaN GaN 

Crystal structure Diamond 
Zincblend

e 
Hexagon Wurtzite 

Zincblend

e 

Band-gap 

Eg (eV) 300 K 
1.12 1.42 3.23 3.39 3.2 

Breakdown field 

EB (MV/cm) 
0.25-0.8 0.3-0.9 3~5 5 5 

Electron mobility 

μn (cm2∙v−1∙s−1) 
1450 8000 ≤900 ≤1000 ≤1000 

Hole mobility 

μp (cm2∙v−1∙s−1) 
500 400 ≤120 ≤200 ≤350 

Saturation electron 

velocity vs (107cm/s) 
1 0.7 1.9 2.5 2.5 

Thermal 

conductivity 

χ (W∙cm−1∙K−1) 

1.56 0.46 3.7 1.3 1.3 

Intrinsic carrier 

concentration ni 

(cm−3) 300K 

9.65×109 2.1×106 8.2×10−9 
3.85×10−1

0 
1.04×10−8 

 

The band-gap of GaN (wurtzite structure) is 3.4 eV, which is three times larger than Si. 

The wide band-gap gives rise to a low intrinsic carrier concentration, which means GaN devices 
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need to operate at higher temperature to reach the same intrinsic carrier concentration of Si at 

room temperature, namely, GaN-based devices can work at harsh temperature environment. 

GaN-based devices can also work at high voltage because the breakdown field of GaN is much 

higher than Si and GaAs. The high electron velocity characteristics make GaN devices operate 

at high frequency as well. In addition, as a direct wide band-gap semiconductor, GaN plays an 

important role in optoelectronics devices, such as green and short wavelengths emitters and 

detectors.  

 

1.1.2 Crystal structure 

GaN as III-N based semiconductors exist under different crystal structures, wurtzite, 

zincblende and rock-salt [44]. In general, as ambient conditions, for III-N based semiconductors 

wurtzite structure is thermodynamically stable; zincblende structure is thermodynamically 

metastable, while rock-salt structure is formed only under high pressure. GaN films of wurtzite 

structure have been grown on c-orientation substrates which generally transfer their hexagonal 

symmetry to GaN, such as (0001) sapphire or (0001) 6H-SiC. GaN films of zincblende structure 

can be stabilized by epitaxial growth on substrates of cubic structure, such as (001) GaAs, (001) 

3C-SiC or (001) Si substrate. In this thesis, GaN samples involved in all the experiments are 

under wurtzite structure. 

Both of zincblende and wurtzite structure have tetrahedral coordination: each atom is 

surrounded by four equidistant nearest neighbors which lie at the corners of a regular 

tetrahedron. The main difference between these two close-packed structures is the layer 

stacking sequence: for the zincblende structure, the stacking sequence of (1111) layers is 

ABCABCABC... along the <111> direction; for the wurtzite structure, the stacking sequence 

of (0001) layers is ABABAB... along the <0001> direction. 

Figure1.2 shows the wurtzite and zincblende lattice structure of GaN. The zincblende 

lattice consists of two interpenetrating face-centered cubic (fcc) sub-lattice with the same 

dimension of lattice constant a=4.52Å [43]. One sub-lattice is gallium and the other is nitrogen, 

each sub-lattice are shifted against each other along the body diagonal of cubic cell by 1/4 of 

the width of the unit cell (Figure 1.2 (a)). The wurtzite structure has a hexagonal unit cell and 

consists of two interpenetrating hexagonal close-packed (hcp) sub-lattice, which constituted by 

gallium and nitrogen atoms respectively. The wurtzite structure is defined by two lattice 

constant, a=3.189Å, c=5.186Å, as shown in Figure 1.2 (b). Each sub-lattice are shifted against 

each other along the c-orientation (i.e. [0001] direction) by the distance u= (3/8) c=0.375c. 

 



Development of device isolation technologies for GaN-based field-effect transistors 

5 
 

 

 

Figure1. 2 Illustration of (a) zincblende lattice and (b) Gallium-face wurtzite lattice of GaN. 

 

1.1.3 Polarization effects and 2DEG 

The most unique feature of GaN-based semiconductor is the formation of high density of 

2DEG in a quantum well along a heterojunction. The heterojunctions are commonly achieved 

by the use of alloys, and GaN is commonly alloyed with AlN to form AlGaN. The band-gap 

and resistivity of AlxGa1-xN increase as a function of the Al mole fraction, while the carrier 

concentration and hall mobility decrease [45]. As shown in Figure 1.3, the band-gap of AlGaN 

is wider than that of GaN, the carrier accumulation would occur at the interface of AlGaN/GaN 

heterostructure. 
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Figure1. 3 Band diagram of (a) seperating AlGaN and GaN; (b) the AlGaN/GaN 

heterostructure. 

 

Unlike the 2DEG formation of AlGaAs/GaAs heterostructure, in which the electrons are 

mainly provided by the dopants in AlGaAs and GaAs. The high density of 2DEG in 

AlGaN/GaN heterojunction is induced by polarization effects. This sheet density of 2DEG in 

AlGaN/GaN is up to 11013 cm−2 without intentional doping. The polarization effects cause 

extremely strong electric field within the heterojunction, which would modulate the band 

structure and make the quantum well of GaN side deep and narrow, and this is benefit to attract 

and accumulate free electrons into the well. 

Group III-N based semiconductor exist stronger spontaneous polarization and 

piezoelectric polarization comparing with other group III–V based semiconductor. Zincblende 



Development of device isolation technologies for GaN-based field-effect transistors 

7 
 

group III–V compounds present no spontaneous polarization because lattice structure symmetry 

counteracts the polarization of covalent bonding. While wurtzite group III–V compounds 

present a spontaneous polarization along the c-axis direction. Both of structures present 

piezoelectric polarization. At an abrupt interface of a top/bottom layer heterostructure, the 

changes of polarization field within a bilayer would induce a sheet charge density σ defined by  

BottomTop PP    (1.1) 

where P is polarization intensity [46]. If this sheet charge density is positive (+σ), free electrons 

will compensate this charge and form a 2DEG. If the sheet charge density is negative (−σ), 

holes would accumulate.  

In general, Ga-face polarity is obtained in smooth morphology GaN films grown by 

MOCVD and N-face polarity is obtained in high-quality GaN films grown by molecular beam 

epitaxy (MBE). And the polarity of Ga-face wurtzite GaN is opposite to N-face wurtzite GaN, 

which would alter the sheet charge density’s properties of positive or negative. Therefore, for 

Ga-face AlGaN on top of GaN heterostructure grown pseudo orphic, as shown in Figure 1.4, σ 

is positive and determined by 

  GaNSPAlGaNPEAlGaNSPBottomTop PPPPP ,,,    (1.2) 

where PSP and PPE is intensity of spontaneous polarization and piezoelectric polarization, 

respectively. 

 

 

Figure1. 4 Scheme of sheet charge density, polarization directions and conduction band 

diagram of Ga-face AlGaN/GaN heterostructures. 
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1.2 Overview of GaN-based field-effect transistors 

GaN-based power transistors can be generally divided into two categories: one is linear 

device for power amplification at high frequencies such as AlGaN/GaN heterojunction field-

effect transistor (HFET); the other is switching power device for electricity conversion such as 

GaN metal-oxide-semiconductor field-effect transistor (MOSFET). This thesis mainly takes 

aim at AlGaN/GaN HFET and GaN MOSFET. After more than 20 year’s efforts, remarkable 

progress in development of GaN-based field-effect transistors (FETs) has been achieved. 

 

1. 2. 1 AlGaN/GaN HFET 

The AlGaN/GaN HFET is based on AlGaN/GaN heterostructure. The field-effect 

transistor formed on the AlGaN/GaN heterostructure and using 2DEG as the channel is called 

AlGaN/GaN high electron mobility transistors (HEMTs). The mobility of AlGaN/GaN HEMTs 

is enhanced due to the high density of 2DEG, and up to 2000 cm2∙v−1∙s−1 [47]. AlGaN/GaN 

HEMT with impressive tradeoff between specific on-resistance and breakdown voltage is 

regarded as one of the prospective candidates for the next generation of microwave power 

devices. 

In 1993, M. A. Khan et al fabricated the first GaN metal semiconductor field-effect 

transistor (MESFET) with a gate length of 4 μm and a maximum transconductance of 23 

mS/mm at gate voltage of -1 V [48]. Subsequently, they reported the first fabrication of HEMT 

based on AlGaN/GaN heterojunction with a transconductance of 28 mS/mm at 300 K [49]. By 

means of a new ohmic contact using Ti/Al reported by M.E. Lin et al [50], several kinds of 

device structures were proposed. A. Ozgur et al fabricated GaN modulation-doped FETs 

(MODFETs) with a transconductance of 120 mS/mm and a 300 mA/mm current at gate bias of 

3 V [51]. M.A. Khan et al fabricated doped-channel HFETs (DC-HFETs) with a gate length of 

0.25 μm and obtained a cutoff frequency of 70.8 GHz [52]. In this period, the major obstacle to 

device improvement was poor crystal quality and poor thermal environment. Not until high-

quality GaN films epitaxially grown on SiC substrate succeeded did the device fabrication 

technology for GaN-based FET start being mature. Y. F. Wu et al reported the first radio 

frequency (RF) power performance, which was a power density of 1.1 W/mm at 2 GHz with a 

power added efficiency (PAE) of 18.6% for 1 μm gate-length GaN MODFET [53].  

Two important techniques had driven the progress in GaN-based power performance: first 

was the introduction of a SiN passivation layer [54], which had an effect on suppression of the 

current collapse and improving the output power density [55]; second was the adoption of field-
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plate structures [56], which could both increase the breakdown voltage and reduce the current 

collapse effect, improving the power performance. In 2004, Y. F. Wu et al reported a continuous 

wave output power density of 32.2 W/mm and PAE of 54.8% at 4 GHz at gate bias of 120 V 

[57]. In 2008, Moon et al reported GaN HEMT with n+ source ledges was fabricated and a PAE 

of 55% at 5 W/mm at 33 and 36 GHz was achieved [58]. To date, multiple companies announce 

commercial product of GaN HEMT devices with outstanding performance, including TriQuint, 

Cree, RFMD, Eudyna, and so on [59]. 

However, some critical issues still restrain the inherent high performance of AlGaN/GaN 

HFETs for practical application. One of these issues is the large leakage current along the 

isolation region, which causes off-state power loss, additional noise, and reliability problems. 

An effective electrical isolation around the active area is thus essential to achieve low off-state 

drain current.  

 

1. 2. 2 GaN MOSFET 

The breakdown characteristics of AlGaN/GaN HEMTs were limited by the large leakage 

current of Schottky gate. To reduce the gate leakage current and improve the breakdown voltage, 

F. Ren et al reported the first MOS gate using a Ga2O3 (Gd2O3) film [60]. M. A. Khan et al 

reported a SiO2/AlGaN/GaN MOS-HFET and the gate leakage current reduced by six orders of 

magnitude than AlGaN/GaN HFET [61], and low gate leakage current was beneficial to 

improve low-frequency noise [62]. P. D. Ye et al reported atomic-layer-deposited (ALD) Al2O3 

as the gate oxide for GaN MOS-HFET [63]. N.-Q. Zhang et al reported high voltage GaN MOS-

HFET with an on-resistance of 1.7 mΩ∙cm2 and breakdown voltage of 1.3 kV [64]. 

Another critical issue for GaN-based FETs is normally-on operation. For power operation, 

normally-off operation is necessary to achieve safe operation and low power consumption. Y. 

Cai et al reported enhancement mode (E-mode) AlGaN/GaN HEMT with a threshold voltage 

of 0.9 V using fluoride-based plasma treatment on the gate region [65]. Some groups reported 

a recessed-gate structure forming by the selective reduction of 2DEG layer only under gate 

metal in AlGaN/GaN HEMT [66, 67]. The resistance from gate to channel was reduced by this 

structure and the threshold voltage could be controlled by the recess depth. Combining the 

advantages of MOS channel with recessed-gate, a recessed MOS-gate AlGaN/GaN HFET was 

proposed, previously called hybrid MOS-HEMT or MOS Channel-HEMT (MOSC-HEMT) 

[47]. The 2DEG layer under the gate region is completely removed and the channel is controlled 

by the MOS gate, this device called as GaN MOSFET. T. Oka et al reported an AlGaN/GaN 

MOSFET with a threshold voltage of 5.2 V and a maximum field-effect mobility of 120 
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cm2∙v−1∙s−1 using SiN film [68]. H. Kambayashi et al reported normally-off AlGaN/GaN 

MOSFET with the threshold voltage of 3.7 V [69]. K.-S. Im et al reported AlGaN/GaN 

MOSFET with an Al2O3 gate oxide and a maximum field-effect mobility of 225 cm2∙v−1∙s−1 

[70]. 

