
INTRODUCTION

The enzyme adenylate kinase (AK) reversibly con-
verts ATP+AMP to 2 ADPs and plays a role in cel-
lular energy homeostasis (1). To date, 8 vertebrates
AK isoenzymes (AK1-AK8) have been reported

(2). Among these, AK2 is uniquely located in the
mitochondrial intermembrane space, and is highly
expressed in human liver, kidney, and heart tissues
(3). AK2 provides ADP to the adenine nucleotide
translocator in the inner membrane of mitochondria,
which promotes the exchange of ADP with ATP.
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Multicellular organisms contain other high-energy
phosphoryl transfer systems that are mediated by ei-
ther creatine kinase or arginine kinase (ArgK) as a
phosphagen kinase in mitochondrial intermembrane
space of various animal cells, except for echino-
derm (4).

We previously examined the metabolic roles
of AK2 in vivo , by analyzing phenotypes resulted
from mutation of the Drosophila AK2 gene, Dak2 .
Drosophila is a suitable model system for function-
al studies of AK2 because their mitochondrial inter-
membrane space lacks ArgK (5). These data indi-
cated that Dak2 is essential for growth and devel-
opment of Drosophila melanogaster . Although no
visible defects in the development of homozygous
Dak2 -deficient embryos were observed, hatched lar-
vae failed to grow and died during the 1st and 2nd

instar larval stages, presumably due to the deple-
tion of maternally derived Dak2 . Two other studies
of human AK2 gene mutant phenotypes have been
reported. Specifically, Pannicke et al. reported that
reticular dysgenesis (RD), a type of severe com-
bined immunodeficiency, is caused by AK2 gene
mutations, with increased apoptosis and reactive
oxygen species (ROS) production and decreased
mitochondrial membrane potential (6). Lagresle-
Peyrou et al. demonstrated profound hematopoietic
defects and sensorineural deafness due to AK2 de-
ficiency (7). Phenotypes of AK2 deficiency, such as
viability, differ between human and Drosophila ;
whereas the ensuing tissue-specific metabolic dis-
orders in humans do not affect viability, these are
lethal during larval stages in Drosophila . It was also
recently reported that AK2 functions as a regulator
of unfolded protein response (UPR) in the endo-
plasmic reticulum (ER) during cellular differentia-
tion (8). However, these AK2-mediated metabolic
changes remain largely unclear.

To clarify the metabolic roles of AK2, we initial-
ly knocked down Dak2 gene expression during de-
velopment and examined viability. Subsequently, we
analyzed the effects of Dak2 deficiency on gene ex-
pression using DNA microarrays.

METHODS

D. melanogaster stocks and breeding

The D. melanogaster strain containing a P-element
(P-lacW) insertion at the Dak2 locus (Dak2EP2149/
CyO ) was obtained from the Szeged Drosophila
Stock Center (Hungary). The CyO balancer was

replaced with a balancer carrying an actin-GFP
marker (Dak2EP2149/ CyO , Act-GFP ). Dak2EP2149/
Dak2EP2149 (Dak2 -/-) homozygous embryos and larvae
were collected under a fluorescent microscope as
described previously (5), and homozygous (Dak2 -/-)
Ll and L2 larvae were collected for RNA isolation.

RNAi for Dak1, Dak2, and Dak3 during develop-
ment

UAS-Dak1 RNAi strain (P{TRiP.GL00177}attP2),
UAS-Dak2 strain (P{TRiP.GL00l96}attP2/TM3), and
UAS-Dak3 strain (P{TRiP.GL00490}attP2) were pro-
vided by Bloomington Stock Center, U.S.A. Breed-
ing of these RNAi strains with tissue-specific GAL4
strains led to overexpression of hairpin-type double-
stranded RNAs of Dak1 , Dak2 , and Dak3 , respec-
tively. The following GAL4 strains with various re-
gional specificities were used to induce RNAi in
particular tissues and organs : tubulin-GAL4 for u-
biquitous expression, da-GAL4 for ectodermal tis-
sues, 24B-GAL4 for all mesodermal tissues, 48Y-
GAL4 for endodermal tissues, byn-GAL4 for ecto-
dermal hindgut (9), Mef2-GAL4 for somatic and vis-
ceral muscles, and elav-GAL4 for central nervous
system. These GAL4 strains were used in combi-
nation with UAS-Dicer construct for enhancement
of RNAi effect. All these strains were provided by
Bloomington Drosophila Stock Center and DGRC
Kyoto Stock Center (Japan) unless otherwise indi-
cated.