GaN MOSFET have potential use for power integrated circuits (ICs) owing to its lateral 

structure. Not only device isolation but also field isolation is necessary for development of GaN 

MOSFET power ICs. However, little work of device isolation techniques has been performed. 

Thus, as one of key challenges, device isolation is necessary for GaN-based FETs. 

 

1. 3 Significance of device isolation 

Device isolation, meaning electrical isolation between devices, is an ability of technology 

to make each device operate independently and get rid of the influence of proximity devices. 

Device isolation is one of the primary process steps and significantly important for the high-

voltage operation of GaN-based FET and for GaN ICs. In silicon IC technologies, three most 

commonly adopted isolation methods are junction isolation, local oxidation of silicon (LOCOS), 

and trench isolation [71]. 

Nevertheless, these methods are difficult to be adopted for GaN MOSFETs using the recent 

GaN technologies. The native oxide forming by thermal oxidation can achieve thick oxide on 

silicon, but for now it is not available to natively grow thick gallium oxide (Ga2O3) on GaN by 

thermal oxidation. The largest thickness of silicon oxide (SiO2) forming by chemical vapor 

deposition (CVD) is usually limited, because the oxide film is easy to crack when thickness 

becomes large due to different thermal expansion coefficients between GaN and SiO2. 

Moreover, it is difficult to obtain highly-doped p-GaN layer by selective ion implantation. For 

the reasons above, GaN MOSFETs are still developed on i-GaN or p-GaN layer without any 

field isolation structure. 

 

1. 3. 1 Device isolation of AlGaN/GaN HFET 

Currently, mesa isolation as the simplest technique is widely adopted for AlGaN/GaN 

HFETs through dry etching to remove the 2DEG layer around active region [72, 73]. However, 

the etching damage was introduced due to the plasma bombardment of the mesa surface during 

dry etching process, particularly nitrogen vacancy, which acts as donor-like defect and leads to 

high surface leakage current. The large leakage current causes off-state power loss, additional 

noise, and reliability problems. The mesa structure is commonly formed by Cl2-based dry 
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etching process (Figure 1.5a), and the gas sources are Cl2, SiCl4, BCl3/Cl2, and so on [74-76]. 

To reduce the surface leakage current on the mesa-isolated region, dielectrics filling like Si3N4, 

SiO2, and Sc2O3 were used [77-79]. Some groups employed surface treatment such as N2/H2 

treatment, UV ozone, and O2 plasma to eliminate etching damage and reduce leakage current 

[78, 80]. The fabrication process steps of dielectrics deposition and lithography are added for 

these two methods. 

 

  

Figure1. 5 Schematic cross-section of (a) mesa structure and (b) ion implantation in 

AlGaN/GaN heterojunction. 

 

For compound semiconductors, ion implantation, in addition to forming doped region, can 

also achieve device isolation through producing deep-level traps or recombination centers to 

form the high resistivity region. Implantation isolation offers the advantage of maintaining 

planar device morphology. Several ion species have been employed in GaN material or 

AlGaN/GaN HFETs, such as H+, He+, N+, P+/He+, Zn+, O+, Fe+ ions [81-88]. As shown in Figure 

1.5b, ion implantation is usually used by eliminating the 2DEG in AlGaN/GaN heterojunction. 
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1. 3. 2 Field isolation of MOSFET 

The isolation technologies in the Si MOSFET ICs is different from ordinary FETs, because 

a reverse channel appears beneath an field oxide since that an interconnection wire on the top 

of the field oxide can probably behave as a parasitic MOSFET-like device, as shown in Figure 

1.6a. In order to prevent the formation of the reverse channel, field oxidation and field 

implantation (Figure 1.6b) are normally used to increase the threshold voltage according to  

  B

ox

Bf

msT
C

QQ
V  2


    (1.3) 

The field region can be non-conductive even under high voltage and field isolation succeeds. 

Hence, field isolation is also indispensable for GaN MOSFET ICs. 

 

 

Figure1. 6 Schematic of (a) the parasitic MOSFET-like device in Si MOSFET ICs [89]; (b) 

field implantation and LOCOS isolation [71]. 

 

Similar to AlGaN/GaN HFET, the mesa structure is also simply adopted in many reports 

to achieve device isolation for the GaN MOSFETs. Unfortunately, in our previous work, we 

have found a phenomenon of parallel channel in a long-channel linear MOSFET (Figure 1.7a) 

if only mesa isolation was adopted. As shown in Figure 1.8, an overestimated maximum 
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mobility and off-state drain current of the linear device was about 192 cm2V−1s−1 and 10−3 

mA/mm, while for a long-channel circular device (Figure 1.7b) with the same recess and mesa 

condition it was about 150 cm2V−1s−1 and 10−8 mA/mm, respectively. Besides this mobility 

discrepancy, two-step drain current and mobility were also appeared in the gate voltage range 

of around -4 V. The reason is considered that, a parasitic device could appear on the isolation 

region of a linear GaN MOSFET if a MOS-like structure is formed. Because the etching bias 

of the mesa process was higher than that of the recess process, leading to a greater plasma-

induced damage on etching surface, and thus a negatively-shifted threshold voltage and 

relatively low mobility. As a result, the actual channel width is larger than the designed width 

and the field-effect mobility calculated from the transfer characteristics with the designed 

channel width will be overestimated. Therefore, it is necessary to develop effective field 

isolation methods for GaN MOSFETs and integrated circuits based on GaN MOSFETs in the 

future. 
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Figure1. 7 Schematic of (a) a long-channel linear and (b) a long-channel circular GaN 

MOSFET on AlGaN/GaN heterostructure. 

 

  

Figure1. 8 Transfer characteristics and field-effect electron mobility of a circular and a linear 

MOSFET. Both of devices were in the same recess condition and with only mesa isolation. 
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1. 4 Motivation and objectives 

1. Motivation 

For AlGaN/GaN HFET, the large leakage current of Schottky gate and current collapse 

effect have been attractive for a long time, and lots of investigations were reported. However, 

several work was focused on the leakage current caused by mesa etching damage, For example, 

dielectrics filling and surface treatment have been employed to eliminate etching damage and 

reduce leakage current. In these processes, O2 plasma treatment is relatively easy and feasible 

because dielectrics deposition or lithography step is not needed and O2 plasma can be generated 

by a plasma-enhanced chemical vapor deposition (PECVD) system. The oxidation mechanism 

of O2 plasma treatment is not clear yet. Therefore, we studied the influence of O2 plasma 

treatment on the mesa-isolated region of AlGaN/GaN HFETs by using the PECVD system, an 

effective treatment condition was established, and oxidation mechanism of O2 plasma treatment 

were analyzed. Finally, AlGaN/GaN HFETs were fabricated with O2 plasma treatment on the 

isolation region and characterized thereafter. 

For GaN MOSFET, an ineffective isolation method like mesa structure would cause a 

parasitic MOSFET in the isolation region of linear device. Therefore, not only device isolation 

but also field isolation should be considered for GaN MOSFET. Ion implantation is a good 

option as device isolation method for compound semiconductor. However, the influence of 

thermal stability caused by annealing processes should also be considered. Therefore, the boron 

ion implantation for GaN MOSFET was used to prevent the formation of parasitic MOSFET in 

the isolation region. Circular and linear MOSFET was fabricated and compared to evaluate the 

isolation effectiveness. Moreover, the process sequences of annealing processes and 

implantation were altered to improve the resistivity of implanted-region. 

2. Objectives 

This thesis investigates the device isolation technologies for GaN-based FETs to overcome 

the disadvantages of mesa isolation. For AlGaN/GaN HFET, a process of O2 plasma was 

employed on the mesa-isolated region to eliminate dry etching damage and reduce the leakage 

current; an effective treatment condition was established; oxidation mechanism of GaN surface 

treated by O2 plasma were analyzed; the isolation effectiveness of AlGaN/GaN HFET with O2 

plasma treatment was evaluated. For GaN MOSFET, a process of boron ion implantation was 

adopted to prevent the formation of parasitic MOSFET in the isolation region and achieve field 

isolation; the implantation profile of boron ions and the sheet resistance of implanted region 

were described; the processes of annealing and ion implantation were improved; Circular and 
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linear MOSFETs were fabricated and characterized to evaluate the isolation effectiveness. 

 

1. 5 Outline of dissertation 

This thesis is divided into five parts. 

In chapter 1, the advantages of GaN material and GaN-based device and the significance 

of device isolation and field isolation were introduced. 

In chapter 2, the basic structure and fabrication processes, test methods and evaluation 

technology for AlGaN/GaN HFET and GaN MOSFETs were described in details. The basic 

fabrication processes included cleaning, mesa etching, ohmic contact, gate contact, recess 

etching (for GaN MOSFET), and gate oxide deposition (for GaN MOSFET). The current-

voltage (I–V) and capacitance-voltage (C–V) measurements were conducted for AlGaN/GaN 

HFET and GaN MOSFETs and the transmission line model (TLM) and MOSFET structures 

were used to evaluate the isolation effectiveness. Circular and linear GaN MOSFETs were 

fabricated to examine the existence of a parasitic MOSFET-like device and evaluate the 

effectiveness of the isolation process, I–V and C–V characteristics were measured and the field-

effect electron mobility could be calculated by a method of gate capacitance-transconductance 

and interface state density could be calculated using oxide capacitance and I–V characteristics. 

In chapter 3, the influence of O2 plasma treatment on the mesa-isolated region of 

AlGaN/GaN HFETs was studied. The effective condition was established by I–V characteristics, 

and the I–V results indicated that isolation current were strongly dependent on treatment 

temperature. The defect levels and chemical properties of the treated GaN surface were 

characterized through photoluminescence (PL) spectrum and X-ray photoelectron spectroscopy 

(XPS). AlGaN/GaN HFETs were fabricated with O2 plasma treatment and characterized. 

In chapter 4, GaN MOSFETs using boron ion implantation as field isolation process were 

fabricated and the effectiveness of boron field implantation was evaluated. The process of boron 

field implantation was developed and improved for GaN MOSFETs, the elimination of parasitic 

MOSFETs was confirmed by the I–V characteristics of circular MOSFETs fabricated in the 

isolation regions, and the isolation effectiveness of process was evaluated through the 

comparison of I–V characteristics between circular and linear device. The influence of 

implantation damage on device performance for different isolation structures were evaluated 

by the calculation of the field-effect electron mobility and the density of interface traps (Dit) 

according to I–V and C–V tests.  

In chapter 5, the results are summarized and the future work is proposed.  
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Chapter 2 Fabrication process, test methods and evaluation technology of 

GaN-based FET 

2. 1 AlGaN/GaN HFET 

The ability of the generation of 2DEG layer by heterostructure is the most noteworthy 

advantage which distinguished GaN from other semiconductors. The AlGaN/GaN HFET is 

based on AlGaN/GaN heterostructure and used the 2DEG layer as a channel.  

As mentioned above, the success of GaN epitaxial process is attributed to the viability of 

heteroepitaxy. There are three substrates that have been utilized to achieve commercial success 

with heteroepitaxial GaN-based devices: sapphire, SiC and Si. Table 2.1 compares the 

properties of sapphire, SiC, Si, and GaN. 

 

Table 2. 1 The properties of substrate materials, sapphire, SiC, Si, and GaN. 

Properties Sapphire 6H-SiC Si GaN 

Mismatch of lattice (%) 14 3.5 17 – 

Thermal conductivity (relative) 0.4 4.9 1.56 1.3 

Electrical Resistivity (Ω∙cm) >1014 >105 104−105 >105 

Thermal stability Very high Very high Moderate – 

Band-gap Eg (eV) 300 K 9.9 3.0 1.2 3.39 

Substrate size (inch) 6 6 8−12 2 

Substrate cost (relative) High Very high low Very high 

Compatibility with ICs Low Moderate Very high – 

 

6H-SiC substrate has a lowest lattice mismatch and highest thermal conductivity, and is 

the best candidate for GaN heteroepitaxy growth in spite of the highest product cost. Sapphire 

substrate has highly thermal stability and a relative lower lattice mismatch, and is able to cut 

off the channel of GaN MOSFET due to the high resistivity. Silicon substrate is benefit for 

batch handling of integrated products due to the highest compatibility, lowest product cost, and 

largest substrate size. Therefore, tradeoffs must be considered for academic research, sapphire 

and silicon substrate are commonly used in our experiments. 

Another crucial problem for AlGaN/GaN heterostructure is the current collapse effect by 
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the electron injection at the source and drain surface [90, 91]. Current collapse is a charging up 

of a second virtual gate appearing in the gate drain access region, which could modulate the 

2DEG and finally make the device show strong hysteresis [92]. A n-type GaN cap layer with 

high doping density could be used to eliminate the current collapse effect [93]. Moreover, the 

use of n-GaN cap layer can not only eliminate the current collapse effect but also heal surface 

inhomogeneities and lower the ohmic contact resistance.  

 

2. 1. 1 Structures of AlGaN/GaN HFET 

A conventional linear AlGaN/GaN HFET with mesa isolation is shown in Figure 2.1a. The 

gate length LG of the device is 3 μm, the gate width WG is 50 μm, and the spacing between 

source/drain electrode and gate electrode is 3 μm (Figure 2.1b). There are several different gate 

structures like MIS-gate, recessed-gate (Figure 2.1c), the ordinary Schottky gate without 

thinning AlGaN layer was used because the whole attention is centered on the isolation region. 
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Figure 2. 1 The cross section (a) and bird view (b) of a linear AlGaN/GaN HFET with mesa 

isolation. (c) shows MIS-gate and recessed-gate structures. 
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2. 1. 2 Fabrication process of AlGaN/GaN HFET 

Borrowing from GaAs p-HEMT technology, conventional AlGaN/GaN HFET processing 

schemes often proceed through a sequence of 1) wafer cleaning, 2) mesa isolation, 3) ohmic 

metalization and annealling, 4) gate and contact pad metalization, and 5) passivation, as shown 

in Figure 2.2. The process of passivation was not under our consideration because the gate 

region and isolation region were passivated by dielectric film simultaneously, which has an 

obvious influence on the isolation effectiveness evaluation. 

 

 

Figure 2. 2 The fabrication process of AlGaN/GaN HFET with mesa isolation. 

 

The detailed instruction of each process will be introduced. 

1) Wafer cleaning 

The wafer was cleaning with SPM (H2SO4:H2O2 = 4:1, volume ratio) solution and organic 

solution in sequence. The wafer was dipped in SPM solution heating at 100 C for 10 min, 

cleaned with deionized (DI) water and blow-dry using nitrogen gun. Then the wafer immersed 

in the acetone solution was cleaned with ultrasonic cleaner for a few minutes. Finally, the wafer 

was rinsed with acetone, methanol, and DI water. 
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2) Mesa isolation. 

A mesa structure is formed through dry etching. Dry etching techniques for III–V nitrides 

includes chemically assisted ion beam etching, laser ablation, reactive ion beam (RIE) etching, 

and inductively coupled plasma (ICP) etching. At present, inductively-coupled chlorine-based 

plasmas have become the most common method to etch GaN due to high high-density plasma 

and high uniformity over large areas, lower ion bombardment energy relative to RIE, and lack 

of electromagnets and waveguides required for electron cyclotron resonance (ECR). 

In our experiments, an ICP system–RIE-200-iPG (from SAMCO, Inc., Fushimi, Kyoto, 

Japan) was employed with a SiCl4 source and a Cl2 source. Figure 2.3 shows the internal 

components of the equipment. Inductively coupled coils generates plasma and the plasma 

density is controlled by ICP power. The bias power controlled the speed that plasma move 

towards sample, a higher bias power means a stronger ion bombardment on the sample. A 

helium gas was used for cooling to keep the sample stage at room temperature during the 

etching process. 

 

 

Figure 2. 3 Schematic of internal components in the ICP system. 

 

In our previous work [94, 95], a two-step etching process was used for mesa formation. 

The first step was done by SiCl4 gas with a flow rate of 4 sccm, ICP power of 50 W, bias power 

of 100 W and at a working chamber pressure of 0.25 Pa. The second step was done by Cl2 gas 

with a flow rate of 4 sccm, ICP power of 50 W, bias power of 50 W and at a working chamber 
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pressure of 0.25 Pa. The second etching of Cl2 gas was planned to remove any possible oxide 

induced by SiCl4 gas. However, it was found that much more damage was produced by Cl2 

etching, and the details will be discussed in Chapter 3. 

Afterwards, the mesa etching condition was altered to be same with the recess etching 

condition used for MOSFET. And this recess condition was SiCl4 gas flow of 3 sccm, ICP 

power of 100 W, bias power of 20 W, and working chamber pressure of 0.25 Pa. The etching 

rate under this condition was approximately 1.25 nm/min [96].  

Usually, a 2 μm positive photoresist (abbreviated as PR, HPR-1183L, Fujifilm Corp., 

Minato, Tokyo, Japan) layer was used as the etching mask. The mesa depth was approximately 

100 nm, in which a good-quality GaN surface could be obtained. After dry etching, a HNO3:HF 

buffered solution (BHF; 1:1, volume ratio) was used to remove possible Si contaminants on the 

etched surface and good for reduction of surface current on the mesa-isolated region. 

 

3) Ohmic metallization and annealing. 

Most GaN ohmic contact was achieved using multilayers of Ti/Al/x/Au, where x may be 

Ti, Ni, Pt, Mo, or Pd. Each kind of metal play different roles during the formation of ohmic 

contact, and their roles are not well agreed yet. One issue unique to GaN ohmic contact 

formation is the extremely high annealing temperature, typically 850 C, which is beyond the 

melting point of Al (661C) and leading to rough ohmic contact morphology. 

 

    

Figure 2. 4 Pictures of (a) before 850 C annealing and (b) after 850 C annealing. 

 

A metal stack of Ti/Al/Ti/Au (50/200/40/40 nm) was deposited as ohmic electrodes 

through sputtering (ALVAC MNS-2000-RF-HS). After deposition, the extra metal layer was 

removed by a lift-off process and annealed at 850 °C for 1 min in nitrogen ambient. The ohmic 

(a) (b) 
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the contact resistance was usually 0.1–1 Ω∙mm. 

 

4) Gate and contact pad metallization. 

Traditionally, most AlGaN/GaN HFET have employed Ni/Au as the Schottky gate contact 

due to good electrical properties and adhesion to the (Al)GaN surface. However, other 

candidates for gate electrode have been proposed, such as Pt/Au, TiN/W/Au [73, 97], a Ni/Au 

(70/30 nm) bi-layer was deposited as the gate metal in out experiments. The annealing is not 

needed for gate contact formation. Figure 2.5 shows a picture of AlGaN/GaN HFETs after 

finishing the gate metallization. 

 

 

Figure 2. 5 The picture of AlGaN/GaN HFETs after finishing the gate metallization. 

 

2. 1. 3 Test methods of AlGaN/GaN HFET 

The AlGaN/GaN HFET are characterized by I–V measurement with semiconductor 

parameter analyzer (Agilent HP 4155C). The I–V characteristics of TLM test can extract the 

ohmic contact resistance and sheet resistance. The I–V test on the DC performance of 

AlGaN/GaN HFET includes gate current-gate voltage (Ig-Vg), drain current-drain voltage (Id-

Vd), and drain current-gate voltage (Id-Vg). Transconductance Gm as an important parameter 

reflects the controlling ability of Schottky gate upon the channel current, and equals to the 

derivatives of Id-Vg characteristics. The breakdown characteristics of TLM structure were 

conducted using I–V test. 
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2. 2 GaN MOSFET 

GaN MOSFET can realize E-mode operation which is unable for AlGaN/GaN HFET. Four 

key factors are necessary to realize a good MOSFET:1) a good oxide layer with very low 

leakage current; 2) a good channel controlled by the gate bias to realize on and off state; 3) a 

good source and drain ohmic contacts to provide carriers and connecting the MOS channel; 4) 

a good interface between the oxide layer and substrate semiconductor with low interface state 

intensity. 

In an ordinary Si n-MOSFET, the drain and source regions are formed through the heavily 

n-type doping in the P-type substrate, and gate oxide SiO2 is formed by thermally oxidation, as 

shown in Figure 1.6a. Although some groups realized GaN MOSFET using this structure [98-

100], it is still difficult to complicate with Si technology. Actually, consistent p-type doing in 

GaN is still the unresolved particular problem. The reasons for this difficulty are: 1) the native 

n-type background conductivity of GaN; 2) residual implant damage also has n-type character 

in GaN; 3) lots of nitrogen vacancies on the surface layer leading to a n-type surface. Table 2.2 

summarized characteristics of different implanted dopant in GaN. 

 

Table 2. 2 Characteristics of different implanted dopant in GaN. 

 
Max achievable doping level  

cm−3) 

Ionization level 

(meV) 

Donor   

Si 51020 28 

S 51018 48 

Se 21018  

Te 11018 50 

O 31018 30 

Acceptor   

Mg 51018 170 

Ca 51018 165 

Be 51017  

C n-type  

 

 



Development of device isolation technologies for GaN-based field-effect transistors 

25 
 

2. 2. 1 Structures of GaN MOSFET 

To replace the ion implantation structure, the 2DEG layer in the AlGaN/GaN 

heterojunction as drain and source, and recessed-gate structure are proposed, as shown in Figure 

2.6. The 2DEG layer under gate contact is removed by dry etching, and a recess structure is 

formed, so this device is called as recessed-gate MOSFET. The remained 2DEG layer as source 

and drain provides high-intensity electrons, and the channel is formed on the u-GaN layer. To 

obtain a good coverage of the oxide on the sidewall, the gate recess depth should not be deep. 

The oxide thickness is usually smaller than 100 nm, hence, the gate recess depth is commonly 

around 50 nm considering the thickness of 2DEG layer. 

 

 

Figure 2. 6 Schematic of recessed-gate structure for GaN MOSFET with mesa isolation. 

 

To avoid the short channel effect only long-channel MOSFET was fabricated, because the 

parasitic resistance can be ignored due to the large channel resistance. Both of circular and 

linear MOSFET were fabricated, as shown in Figure 2.7. The linear device has a gate length of 

40 μm and gate width of 56 μm, respectively. The inner radius and the outer radius of the 

circular are 89 μm and 193 μm, respectively. The effective channel width W of 819 μm which 

was calculated from 

inout rr

L
W

lnln

2





 (2.1) 

where rout and rin is the outer and inner radius. 
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Figure 2. 7 Schematic of long-channel linear and circular GaN MOSFET. 
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2. 2. 2 Fabrication process of GaN MOSFET 

The fabrication processes of GaN MOSFET are more complicated than AlGaN HFET. The 

fabrication process of an ordinary recessed-gate GaN MOSFET contains 1) wafer cleaning, 2) 

mark etching, 3) mesa isolation, 4) gate recess etching, 5) gate oxide deposition, 6) ohmic 

metallization and annealing, and 7) gate metallization as shown in Figure 2.8. The processes of 

gate recess etching and gate oxide deposition will be discussed. 

 

 

Figure 2. 8 The fabrication process of recessed-gate GaN MOSFET. 

 

1) Gate recess etching 

The gate recess was also formed by the same ICP system–RIE-200-iPG with a SiCl4 source. 

The etching condition was SiCl4 gas flow of 3 sccm, ICP power of 100 W, bias power of 20 W, 

and working chamber pressure of 0.25 Pa. The etching rate under this condition was 

approximately 1.25 nm/min. However, despite the extremely low etching rate, dry etch-induced 

lattice damage can severely degrade device performance. The avoidance of etching damage is 

required to obtain a high-quality channel with high carrier mobility and low interface states. 

Low ICP and bias power of ICP system could decrease the etching rate which is benefit to 

reduce etching damage. Low power might also get an irregular recess profile and even failure 

in the MOSFETs operation. 
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Etching mask is important for good etching profile. For easy fabrication, PR mask was 

often used to protect active region during the mesa etching. However, it was found that 

trenching effect at the bottom near the sidewall was observed if PR mask was adopted, and the 

SiO2 as etching mask can improve the recess profile [101]. Therefore, The SiO2 film of about 

500 nm thickness deposited by tetraethylorthosilicate (TEOS) PECVD was used as the recess 

etching mask. After etching, the BHF solution and HNO3: BHF = 1:1 solution were used to 

remove SiO2 film and possible contamination of Si on the etched surface. 

 

2) Gate oxide deposition 

The types and oxidation methods of gate oxide also have an effect on device performance, 

especially mobility. The common SiO2 film growth method is PECVD growth using silane- or 

TEOS-based source. The SiO2 film deposited with silane-based PECVD was preferred to the 

film deposited with TEOS source because of a lower interface state intensity. The thickness of 

gate oxide was controlled under 100 nm. After deposition, a post-annealing process of 1000 C 

for 10 min in N2 ambient would be performed. 

The summary of key points of GaN MOSFET fabrication process is as follows. 1) To 

obtain an etched surface with less damge, a condition of low etching rate and SiO2 mask are 

preferred, as well as the use of HNO3: BHF = 1:1 solution to clean the etched surface; 2) Silane-

based SiO2 film is prior to TEOS-based film. 