DNA microarray

Pools of 1st and 2nd instar larvae of wild-type and
Dak2-/- mutants (2 mg each) were homogenized,
and total RNA was extracted using RNeasy Mini
Kits (Qiagen, Netherlands) according to the sup-
plier’s instructions. Total RNA (5 μg) from each
sample was used for microarray analyses (GeneChip
Drosophila Genome 2.0, Affymetrix, U.S.A).

Bioinformatic analyses of microarray data

The Gene Ontology (GO) classification system
was used to analyze microarray data. The Database
for Annotation, Visualization, and Integrated Discov-
ery (DAVID) v6.7 (http : //david.abcc.ncifcrf.gov/)
(10, 11) was used to evaluate biological signifi-
cance and importance using the GO functional an-
notation cluster (FAC) tool. DAVID FAC analysis
was conducted on two independent normalized gene
lists containing normalized�2-fold upregulated and
�0.5-fold downregulated genes. High stringency
score parameter was selected to indicate confident
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enrichment scores of functional significance and im-
portance of the given pathways. The GO system in
DAVID was used to identify enriched biological
themes in both gene lists. Pathway tools of the
Kyoto Encyclopedia of Genes and Genomes (KEGG ;
http : //www.genome.jp/kegg/) were used to map
genes of the “proteasome complex” cluster. The
DroID database (http : //www.droidb.org/Index.
jsp) was applied to obtain transcription factor-tar-
get gene interaction data of D. melanogaster (12),
and interactions were illustrated and analyzed us-
ing Cytoscape 2.8.3 (13, 14).

RESULTS

1. Knockdown of Dak2 during D. melanogaster de-
velopment

To investigate tissues and organs that are sus-
ceptible to Dak2 knockdown in Drosophila , we per-
formed ubiquitous and tissue-specific RNAi experi-
ments by mating the UAS-Dak2 RNAi strain with
various tissue-specific GAL4 strains. No adult flies
or pupae developed when ubiquitous Dak2 RNAi
was induced with tubulin-GAL4 driver strain. Dak2
RNAi induced in particular tissues, such as ecto-
dermal tissues (with da-GAL4), mesodermal tissues
(with 24B-GAL4), endodermal tissues (with 48Y-
GAL4), visceral and somatic muscles (with Mef2-
GAL4), ectodermal hindgut (with byn-GAL4), as
well as central nervous system (with elav-GAL4)
all resulted in lethality during larval stages (Table 1).
Thus, lethality caused by Dak2 RNAi does not due
to damage of some particular tissues or organs.
Rather, Dak2 is assumed to be essential for general
cellular functions required for cell survival. In con-
trast, when RNAi for Dak1 and Dak3 were induced
similarly, with reduction of mRNA less than 25% for
each gene, these were no marked effects on viability
(Table1).

Microarray analysis of Dak2 knockout mutants

Tissue-specific knockdown of Dak2 led to even-
tual larval mortality, suggesting that AK2 plays a

fundamental active role in developmental processes,
including cell division, differentiation, and morpho-
genesis. To investigate gene expression changes in
Dak2 deficient larvae prior to death, we performed
microarray analysis in AK2-deficient D. melanogaster
(Dak2 -/- mutants). These experiments identified 1059
upregulated (�2-fold) and 859 downregulated (�0.5-
fold) genes compared with the wild-type control. Mi-
croarray data were confirmed using qPCR analyses
of selected genes (data not shown).