 

2. 2. 3 Test methods of GaN MOSFET 

The GaN MOSFET are characterized by I–V measurement with semiconductor parameter 

analyzer (Agilent HP 4155C), and C–V measurement with LCR meter (Agilent 4284A). The I–

V characteristics of TLM test can extract the ohmic contact resistance and sheet resistance. The 

I–V test on the DC performance of GaN MOSFET includes gate current-gate voltage (Ig-Vg), 

drain current-drain voltage (Id-Vd), and drain current-gate voltage (Id-Vg). Transconductance Gm 

as an important parameter reflects the ability of the gate oxide controlling the channel current, 

and equals to the derivatives of Id-Vg characteristics. The frequency of C–V measurement is 

determined by capacitance-frequency (C–f) measurement, 100 kHz with a signal level of 25 

mV. 

The gate capacitance-transconductance method was adopted to determine the electron 

field-effect mobility. According to the basis of the gradual channel approximation of MOSFETs, 

field-effect mobility could be calculated as  
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  (2.2) 

where L is the gate length, COX is the oxide capacitance per unit area, and GM is the 

transconductance. 

The equivalent circuit of the MOS structure can be presented as the oxide capacitance COX 

connected in series with a parallel connection of the depletion capacitance CD and the interface-

related capacitance Cit. In this case, based on the definition, the subthreshold swing S could be 

expressed as 

   (2.3) 

where k is the Boltzmann constant, T is the absolute temperature, and q is the electron charge. 

 

2. 2. 4 Fabrication of GaN MOSFET using BCl3 etching gas 

In our previous work, we achieved a precise control of ICP etching rate of 1.2 nm/min and 

determined the optimum ICP condition of GaN MOSFETs on AlGaN/GaN heterostructure with 

the etching gas of SiCl4. However, the devices etched with SiCl4 gas had a negative threshold 

voltage, the possible reason may be silicon (Si) contamination. Therefore, we tried to use BCl3 

instead of SiCl4 as the gate recess etching gas in order to reduce the influence of Si 

contamination on threshold voltage. 

The GaN MOSFETs on AlGaN/GaN hetero-structure with different recess etching 

conditions was fabricated and characterized. The device fabrication process was based upon 

standard photolithography and lift-off technologies. The gate recess was conducted utilizing 

ICP system with BCl3 and SiCl4 gas. The SiO2 film of about 500 nm thickness deposited by 

tetraethylorthosilicate (TEOS) PECVD was used as the etching mask. The etching conditions 

of three samples are listed in Table 2.3.  

Sample No. 1 and No. 2 were done with SiCl4 gas, ICP power of 100 W and 50 W, 

respectively, bias power of 20 W, SiCl4 gas flow rate of 3 sccm and working chamber pressure 

of 0.25 Pa (termed as: No. 1 SiCl4 100W/20W and No. 2 SiCl4 50W/20W, respectively). The 

etching rates of these two samples were about 1.2 nm/min and 1.0 nm/min, respectively. Sample 

No. 3 was etched with mixed BCl3/Cl2 gas (20/20 sccm), ICP power of 100 W, bias power of 

25 W and at a working chamber pressure of 0.6 Pa. The etching depths were 110 nm and 60 nm 

respectively (termed as: No. 3 BCl3/Cl2, 60 nm), and the etching rates were about 30 nm/min. 
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During the etching processes, the sample stage was cooled by helium gas to keep at the room 

temperature. 

 

Table 2. 3 Recess etching process conditions of all the samples. 

No. Term 

ICP 

Power 

(W) 

Bias 

Power 

(W) 

Gas 

Flow 

Rate 

(sccm) 

Chamber 

Pressure 

(Pa) 

Etching 

Rate 

(nm/min) 

Recess 

Depth 

(nm) 

1 SiCl4 100W/20W 100 20 SiCl4 3 0.25 1.2 60 

2 SiCl4 50W/20W 50 20 SiCl4 3 0.25 1.0 60 

3 BCl3/Cl2, 60 nm 100 25 BCl3/Cl2 20/20 0.6 30 60 

 

After these dry etching processes, the samples were immersed in HNO3: BHF = 1:1 

solution to remove the possible contamination of Si on the etched surface. As the gate insulator, 

a 103.5-nm-thick SiO2 layer was then deposited by PECVD (SAMCO PD-220LC) with silane-

based source, followed by annealing at 1000℃ for 10 min in N2 ambient. After the gate 

insulator patterning, the source and drain ohmic contacts were formed using Ti/Al/Ti/Au 

(50/200/40/40 nm) annealed at 850ºC for 1 min in N2 ambient. TLM measurement showed that 

the contact resistance was approximately 0.15-0.36 Ωmm. A Ni/Au (70/30 nm) bi-layer was 

deposited as the gate metal. 

The device used for evaluation is long channel circular MOSFET with a channel length L 

of 94 μm and an effective channel width of 819 μm. For all the samples, the gate leakage 

currents were below 10−9 A with gate voltage from -10 V to 10 V and drain voltage of 0.1 V, 

as shown in Figure 2.9. In particular, gate leakage is restrained even at a positive gate bias, 

which is beneficial to achieve the E-mode operation. To extract the capacitance of gate insulator, 

measurement of C–V characteristics was performed under frequency of 100 kHz and with gate 

voltage from -10 to 15 V. From Figure 2.10, we can observe the hysteresis and the negative 

threshold voltage from -5.5 to -3.5 V. The difference of threshold voltage by different etching 

gas is not clear. One reason is the possible positive charges existing in the gate insulator layer 

leading to a negative shift on the threshold voltage [102], and the other reason may be from the 

GaN channel layer of this work. Through the evaluation of device isolation, we confirmed that 

the isolation region had a large leakage current indicating that the GaN buffer layer is slight n-

type rather than semi-insulating type. 
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Figure 2. 9 Gate leakage current of GaN MOSFETs of all the samples with gate voltage from 

–10 to 10 V. 
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Figure 2. 10 The segment of C–V characteristics curve of GaN MOSFETs of all the samples 

with gate voltage from -7 to 1 V. 
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Figure 2.11 shows the Id-Vd characteristics of the device etched with BCl3 gas. Drain 

voltages range from 0 to 20 V and gate voltage range from 10 to -3 V. Device operation up to 

gate voltage of 10 V was confirmed. The gate capacitance-transconductance method was 

adopted to determine the electron field-effect mobility. The field-effect mobility of all the 

samples is showed in Figure 2.12. The electron mobility of device etched with BCl3 gas is 141.5 

cm2V−1s−1, as listed in Table 2.3. The mobility is almost the same for the devices with 20 W 

bias power and different ICP power, implying that the mobility is more sensitive to the bias 

power instead of the ICP power. In reference [101], we have reported the influence of etching 

conditions on the recess profiles, mobility and interface state density for devices with ICP 

power from 50 to 100 W, bias power from 20 to 60 W and the etching mask of SiO2. It showed 

that higher bias power would bring more interface states and lower mobility. It was considered 

to be due to the much serious surface damage and silicon contamination occurring at higher 

bias power.  

Figure 2.13 shows the Id-Vg characteristics of the devices in the subthreshold region. 

Considering the depletion capacitance is zero, Cit can be calculated from the extracted 

subthreshold swing S. The interface states density Dit can then be calculated from Cit. The 

device etched with BCl3 gas and the recess depth of 60 nm obtained a low interface state density, 

as listed in Table 2.4. 

 

Table 2. 4 The measured maximum field-effect mobility and interface state density of all the 

samples 

No Term 

Average of 

Cox 

(10−8 Fcm−2) 

Field-effect  

Mobility μFE 

(cm2V−1s−1) 

Subthreshold  

Swing S 

(mV/dec) 

Interface State  

Density Dit 

(1011 cm−2eV−1) 

Forward Reverse Forward Reverse Forward Reverse 

1 SiCl4 100W/20W 3.45 133.3 133.9 141.5 137.6 2.96 2.82 

2 SiCl4 50W/20W 3.41 133.9 134.5 177.1 154.9 4.21 3.41 

3 BCl3/Cl2, 60 nm 3.47 141.1 141.5 112.1 139.7 1.91 2.91 
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Figure 2. 11 Id-Vd characteristics of the device etched with BCl3 gas and the recess depth of 60 

nm. 

 

  

Figure 2. 12 The field-effect mobility of GaN MOSFETs of all the samples. 
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Figure 2. 13 Id-Vg characteristics of GaN MOSFETs of all the samples in the subthreshold 

region. 

 

Although GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess 

achieved a high maximum electron mobility of 141.5 cm2V−1s−1 and a low interface state density, 

the threshold voltage was still negative. It implies that Si contamination is not the main reason 

for negative threshold voltage.  

 

2. 3 Evaluation technology for device isolation 

A TLM structure and a special designed MOSFET was used to evaluate the the resistance 

of isolation region and existence of parasitic MOSFET, respectively. 

 

2. 3. 1 The structure of TLM and test methods 

A TLM structure was used to measure the ohmic contact resistance and sheet resistance as 

shown in Figure 2.14. The ohmic electrodes formed on GaN cap layer or AlGaN layer, and the 

surrounding area including spacing was formed by different isolation methods. The spacing 

between each two electrodes were 5 μm, 10 μm, 15 μm, 20 μm, 25 μm, respectively.  
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Figure 2. 14 TLM for characterizing the isolation region. (a) top view; (b) cross-section view. 

 

To obtain high-accuracy measurement, four probes are used in I–V test. The resistances R 

between each two electrodes changed with spacing d, and were measured by I–V test, then R-d 

characteristics was obtained 

W

R

W

d
R cs 2




  (2.4) 

Where ρs is sheet resistance of isolation region (Ω/□), W is width of electrodes, and Rc (Ω∙mm) 

is ohmic contact resistance.  
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2. 3. 2 The structure of MOSFET and test methods  

Long-channel linear and circular recessed-gate GaN MOSFETs were used for 

characterizing the device performance. The parasitic resistance of a long-channel MOSFET can 

be ignored owing to the large channel resistance. For a circular MOSFET, the possible leakage 

current along the isolation region can be avoided. But for a linear MOSFET, only an effective 

isolation region can cut off the leakage current path. The I–V characteristics and the estimated 

electron mobility of the long-channel circular MOSFET can be considered as a reasonable value. 

Therefore, comparing with Id-Vg characteristics of a circular device, the isolation effectiveness 

of a linear device with same recess condition was obtained. If both of Id-Vg characteristics 

coincide, demonstrating an effective isolation; if off-state current of a linear device is much 

higher than the circular device, demonstrating a bad isolation. The electron mobility of linear 

and circular were under same level if the recess condition was same. If the mobility of a linear 

device is much larger than that of circular device, there is probably a parasitic MOSFET in the 

isolation.  

Moreover, to examine if a parasitic MOSFET exists in the isolation region, we designed 

and fabricated another kind of circular and linear MOSFET in the isolation region. To 

distinguish two kinds of devices, the ordinary recessed-gate MOSFET is termed as R-MOSFET, 

and this MOSFET used for isolation evaluation is termed as I-MOSFET. Figure 2.15 shows the 

fabrication processes of I-MOSFET with mesa isolation. The mesa etching and recess etching 

were conducted simultaneously, namely the recess of I-MOSFET was formed with a mesa 

isolation condition.  

From the Id-Vg characteristics of a circular MOSFET, the isolation effectiveness was 

obtained. If this device operated normally, demonstrating an existence of parasitic MOSFET 

and a bad isolation methods. If the device can’t operate even under a large gate bias, 

demonstrating no parasitic MOSFET in the isolation region, or at least the parasitic exists but 

is in off-state under this gate bias. If the device can’t operate and maintain an extremely low 

drain current close to the level of circular device, which means high-resistivity isolation region 

was obtained and field isolation succeeds. 

 



Development of device isolation technologies for GaN-based field-effect transistors 

37 
 

 

Figure 2. 15 the fabrication processes of I-MOSFET with mesa isolation 

 

2. 4 Summary 

In this chapter, the basic structure and fabrication processes, test methods and evaluation 

technology of isolation effectiveness for AlGaN/GaN HFET and GaN MOSFETs were 

described in details. On the basis of the fabrication processes of GaN-based FETs, device 

performances were characterized through I–V and C–V measurements, and the processes 

isolation effectiveness was evaluated through the TLM structure and special MOSFETs 

fabricated in the isolation regions. In the TLM structure, the regions between every two ohmic 

electrodes were formed by different isolation processes, and the processes isolation 

effectiveness were evaluated by sheet resistance measurements or I–V characteristics of these 

regions. The circular MOSFETs were fabricated in the isolation regions to examine the 

existence of a parasitic MOSFET by I–V characteristics. The circular and linear MOSFETs with 

same fabrication processes were fabricated, the effectiveness of isolation processes was 

evaluated through comparing their transfer characteristics, and the effect of field implantation 

on device performance was investigated through calculating the field-effect electron mobility 

and Dit at SiO2/GaN interface. This work solved the problem of evaluating the device isolation 

effectiveness and laid a foundation of developing and improving isolation processes 

purposefully. 
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Chapter 3 O2 plasma treatment for device isolation of AlGaN/GaN HFET 

3.1 O2 plasma treatment process 

To eliminate the dry etching damage and reduce the leakage current of AlGaN/GaN HFET, 

a process of dielectrics filling (Si3N4, SiO2, Sc2O3) or surface treatment (N2/H2 treatment, UV 

ozone, oxygen plasma) is added. In these processes, O2 plasma treatment is relatively easy and 

feasible because dielectrics deposition or lithography step is not needed and O2 plasma can be 

generated by a PECVD system. In this chapter, we studied the influence of O2 plasma treatment 

on the mesa-isolated region of AlGaN/GaN HFETs by using the PECVD system.  

 

3.1.1 Process flow of O2 plasma treatment 

A 2 μm-thick undoped GaN (u-GaN) layer grown on a sapphire substrate was used in the 

experiments. A 30 nm-thick n-GaN cap layer was deposited on the u-GaN to form the ohmic 

electrodes. The process flow includes ohmic contact, mesa formation, and O2 plasma treatment. 

Figure 3.1 shows the structure for characterizing the mesa-isolated region. The current between 

the two ohmic electrodes is called isolation current. 

 

 

Figure 3. 1 The TLM structure for characterizing the mesa-isolated region. 
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A metal stack of Ti/Al/Ti/Au (50/200/40/40 nm) was subjected to a lift-off process to 

fabricate ohmic electrodes and annealed at 850 °C for 1 min in nitrogen ambient. A mesa 

structure was formed through ICP dry etching with a SiCl4 gas flow of 3 sccm, ICP power of 

100 W, bias power of 20 W, and working chamber pressure of 0.25 Pa to achieve device 

isolation. The etching rate under this condition was approximately 1.2 nm/min, and the etching 

mask was 2 μm positive photoresist (HPR-1183L, Fujifilm Corp., Minato, Tokyo, Japan). The 

mesa depth was approximately 90 nm. After dry etching, a HNO3:HF buffered solution (BHF; 

1:1, volume ratio) was used to remove possible Si contaminants on the etched surface. The 

samples were then exposed to O2 plasma or O2 gas in the PECVD chamber (PD-220LC, Samco, 

Inc., Fushimi, Kyoto, Japan) under different experimental conditions, as listed in Table 3.1. For 

all conditions, the chamber pressure was 80 Pa and the O2 flow rate was 300 sccm. In condition 

D, the chemical vapor deposition (CVD) power was 0 W, which indicates that no plasma was 

generated; this condition was designated as O2 gas treatment.  

 

Table 3. 1 List of O2 plasma and O2 gas treatment conditions in the PECVD chamber. 

Condition 
Temperature 

(C) 

Time 

(min) 

CVD power 

(W) 

Pressure 

(Pa) 

Flow rate of O2 

(sccm) 

A 300 15 250 80 300 

B 200 15 250 80 300 

C 100 15 250 80 300 

D 300 15 0a 80 300 

E 300 15 50 80 300 

F 300 15 150 80 300 

G 300 25 250 80 300 

H 300 5 250 80 300 

aThe CVD power of 0 W means that no plasma was generated and condition D was O2 gas 

treatment. 

 

3.1.2 Selection of O2 plasma treatment conditions 

The I–V measurement of the mesa-isolated region with 25 μm spacing was conducted for 

all the samples under dark condition and visible light (light from a halogen lamp in the 

microscope), respectively. Figure 3.2a shows I–V characteristics of the mesa-isolated region 

with conditions A, B, C and D. A sample without any treatment (as-etched u-GaN layer) was 

used for comparison. 

Under dark conditions, isolation current in condition C (O2 plasma treatment at 100 °C) 
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was approximate 10−7 A and similar to that in condition without treatment. This finding 

demonstrates that O2 plasma treatment at 100 °C did not affect isolation current. Meanwhile, 

isolation currents in condition A (O2 plasma treatment at 300 °C), B (O2 plasma treatment at 

200 °C) and D (O2 gas treatment at 300 °C) reduced by four orders of magnitude to 

approximately 10−11 A. Testing under visible light revealed that isolation current in condition A 

(lower than 10−10 A) was lower than that in conditions B and D. This result implies that O2 

plasma treatment at 300 °C suppressed the photovoltaic response by completely oxidizing the 

dry damaged GaN layer. In addition, as shown in Figure 3.2b and 3.2c, isolation current did not 

differ among conditions A, E, F, G, and H. Therefore, the oxidation process is strongly 

dependent on treatment temperature, rather than treatment time and CVD power.  

Therefore, to maintain an effective isolation process, we used condition A (O2 plasma 

treatment at 300 °C for 15 min at 250 W) for subsequent experiments. 
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Figure 3. 2 I–V characteristics of the mesa-isolated region with different conditions, (a) under 

different temperature, (b) for different time, and (c) at different power. 
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3.1.3 The influence of O2 plasma treatment on ohmic contacts 

A TLM structure with 2DEG layer was also fabricated as shown in Figure 3.3. The 

epitaxial layers were grown on a sapphire substrate, which consisted of a buffer layer, a 2 μm-

thick u-GaN layer, 25 nm-thick u-AlGaN layer, and a 2–3 nm-thick n-GaN cap layer . The mesa 

isolation with same condition was used to achieve electrical isolation. The sheet resistance and 

ohmic contact resistance were measured before and after O2 plasma treatment. As Table 3.2 

listed, after O2 plasma treatment, the sheet resistance of 2DEG layer decreased because the 

oxidation of GaN surface changed the polarity intensity of the material. And the ohmic contact 

resistance increased slightly, which had little influence on the DC performance of AlGaN/GaN 

HFET. 

 

 

Figure 3. 3 The TLM structure with 2DEG layer. 

 

Table 3. 2 The sheet resistance and ohmic contact resistance measured before and after O2 

plasma treatment. 

 Before treatment After treatment 

Sheet resistance 

Rs (Ω/□) 
0.87 1.12 

Ohmic contact resistance 

Rc (Ω∙mm) 
599 554 
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3.1.4 The influence of dry etching conditions on treatment results 

In our previous work[94], the mesa etching was conducted by two-step condition. The first 

step was done by SiCl4 gas with a flow rate of 4 sccm, ICP power of 50 W, bias power of 100 

W and at a working chamber pressure of 0.25 Pa. The second step was done by Cl2 gas with a 

flow rate of 4 sccm, ICP power of 50 W, bias power of 50 W and at a working chamber pressure 

of 0.25 Pa. the average etching rate was about 20 nm/min. The O2 plasma treatment was 

employed to the mesa surface formed under this condition, and Figure 3.4 shows I–V results. 

The isolation current in the condition of mesa etching with two steps was about 10−6 A. After 

O2 plasma treatment at 300 °C for 30 min, the isolation current was only reduced one order of 

magnitude due to the serious damage induced by Cl2 etching. A second dry etching with 

condition A was performed for 30 min on the same sample, the isolation current almost didn’t 

change meaning that the damage induced by condition A was lower than two-step etching. After 

second O2 plasma treatment at 300 °C for 15 min, the isolation current was reduced to around 

10−8 A. The possible reason is that the first etching damage still existed even the second etching 

depth was approximated 36 nm. 

 

 

Figure 3. 4 I–V characteristics of the mesa-isolated region with two-step mesa etching. 
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3.1.5 Breakdown characteristics of isolation region treated by O2 plasma 

The breakdown characteristics of the mesa-isolated region without treatment and treated 

under condition A were determined using the structures presented in Figure 3.1 with 5 μm 

spacing. As shown in Figure 3.5, breakdown voltages of 171.5 and 467.2 V were confirmed for 

samples without treatment and treated under condition A. Isolation current reduced by several 

order of magnitudes through O2 plasma treatment, and breakdown voltage significantly 

improved. 

 

 

Figure 3. 5 Breakdown characteristics of the mesa-isolated region without treatment and 

treated by condition A. 

 

3.2 Analysis of oxidized etching surface 

O2 plasma treatment on the Schottky gate region of AlGaN/GaN HFET was reported by 

many groups [103-109], whereas a few work was focused on O2 plasma treatment on mesa 

surface [80, 110, 111], and the oxidation mechanism was not clear yet. To clarify the oxidation 

mechanism of O2 plasma treatment, PL spectrum was used to investigate the variation in defect 
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levels on the etched GaN surface before and after O2 plasma or O2 gas treatment, XPS was then 

conducted to investigate chemical property variation induced by O2 plasma treatment on the 

etched u-GaN surface. 

 

3.2.1 PL spectrum analysis 

PL spectroscopy is a non-contact and no-damage method used for detection on electronic 

structure of materials. Photoluminescence is using light as an excitation, the electrons in the 

material turn to the excited state after absorbing the energy of photons, when the electrons 

transited back to the equilibrium state, then they will emit photons. The wavelength of emitted 

photons is relevant to the energy level difference between the excited state and the equilibrium 

state, the numbers of emitted photons are relevant to the relative contribution of radiation. 

During the transition of electrons come back to the equilibrium state, there are six different 

recombination centers emitting photons, free-carrier recombination as intrinsic centers is the 

recombination between the electrons from the bottom of conduction band and the holes from 

the top of valence band. Therefore, using PL Spectra, the band-gap of sample was obtained 

through the detection on the light emitted by free-carrier recombination. 

PL spectrum excited with a 325 nm He-Cd laser were measured at room temperature. 

Figure 3.6 shows the PL spectra from samples without treatment and treated under condition A 

(O2 plasma treatment at 300 °C) and D (O2 gas treatment at 300 °C). The inset shows the near 

band-edge luminescence of samples without treatment and treated under conditions A and D, 

with peaks at 3.46 eV, 3.47 eV, and 3.46 eV, respectively. For samples without treatment, a so-

called yellow luminescence (YL) band expanded from 1.6 eV to 2.6 eV and centered near 

2.2 eV. This broad luminescence band could be attributed to transition from a shallow donor to 

a deep acceptor [112, 113]. The shallow donor of the etched u-GaN may be the etching damage 

of the nitrogen vacancy VN according to our previous work [101, 114], whereas the deep 

acceptor may be the native defect of the gallium vacancy VGa [115-117]. The near band-edge 

luminescence intensity of all the samples was weaker than the YL intensity, which could be 

primarily attributed to the non-radiative centers at low doping concentrations in the u-GaN layer 

[118-120]. The ripples visible in the YL band from samples without treatment (Figure 3.6) are 

attributed to the effect of microcavity formed by the GaN-air and the GaN-substrate interface 

[121]. 

After treatment under condition D, the YL band narrowed from 1.7 eV to 2.3 eV and the 

PL intensity was slightly reduced. After treatment under condition A, the luminescence band 

shifted from 1.8 eV to 2.65 eV and the PL intensity decreased, with the maximum peak located 
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at 2.28eV (YL band). The decrease in the PL intensity implies a decrease in the density of 

defects related to YL. A reasonable explanation is that, O2 plasma treatment at 300 °C oxidized 

a large number of extra gallium atoms on the etched surface, resulting in elimination of nitrogen 

vacancy. By contrast, O2 gas treatment at 300 °C oxidized only a small number of extra gallium 

atoms and thus only a small amount of nitrogen vacancy was eliminated. After treatment under 

condition A, a new peak with a low PL intensity located at 2.88 eV appeared in the blue 

luminescence (BL) band; this peak could be attributed to oxygen terminating the site of nitrogen 

vacancy and forming substitutional oxygen on the nitrogen site (ON) as a shallow donor [117]. 

This BL band in u-GaN may be due to the transition from ON to VGa-related complex [122-124]. 

 

 

Figure 3. 6 PL spectrum at room temperature of all the samples. The inset shows the near 

band-edge luminescence band. 
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3.2.2 XPS analysis 

XPS, also known as Electron Spectroscopy for Chemical Analysis (ESCA), is the most 

widely used surface analysis technique to obtain composition and chemical state information 

from the surfaces of solid material. XPS is a surface sensitive technique because only those 

electrons generated near the surface escape and are detected. The average depth of analysis for 

an XPS measurement is approximately 5 nm.  

XPS is typically accomplished by exciting a samples surface with mono-energetic Al kα 

or Mg kαx-rays causing photoelectrons to be emitted from the sample surface. An electron 

energy analyzer is used to measure the energy of the emitted photoelectrons. From the binding 

energy and intensity of a photoelectron peak, the elemental identity, chemical state, and quantity 

of a detected element can be determined. Spatial distribution information can be obtained by 

scanning the micro focused x-ray beam across the sample surface. Depth distribution 

information can be obtained by combining XPS measurements with ion milling (sputtering) to 

characterize thin film structures. 

In our experiments, the XPS system was equipped with a monochromatic Al Kα radiation 

source (hν = 1486.6 eV), and the C1s peak of adventitious carbon (284.8 eV) was used for 

calibration. XPS data were analyzed after Shirley background subtraction, and the peaks were 

fitted using a sum of Gaussian and Lorentzian functions (at fixed 30% Gaussian). Figure 3.7 

shows the core level spectra of Ga 3d, N 1s and O 1s for all the samples.  

In Figure 3.7a, the Ga 3d peak can be deconvoluted into two contributions attributed to 

Ga–N bond at 19.3 ± 0.1 eV (full width at half maximum {FWHM} 1.1 ± 0.2 eV) and Ga–O 

bond at 20.3 ± 0.1 eV (FWHM 1.2 ± 0.2 eV) [125-128], with the Ga 3d3/2–Ga 3d5/2 spin–orbit 

splitting at 0.44 eV [129]. The peaks at 15.8 eV and 24.0 eV are assigned to the N 2s and O 2s 

lines, respectively [129, 130].  

In Figure 3.7b, the O 1s peak can be deconvoluted into three contributions attributed to O–

Ga bond (Ga2O3) at 531.1 eV (FWHM 1.6 eV), O–Si bond at 532.4 eV (FWHM 1.4 eV), and a 

less covalent form of oxygen bond at 530.2 eV (FWHM 1.4 eV) [125, 127, 131, 132]. The 

silicon component was probably derived from contamination during dry etching, and the 

binding energy corresponds to the partially oxidized silicon Si2+ at 101.7 eV in Si 2p spectrum 

[133].  

As shown in Figure 3.7c, the N 1s spectrum overlapped with the Ga L2M45M45 Auger 

electron spectrum because of Al Kα excitation. The N 1s peaks can generally be deconvoluted 

into four contributions, namely, N–Ga bond at 397.1 ± 0.2 eV (FWHM 1.1 eV), N-H2 bond at 

397.7 ± 0.2 eV (FWHM 2.5 ± 0.2 eV), and Ga Auger peaks at 395.3 ± 0.2 eV (FWHM 3.0–3.7 
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eV) and 392.1 ± 0.2 eV (FWHM 2.5 ± 0.1 eV) [127, 128, 131, 134, 135].O2 plasma-treated 

sample exhibited Ga–O peak intensity higher than that of the other treatments and presented an 

O 2s peak. In the O 1s spectra of O2 plasma-treated sample, the O–Ga peak intensity was higher 

than that of the other treatments and the less covalent form of oxygen bond did not appear. This 

finding perhaps explains the difference between O2 plasma and O2 gas oxidation; that is, the 

former can completely oxidize the GaN surface, whereas the latter can only partially oxidize 

the GaN surface. 

 After 1 keV Ar ion sputtering for 30 s, the O 1s peaks of the as-etched and O2 gas-treated 

samples almost disappeared, whereas the O 1s peak of O2 plasma-treated samples significantly 

diminished and the less covalent form of oxygen peak appeared. The occurrence of the peak 

corresponding to the less covalent form of oxygen could be due to Ar ion bombardment that 

broke O–Ga and O–Si bonds. As such, large amount of Ga2O3 were formed by O2 plasma 

treatment at 300 °C than that by O2 gas treatment at 300 °C. The thickness of Ga2O3 was 

estimated to be a few nanometers [136].  
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Figure 3. 7 the core level spectra of Ga 3d, O 1s and N 1s for all the samples. 
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For O2 plasma-treated samples, the intensities of the N–Ga and Ga LMM Auger peaks 

were lower than that of the other peaks. The main reason is that gallium nitride was oxidized 

and Ga2O3 was formed. Aside from the increase in oxygen content, another possible reason for 

the decrease in nitrogen content is that some nitrogen atoms were substituted by oxygen atoms, 

leading to the formation of ON as evidenced by the occurrence of the BL band of O2 plasma-

treated sample in the PL spectra. 

 

3.3 AlGaN/GaN HFET using O2 plasma treatment 

3. 3. 1 Fabrication process flow of AlGaN/GaN HFET using O2 plasma treatment 

The AlGaN/GaN HFETs were fabricated on sapphire and silicon substrate with six kinds 

of wafer samples, as listed in Table 3.3. Sample 1-4 are grown on sapphire substrate, sample 5 

and 6 are grown on silicon substrate, sample 1-3 and 6 have a GaN cap layer. The sheet 

resistance and ohmic contact resistance were measure using TLM structure with 2DEG layer 

after O2 plasma treatment. 

 

Table 3. 3 Wafer samples used for AlGaN/GaN HFET. 

Sample No. 1 No. 2 No. 3 No. 4 No. 5 No.6 

Layer 4 u-GaN 5 nm i-GaN 5 nm i-GaN 2-3 nm   i-GaN 2-3 nm 

Layer 3 u-AlGaN 20 nm i-AlGaN 20 nm i-AlGaN 25 nm i-AlGaN 25 nm i-AlGaN 25 nm i-AlGaN 25 nm 

Layer 2 u-GaN 8 um i-GaN 10 um i-GaN 2 um i-GaN 2 um i-GaN 1 um i-GaN 1 um 

Layer 1 buffer nucleation nucleation buffer buffer buffer 

Substrate sapphire sapphire sapphire sapphire Si Si 

Sheet resistance 

(Ω/□) 
547 487 554 443 959 1219 

Ohmic contact 

resistance (Ω∙mm) 
1.67 1.62 1.12 12.06 1.96 2.94 

 

The device fabrication process was based upon the standard photolithography and lift-off 

technologies. The mesa structure was formed through ICP dry etching with a SiCl4 gas flow of 

3 sccm, ICP power of 100 W, bias power of 20 W, and working chamber pressure of 0.25 Pa. 

The etching mask was 2 μm PR, the mesa depth was approximately 90 nm. After dry etching, 

a HNO3:HF buffered solution (BHF; 1:1, volume ratio) was used to remove possible Si 

contaminants on the etched surface. The ohmic contacts of Ti/Al/Ti/Au (50/200/40/40 nm) were 
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formed and annealed at 850 °C for 1 min in nitrogen ambient. The samples were then exposed 

to O2 plasma at 300 C for 15 min in PECVD, the chamber pressure was 80 Pa and the O2 flow 

rate was 300 sccm. Finally, a Ni/Au (70/30 nm) bilayer was deposited as the gate metal. 

 

 

Figure 3. 8 The fabrication process of AlGaN/GaN HFET with mesa isolation and O2 plasma 

treatment. 

 

3. 3. 2 Characterization of AlGaN/GaN HFET using O2 plasma treatment 

Figure 3.9 presents the plots of the drain-source I–V characteristics of AlGaN/GaN HFETs 

treated under condition A (O2 plasma treatment at 300 °C) on all the samples. All the HFETs 

can normally operate under gate voltage of 1 to -5 V. The devices on sample 3 and 4 presented 

larger on-state current because of a high intensity of 2DEG due to a thicker i-AlGaN layer [137]. 

The devices on sample 5 and 6 presented a lowest on-state current because using silicon 

substrate caused a relative poor GaN epitaxy film and a relative low intensity of 2DEG. An 

apparent hysteresis induced by the so-called current collapse was observed in the devices on 

sample 1 and 2. During O2 plasma treatment, the active region was also oxidized because the 

surface of the active layer was not protected. Traps were probably induced on the surface of the 

AlGaN layer or in the AlGaN/GaN heterostructure [109]. And these two samples were more 

sensitive to the treatment comparing with others. As such, protecting the active layer during 

treatment and effectively cleaning the surface before gate formation may improve the process. 
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Figure 3. 9 I–V characteristics of AlGaN/GaN HFETs with O2 plasma treatment on all the 

samples. 

 

Figure 3.10 shows the transfer characteristics of AlGaN/GaN HFETs with O2 plasma 

treatment on all the samples. For sample 3, under a gate voltage of 2 V and a drain voltage of 

10 V, the on-state drain current Ion reached 346.6 mA/mm and the off-state drain current Ioff was 

lower than 210−5 mA/mm. Thus, an on/off drain current ratio of 1.73107 was achieved by 

O2 plasma treatment, which was substantially improved compared with that of traditional 

AlGaN/GaN HFETs with a typical off-state current of 10−1–10−3 mA/mm under similar 

fabrication process [138]. Figure 3.11 shows the transconductance Gm of AlGaN/GaN HFETs 

with O2 plasma treatment on all the samples. The devices on sample 5 and 6 presented the 

lowest Gm, and other devices presented the apparent hysteresis. Figure 3. 12 shows the Ig-Vg 

characteristics of AlGaN/GaN HFETs with O2 plasma treatment on all the samples. The gate 

leakage current of all the samples were in the range of 10−5 to 10−3 mA/mm due to the Ni/Au 

Schottky gate. 

The breakdown characteristics of the mesa-isolated region treated by O2 plasma on all the 

samples were determined using the structures presented in Figure 3.1 with 5 μm spacing. As 

shown in Figure 3.13, the devices on sample 5 and 6 presented the lowest breakdown voltage 

due to the poor quality of GaN film. The device on sample 3 demonstrated a largest breakdown 

voltage of 467.2 V as mentioned in section 3.1.5. 
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Figure 3. 10 The transfer characteristics of AlGaN/GaN HFETs with O2 plasma treatment on 

all the samples. 

 

Figure 3. 11 The transconductance of AlGaN/GaN HFETs with O2 plasma treatment on all the 

samples. 
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Figure 3. 12 The Ig-Vg characteristics of AlGaN/GaN HFETs with O2 plasma treatment on all 

the samples. 

 

Figure 3. 13 Breakdown characteristics of the mesa-isolated region treated by O2 plasma on 

all the samples. 
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3.4 Summary 

In this chapter, the isolation effectiveness and oxidation mechanism of O2 plasma 

treatment for AlGaN/GaN HFETs were studied. The process of O2 plasma treatment on the 

mesa-isolated region of AlGaN/GaN HFETs was adopted, the optimal condition was 

established by I–V measurement on TLM structure, the oxidation effectiveness and mechanism 

of the mesa etching surface were analyzed through PL spectrum and XPS, and AlGaN/GaN 

HFETs with O2 plasma treatment were fabricated and characterized. The I–V results of TLM 

structure indicated that the isolation current were strongly dependent on treatment temperature 

and the depth of etching damage. Treatment at 300 °C was confirmed to be the optimal 

condition, under which isolation current was reduced by four orders of magnitude to 10−11 A 

and photovoltaic response was suppressed, and the breakdown voltage of the mesa-isolated 

region increased from 171.5 to 467.2 V. The PL spectrum analysis showed a decrease in the 

density of defects related to the YL band and the occurrence of defects related to the BL band. 

XPS results showed that O2 plasma treatment can form high amounts of Ga2O3 than O2 gas 

treatment, and the defect of ON was probably formed. The I–V characteristics of AlGaN/GaN 

HFETs presented a high on/off drain current ratio of 1.73107. This work provided an effective 

process of O2 plasma treatment for device isolation in AlGaN/GaN HFETs, identified a 

probably formation of defect, and gave reference for the further improvement in device 

performance. 
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4 Boron ion implantation as field isolation process for GaN MOSFET 

For compound semiconductors, ion implantation, in addition to forming doped region, is 

usually used to achieve device isolation by eliminating the 2DEG in AlGaN/GaN 

heterojunction. However, there is no report on the device field isolation on GaN MOSFET. For 

field isolation, ion implantation is an attractive method to introduce significant lattice damage, 

leading to defect generation, and a formation of high resistivity region to avoid the surface 

channel formation along the isolation region. We investigated an isolation process of boron ion 

implantation for GaN MOSFETs, and boron ion implantation is expected to prevent the 

formation of parasitic MOSFET on isolation region and achieve field isolation. 

 

4.1 Simulation of ion implantation profile 

The investigated implantation conditions are the implantation dose of 7×1014, 1×1015, 

1×1014 cm−2 at 110 keV and 5×1014, 1.4×1015, 1.4×1014 cm−2 at 30 keV, respectively. The 

energy/dose of 110 keV/7×1014 cm−2 and 30 keV/5×1014 cm−2 is a condition for the device 

isolation on AlGaN/GaN heterostructure. The implanted boron ions profile can be 

approximated by a Gaussian distribution function [139]: 
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where x is the distance in implanted layer, S is the ion dose per unit area, Rp is the projected 

rage, σp is the projected struggle. With a reference to Transport of Ions in Matter (TRIM) ion 

stopping and range tables, the implantation depth was estimated as 490 nm on the condition 

that 99.99% of ions were distributed in the area from the implant surface to the distance of 490 

nm. Using Gaussian distribution function, it can be also confirmed that the mask of double 

layers of 2 μm PR (HPR 1183L, Fuji film) and 500 nm SiO2 was thick enough to stop 99.99% 

of ions and protect the non-implantation region, as shown in Figure 4.1. 
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Figure 4. 1 Diagram of simple Gaussian distribution of boron ions in PR and u-GaN. 

 

4. 2 GaN MOSFETs with boron ion implantation 

4. 2. 1 Fabrication process flow of GaN MOSFETs with boron ion implantation 

All the four kinds of devices, circular R-MOSFET, linear R-MOSFET, circular I-MOSFET, 

and linear I-MOSFET were fabricated on sample A to E. Figure 4.2. shows schematic cross-

section of R-MOSFET and I-MOSFET on sample A, B, and C. The fabrication process was 

based upon the standard photolithography and lift-off technologies, as described in the 

following. 

(1) The first step was the field isolation process. For comparison, sample A was with a 

mesa isolation structure only. Sample C was with boron ion implantation, while sample B was 

with both mesa isolation structure and boron ion implantation. The mesa was formed by ICP 

dry etching with two steps. The first step was done by SiCl4 gas with a flow rate of 4 sccm, ICP 

power of 50 W, bias power of 100 W and at a working chamber pressure of 0.25 Pa. The second 

step was done by Cl2 gas with a flow rate of 4 sccm, ICP power of 50 W, bias power of 50 W 

and at a working chamber pressure of 0.25 Pa. To keep the sample stage at the room temperature, 

helium gas was used for cooling during the etching process. After the mesa process, boron ions 

were implanted into sample B, C, D, and E. The mask for the implantation was double layers 

of 2 m PR (HPR 1183L, Fuji film) and 500 nm SiO2. 
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Figure 4. 2 Schematic cross-section of (a)-(f): the R-MOSFETs and the I-MOSFETs of 

sample A, B and C, respectively. 

 

(2) The second step was the gate recess process to form the normal MOSFET channel. To 

remove the 2DEG layer, ICP system was used with SiCl4 gas to a depth of 40 nm. The etching 

condition was ICP power of 100 W, bias power of 20 W, SiCl4 gas flow rate of 3 sccm and 

working chamber pressure of 0.25 Pa. The recess etching mask was the SiO2 film of about 500 

nm thickness deposited by TEOS PECVD. 

(3) The third step was the dielectric deposition. Silane-based PECVD was used to deposit 

SiO2 (103.5 nm) as the gate oxide. As a post-annealing process, the samples were annealed at 

1000 °C for 10 min in N2 ambient. 

(4) The final step was the electrode formation. The source and drain ohmic contacts were 
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formed using Ti/Al/Ti/Au (50/200/40/40 nm) and annealed at 850 °C for 1 min in N2 ambient. 

The gate contact was formed using Ni/Au (70/30 nm). 

 

4. 2. 2 Sheet resistance of implanted region 

The sheet resistances of isolation region were measured by a TLM method at the 

temperature of 295 K, 313 K, 353 K, 393 K and 433 K, as shown in Figure 4.3. The sheet 

resistances of the implanted isolation regions are 1.41×106 and 2.38×106 Ω∙sq−1 at 295 K for 

sample B and C, respectively. The resistance of mesa isolation region without implantation 

(sample A) is 4.32×105 Ω∙sq−1. The sheet resistances of sample D and E are 6.81×105 and 

8.66×105 Ω∙sq−1 at 295 K, and lower than that of sample B and C, as listed in Table 4.1. The 

activation energy Ea is derived by 
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where Rs is the measured sheet resistance, Rs0 is the sheet resistance extrapolated to the infinite 

temperature, Ea is activation energy, k is Boltzmann coefficient, and T is measurement 

temperature. The sheet resistance does not increase linearly with the implantation dosage. The 

derived activation energy Ea was around 0.19 eV for all the implanted samples. It may 

correspond to several defect levels, such as nitrogen vacancy. It should be noted the resistivity 

of the samples with ion implantation is not so high comparing with the sample with only mesa 

isolation. A possible reason was that the implanted ions were partly activated during the 

following high-temperature post-annealing processes of gate oxide. 

 

Table 4. 1 Measured sheet resistance of isolation region of all the samples 

Sample Mesa 
Boron implantation condition 

energy (keV) /dose (cm−2) 

Sheet resistance at 295 K  

(Ω sq−1) 

Ea 

(eV) 

A mesa – 4.32×105 – 

B mesa 110 / 7×1014, 30 / 5×1014 1.41×106 0.187 

C no mesa 110 / 7×1014, 30 / 5×1014 2.38×106 0.186 

D no mesa 110 / 1.4×1015, 30 / 1×1015 6.81×105 0.198 

E no mesa 110 / 1.4×1014, 30 / 1×1014 8.66×105 0.175 
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Figure 4. 3 Measured sheet resistance of isolation regions at various temperatures. 

 

4. 2. 3 Evaluation of isolation effectiveness for GaN MOSFET 

Figure 4.4 shows that the measured gate leakage currents of all the MOSFET samples were 

almost below 10−10 A with gate voltage Vg from 10 to -10 V and the drain and source voltage of 

0 V. Proper device operations up to gate voltage of 10 V were confirmed for the circular and 

linear R-MOSFETs on each samples.  

 

 

Figure 4. 4 The Ig-Vg characteristics of the circular MOSFETs on all the samples. 
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The current-voltage (Id-Vd) characteristics of a circular R-MOSFET on sample A is plotted 

in Figure 4.5. Similar results were obtained for the same devices on sample B and C, indicating 

that the ion implantation process had no obvious effect on the normal devices. The Id-Vd 

characteristics of a circular I-MOSFET with mesa isolation channel on the sample A is shown 

in figure 4.6. Similar to the R-MOSFET, device operation up to a gate voltage of 10 V was 

observed. This indicates that there still exists a MOS-channel in the mesa isolation. Figure 4.7 

plots the Id-Vd characteristics of the circular I-MOSFETs on sample B (with both mesa and 

boron ion implantation) and sample C (with boron ion implantation). Sweep Id-Vd 

characteristics disappeared even with the gate voltage Vg from -10 to 10 V and drain voltage up 

to 20 V. The Id of both devices increased linearly from 10−7 to 10−2 mA/mm when Vd was swept 

from 0 to 20 V and almost unchanged when Vg was varied from -10 to 10 V. This indicates that 

there are no MOS-channels appearing in the MOS-like structure fabricated on the ion-implanted 

isolation region. 

 

 

Figure 4. 5 The Id-Vd characteristics of a circular R-MOSFETs on sample A with gate voltage 

Vg from -10 to 10 V and step of 1 V. 
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Figure 4. 6 The Id-Vd characteristics of a circular I-MOSFETs on sample A with gate voltage 

Vg from -10 to 10 V and step of 1 V. 

 

 

Figure 4. 7 The Id-Vd characteristics of circular I-MOSFETs on sample B and C with linear 

and logarithm plots. 
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Figure 4.8 plots the transfer (Id-Vg) characteristics of the circular I-MOSFETs on all the 

samples under drain voltage of 0.1 V. The device on sample A presented a good on-state 

characteristics with drain current up to 5.5×10−2 mA/mm. 5.5×10−2 mA/mm at gate voltage of 

10 V and an extremely low off-state leakage current level in the range of 10−8 to 10−10 mA/mm. 

Contrarily, the devices on sample B and C presented a low drain current level of about 10−4 

mA/mm when gate voltage was swept to 10 V. In other words, the MOS-channel didn’t exist 

due to the damage caused by the ion implantation and the implanted region was turned to be a 

region with high resistivity. Boron ion implantation can be used as a device field isolation 

method on GaN MOSFET technology. However, although the drain current level at the on-state 

was reduced by two orders, the current level of 10−4 mA/mm for the I-MOSFETs on sample B 

and C was still higher than that of 10−8 to 10−10 mA/mm for the I-MOSFET on sample A. 

 

 

Figure 4. 8 The transfer (Id-Vg) characteristics of the circular I-MOSFETs on all the samples at 

Vd of 0.1 V. 

 

A comparison of the transfer (Id-Vg) characteristics between a linear and a circular R-

MOSFET on sample A, B, and C is shown in Figure 4.9 a, b, and c, respectively, under drain 

voltage of 0.1 V. For comparison, the transfer characteristics of a circular I-MOSFET on sample 

A was also plotted in Figure 4.9a. In figure 4.9a, drain current of the linear device is higher than 

that of the circular device due to the ineffective field isolation. Fortunately, the on-state drain 
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currents of the linear and circular R-MOSFETs in sample B and C are with the same level 

indicating that the field isolation process are effective (Figure 4.9 b and c). However, the off-

state drain leakage current level of 10−3 mA/mm was still four orders of magnitude larger than 

that of circular MOSFET owing to the low resistivity in the field isolation regions. This result 

proves that boron ions implanted into the isolation region of a MOSFET would prevent the 

formation of a parasitic MOS-channel in the isolation region. 

 

 

Figure 4. 9 The comparison of the transfer characteristics between a linear and a circular R-

MOSFET on (a) sample A, (b) sample B, and (c) sample C, at Vd = 0.1 V. 

 

The field-effect electron mobility was determined by a method of gate capacitance-

transconductance. Figure 4.10 shows the field-effect mobility of a linear and a circular R-

MOSFET on sample A, B, and C comparing with that of a circular I-MOSFET on sample A. 

The mobility of R-MOSFET on sample A, B and C was 147.7, 148.1, and 150.7 cm2V−1s−1, 

respectively. The mobility of I-MOSFET on sample A (without B I/I) was 119.4 cm2V−1s−1 and 

the reduction of mobility was attributed to the greater plasma-induced damage on etching 

surface. No degradation of field-effect electron mobility was observed demonstrating that this 

process of boron ion implantation would not decrease the field-effect mobility of GaN 

MOSFETs. A little variation of threshold voltages was also observed among all the devices. 
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The reason is considered to be due to the charges existing in the gate oxide [102]and the donor-

like nitrogen vacancy introduced from the dry etching process [101]. The more negative 

threshold voltage of I-MOSFET (ring) than R-MOSFET (ring) in Figure 4.10a may be also 

related with more nitrogen vacancy caused by higher bias power. It should be mentioned that 

the estimated mobility of the linear device coincides with that of the circular devices for sample 

B and C, clearly indicating that the overestimation of field-effect mobility of the linear 

MOSFETs was eliminated due to the fact that boron ion implantation prevented the formation 

of parasitic MOS-channel in the isolation region. 

 

 

Figure 4. 10 The field-effect mobility of a linear and a circular R-MOSFET on sample A (a), 

B (b), and C (c) comparing with that of circular I-MOSFET on sample A (a). 

 

 

 

 

 

 

 

 



Development of device isolation technologies for GaN-based field-effect transistors 

66 
 

4. 3 GaN MOSFETs with improved process of annealing and boron ion 

implantation 

Although boron ion implantation eliminated the parasitic MOSFET in the isolation region 

of the linear GaN MOSFETs, the off-state drain current was only 10−4 mA/mm and the sheet 

resistance of implanted region was 106 Ω/□ at room temperature. The low resistivity may be 

attributed to the recovery of the implantation damage by the subsequent annealing process of 

ohmic annealing at 850 C and the gate oxide thermal treatment at 1000 C. To achieve an 

extremely low off-state drain current and successful field isolation for the linear devices, GaN 

MOSFETs using boron ion implantation and mesa structure as the device isolation methods 

were fabricated and the effectiveness of the two methods were evaluated. All the annealing 

process steps were completed before the boron field implantation during the fabrication. 

 

4. 3. 1 Fabrication process flow of improved GaN MOSFETs 

Epitaxial layers were grown on a c-plane sapphire substrate, which consisted of a buffer 

layer, a 2 μm-thick undoped GaN (u-GaN) layer, and a 30 nm-thick Si-doped n-GaN layer with 

a concentration of 1.0×1019 cm−3 from the bottom to the top. The gate length and width of the 

linear MOSFET were 100 μm and 102 μm, respectively. The gate length and effective channel 

width of the circular MOSFET with 89 μm inner radius and 193 μm outer radius were 94 μm 

and 819 μm, respectively. 

Four samples were used in the experiments as listed in Table 4.2. The R-MOSFET and I-

MOSFET structures on samples ME, IM1, and IM2 are shown in Figure 4.11. The structure of sample 

IM3 is the same as that of sample IM2. 

 

Table 4. 2 The samples with different structures and implant conditions. 

Sample Structure Boron ion implantation condition 

ME mesa no implantation 

IM1 no mesa 110 keV /51014 cm−2, 30 keV /71014 cm−2 

IM2 mesa 110 keV /1.41014 cm−2, 30 keV /11015 cm−2 

IM3 mesa 110 keV /51014 cm−2, 30 keV /71014 cm−2 
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Figure 4. 11 Structures of (a)–(c) ordinary recessed-gate R-MOSFETs and (d)–(f) I-MOSFETs 

fabricated on the different isolation regions. 

 

The device fabrication began with the 90 nm-deep mesa structure through the inductively 

coupled plasma (ICP) dry etching system with SiCl4 etching gas. A 2 μm-thick positive 

photoresist (HPR-1183L, Fujifilm Corp., Minato, Tokyo, Japan) was utilized as the mesa 

etching mask. For the R-MOSFETs of all the samples, the 54 nm-deep gate recess was formed 

by the ICP system using the same dry etching condition. The recess etching mask was a 500 

nm-thick SiO2 film deposited by plasma enhanced chemical vapor deposition (PECVD) system 

with a tetraethylorthosilicate (TEOS)-based source. After the completion of all the dry etching 

processes, the samples were immersed in a HNO3:HF buffered solution (BHF; 1:1, volume ratio) 

to remove the possible Si contamination on the etched surface. The gate oxide was a 100 nm-
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thick SiO2 layer deposited by PECVD (PD-220LC, SAMCO, Inc., Fushimi, Kyoto, Japan) with 

a silane-based source. A gate oxide post-annealing process was performed at 1000 °C for 10 

min in nitrogen ambient. After ohmic electrodes patterning, a metal stack of Ti/Al/Ti/Au 

(50/200/40/40 nm) was deposited by the lift-off process and annealed at 850 °C for 1 min in 

nitrogen ambient.  

A 2 μm-thick photoresist was utilized as an implantation mask to protect the active region. 

Subsequently, sample IM1–3 were subjected to double-energy implantation by boron ions. The 

implantation profile was estimated through a Gaussian distribution function. According to 

TRIM software, the 100 nm-thick SiO2 layer on top of the isolation region can stop 15.2% of 

the boron ions, and the implantation depth in the GaN layer was estimated to be approximately 

400 nm. Finally, a Ni/Au (70/30 nm) bi-layer was deposited as gate electrode. 

 

4. 3. 2 Evaluation of isolation effectiveness for improved GaN MOSFET 

Figure 4. 12 plots the I–V characteristics (a) and the transfer characteristics (b) of the 

circular I-MOSFETs on all the samples. The circular I-MOSFET with mesa isolation (sample 

ME) presented good on-state characteristics with a gate voltage of up to 10 V, indicating that a 

parasitic MOSFET existed on the mesa-isolated region. By contrast, the circular I-MOSFETs 

with B I/I isolation (sample IM1–3) presented an extremely low drain current of 710−8 

mA/mm, which was nearly constant when the gate voltage was swept from −10 V to 10 V. This 

result demonstrates that the B I/I isolation eliminated the parasitic MOSFET in the isolation 

region by the creation of high resistance from significant implantation damage. 
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Figure 4. 12 (a) I–V and (b) transfer characteristics of the circular I-MOSFETs on all the 

samples. 
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Figure 4.13 plots the transfer characteristics of circular and linear R-MOSFETs on sample 

A and B, under drain voltage of 0.1 V. The linear R-MOSFET on sample B (B I/I isolation) 

presented a low off-state drain current of about 610−7 mA/mm, which was only one order of 

magnitude higher than the 710−8 mA/mm of the circular R-MOSFET. The linear R-MOSFET 

on sample A presented a high off-state drain current of about 310−5 mA/mm. By adjusting 

the process sequence of boron field implantation, the high-temperature annealing process was 

avoided. The implanted region demonstrated high resistivity and effective field isolation was 

successfully achieved. In addition, a little variation of threshold voltages was observed between 

the circular MOSFETs with mesa isolation and B I/I isolation. The possible reason is the 

variation on the charges in the gate oxide layers [102]. 

 

 

Figure 4. 13 Transfer characteristics of circular and linear R-MOSFETs on all the samples. 

 

4. 3. 3 Characterization of GaN MOSFETs with boron ion implantation avoiding annealing 

process 

The field-effect electron mobility μFE was obtained by the gate capacitance-

transconductance method. Figure 4.14 shows the μFE values of the circular and linear R-

MOSFETs on all the samples and the circular I-MOSFET on sample ME. As listed in Table 4. 

3, the maximum μFE values of the linear and circular R-MOSFETs on samples IM1−3 are very 

close to each other, demonstrating that boron field implantation could eliminate the parasitic 
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MOSFET in the isolation region. The maximum μFE of the linear R-MOSFET on sample ME 

was 162.1 cm2V−1s−1, which was much higher than the 134.8 cm2V−1s−1 of the circular R-

MOSFET on sample ME. The mobility was overestimated because the parasitic MOSFET in 

the mesa-isolated region widened the effective channel width [140]. The maximum μFE of a 

circular I-MOSFET on sample ME was 121.0 cm2V−1s−1, and the decrease was attributed to a 

bad recess profile produced by the use of photoresist as the etching mask [98]. No degradation 

of μFE was observed on the circular R-MOSFETs on all the samples, demonstrating that the 

boron field implantation would have not deteriorated the MOSFETs. 

 

 

Figure 4. 14 Field-effect mobility of R-MOSFETs on all the samples and a circular I-

MOSFET on sample ME. 

 

The interface states density Dit at the SiO2/u-GaN face can be calculated from the interface-

related capacitance Cit. The oxide capacitance COX is in series, connected with a parallel 

connection of the semiconductor bulk capacitance CB and Cit into the equivalent circuit of MOS 

structure. Based on the definition of subthreshold swing S 
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considering that CB is zero due to a remarkably low carrier concentration of semi-insulating u-
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GaN layer, and thus Cit can be extracted from S. In this expression, k is the Boltzmann constant 

and q is the elementary charge. Table 4.3 2 lists the Dit of the R-MOSFETs on all the samples 

and the circular I-MOSFET on sample ME. The Dit of the linear R-MOSFET on sample IM1 

was larger than that of the circular R-MOSFET because the two ends of the gate recess were 

connected with the implanted-region and the implantation damages were introduced into the 

channel and increased the Dit. The difference between the Dit values of the linear and circular 

R-MOSFETs on samples IM2 and IM3 was small because the implanted region was deeper than 

the gate recess and the implantation damages were not introduced. The isolation structure of 

both mesa and implantation did not introduce the implantation damages into the channel and 

did not influence the interface state density, whereas the isolation structure of only implantation 

introduced the implantation damages and resulted in a high interface state density. Therefore, 

the isolation structure of both mesa and implantation is advantageous to reduce the interface 

state density of devices. The gate recess protection from the implantation damage should be 

considered in future works. 

 

Table 4. 3 Maximum field-effect mobility and interface state density of the circular MOSFETs 

on all the samples. 

Sample Structure 

Field-effect mobility 

μFE (cm2V−1s−1) 

Interface state density 

Dit (1011 cm−2eV−1) 

Ring Bar Ring Bar 

ME R-MOSFET 134.8 162.1 7.0 – 

IM1 R-MOSFET 139.3 140.3 5.3 9.0 

IM2 R-MOSFET 133.9 132.2 4.2 6.5 

IM3 R-MOSFET 140.9 138.2 5.2 6.0 

ME I-MOSFET 121.0 – 7.4 – 

 

The breakdown characteristics of the mesa-isolated region and implanted regions were 

determined using the structure presented in Figure 4.15, with 5 μm spacing at room temperature. 

The breakdown voltages of 150.0, 871.0, 762.0, and 901.5 V were confirmed for the mesa-

isolated region on sample ME and the implanted region on samples IM1−3. The breakdown 

voltage was significantly improved by boron field implantation. 
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Figure 4. 15 Breakdown characteristics of the mesa-isolated region and the implanted region 

on all the samples. 

 

4. 4 Summary 

In this chapter, GaN MOSFETs using boron ion implantation as field isolation process 

were fabricated and the effectiveness of boron field implantation and influence of implantation 

damage on device performance were evaluated. The process of boron field implantation was 

developed and improved for GaN MOSFETs, the elimination of parasitic MOSFETs was 

confirmed by the I–V characteristics of circular MOSFETs fabricated in the isolation regions, 

and the isolation effectiveness of process was evaluated through the comparison of I–V 

characteristics between circular and linear device. The influence of implantation damage on 

device performance for different isolation structures were evaluated by the calculation of the 

field-effect electron mobility and Dit according to I–V and C–V tests. The process of boron field 

implantation was altered and subsequently conducted after high-temperature ohmic annealing 

process and gate oxide thermal treatment, and the implanted regions with high resistivity were 

achieved. The I–V characteristics indicated that the circular MOSFET fabricated in the isolation 

region showed an extremely low drain current of 710−8 mA/mm, demonstrating that the 

parasitic MOSFET in the isolation region was eliminated by boron field implantation. The 

comparison of I–V characteristics between circular and linear device showed that the off-state 

drain current of the linear MOSFET was reduced from 310−5 mA/mm of mesa isolation to 

610−7 mA/mm of boron field implantation, which was only one order of magnitude higher 
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than the 710−8 mA/mm of the circular device. Field isolation for GaN MOSFETs succeeded 

using boron field implantation. The breakdown voltage of the isolation region with a 5 μm 

spacing was significantly improved up to 901.5 V. The calculation of the field-effect electron 

mobility showed that implanting did not deteriorate the mobility. The Dit results indicated that 

the isolation structure of both mesa and implantation did not influence the interface state density. 

This work extended field isolation technique in Si MOSFET to GaN MOSFET, provided a field 

implantation process that could eliminate the parasitic MOSFETs and achieve an extremely low 

off-state current, presented an isolation structure that could obtain field isolation and avoid the 

high Dit, and brought benefit for improving the device performance in GaN MOSFETs. 
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5 Conclusion and future works 

5. 1 Conclusion 

This thesis investigates the device isolation technologies for GaN-based FETs.  

In AlGaN/GaN HFET, an effective process of O2 plasma treatment for device isolation 

was investigated. Isolation current was strongly dependent on treatment temperature and the 

depth of etching damage. Under the conditions of O2 plasma treatment at 300 °C for 15 min at 

250 W, the isolation current was reduced by four orders of magnitude to 10−11 A and 

photovoltaic responses were suppressed, and the breakdown voltage of the mesa-isolated region 

with 5 μm spacing was improved from 171.5 V to 467.2 V. The PL results showed a decrease 

in the density of YL band-related defects and the occurrence of BL band-related defects. The 

XPS results indicated that O2 plasma treatment can form high amounts of Ga2O3 than O2 gas 

treatment, and the defect of ON was also probably formed. An AlGaN/GaN HFET with an on/off 

drain current ratio of 1.73 × 107 was achieved through O2 plasma treatment. O2 plasma 

treatment is thus regarded as an effective method for improving device isolation. The trade-off 

between defects creation and reduction of leakage current is required for piratical fabrication. 

GaN MOSFETs using boron ion implantation as field isolation process were fabricated 

and the effectiveness of boron field implantation was evaluated. The circular MOSFET 

fabricated on the ion-implanted region showed a drain current of 210−4 mA/mm and 610−8 

mA/mm before and after adjusting the process sequence of annealing and boron field 

implantation, demonstrating that boron field implantation could prevent the formation of 

parasitic MOSFET in the isolation region. By adjusting the process sequence, the high-

temperature annealing process was avoided and the implanted region presented high resistivity. 

The I–V characteristics indicated that the off-state drain current of the linear MOSFET with 

boron field implantation isolation was reduced to 610−7 mA/mm, which was only one order 

of magnitude higher than the 710−8 mA/mm of the circular MOSFET. The field isolation for 

GaN MOSFETs was successfully achieved by boron field implantation. The implantation 

damage did not deteriorate the field-effect mobility. The isolation structure of both mesa and 

implantation did not influence the interface state density, whereas the isolation structure of only 

implantation increased the interface state density because of the introduction of the implantation 

damages into the channel. The isolation structure of only implantation is recommended to 

simplify the fabrication processes; the isolation structure of mesa and implantation is 

recommended to minimize the interface state density. 
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5. 2 Future works 

1. The protection of active region in AlGaN/GaN HFET is needed to avoid current collapse 

effect for O2 plasma treatment.  

2. The defects like ON was induced by O2 plasma treatment, and the elimination of the defects 

should be considering.  

3. The thermally stability of GaN MOSFET using boron ion implantation should be evaluated.  

4. The long-term influence of traps induced by boron ion implantation on interface state 

density should be investigated. 
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