Expression data was analyzed using the DAVID
FAC tool, which identified 140 enriched functional
clusters from 1059 upregulated genes (�2.0-fold)
under high stringency condition. Among these, the
“polysaccharide binding” cluster showed the high-
est enrichment score (8.26), followed by “glycosyl
hydrolases, family 13” (4.45) and “transmission of
nerve impulse” (3.98) clusters (Figure 1A). Enrich-
ment scores indicate the biological significance of
analyzed gene groups. DAVID FAC analysis of 859
significantly downregulated genes (�0.5-fold) re-
vealed 128 enriched functional clusters under high
stringency conditions. The “proteasome complex”
cluster was the most significant biological process,
followed by “membrane-enclosed lumen,” “mito-
chondrial matrix,” and “aminoacyl-tRNA ligase ac-
tivity” clusters (Figure 1B).

2.1. Peritrophic membranes and other antimicrobial
molecules

As shown in figure 2A, 35 genes were included
in the “polysaccharide binding” cluster with com-
mon GO terms as follows : chitin binding protein,
ChitBD2, chitin binding, chitin metabolic process,
aminoglycan metabolic process, polysaccharide
metabolic process, polysaccharide binding, and pat-
tern binding.

Among these genes, 10 were structural constitu-
ents of peritrophic membranes, which comprise chi-
tin and proteins that cover the midgut to facilitate
digestive process and protect from invading micro-
organisms and parasites (15, 16). Chitin binding pro-
teins (12 gene products of the cluster) and mucins
(6 gene products of the cluster) are also peritrophic

Table 1 Effects of RNAi for adenylate kinase isozymes on viability during development of D. melanogaster.

Whole body Ectoderm Mesoderm Endoderm Visceral muscle Hindgut Nerve

Dak1 RNAi + + + + + + +

Dak2 RNAi - - - - - - -

Dak3 RNAi + + + + + + +

+ or - indicate viable or lethal, respectively.
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membrane components and were included in this
cluster. In addition, the peptidoglycan-recognition
proteins PGRP-LC and PGRP-LF (17), chitinase
Cht9 , the transcription factor foxo , the wnt binding
protein Swim , and the scavenger receptor Sr-Cl
were included in the cluster. Almost all of these
gene products were related to defense responses.

Starvation of Drosophila larva affects the expres-
sion of many genes, including Lip3 , Pepck, and Thor
(18, 19). In Dak2 knockout flies, we found changes
in the expression of genes with similar tendencies

(Lip3 , 13.93-fold ; Pepck, 3.03-fold ; Thor, 3.48-fold).
Starvation also induces antimicrobial peptides
(AMPs) by activating the transcription factor foxo
(20), which regulates some AMPs, and structural
components of peritrophic membranes via the tran-
scription factor relish (21). Taken together, these
data may suggest that in Dak2 knockout flies, rel-
ish induces AMPs and a number of peritrophic
membrane components by activating foxo.

2.2. Glucose metabolism

The “glycosyl hydrolase, family 13” cluster had
the second highest enrichment score, and included
genes encoding 2 amylases and 6 maltases. Because
maltase and amylase coordinately degrade starch
into glucose, these genes may be upregulated in re-
sponse to the mitochondrial dysfunction caused by
Dak2 knockout (Figure 2B). Accordingly, upreg-
ulation of the glycolysis enzymes aldolase (2.30-
fold) and hexokinase (2.00-fold) were also observed.
The expression of 6-phosphofructo-2-kinase (Pfrx),
which synthesizes fructose 2,6-bisphosphate (a po-
tent stimulator of glycolysis) was also upregulated
(2.14-fold) in Dak2 -/- mutants. This may reflect the
metabolic switch from oxidative phosphorylation to
less efficient anaerobic glycolysis in Dak2 knock-
out fruit flies.

2.3. Synapse transmission

The “synapse transmission” cluster gave the third
highest enrichment score (Figure 2C). This cluster
included 31 genes, including those encoding Ca2+

channel (cac) and Ca2+ dependent phospholipid
binding proteins (Syt1 , Syt4 , and Syt7), and common
GO terms included synaptic transmission, cell-cell
signaling, and transmission of nerve impulses. Al-
though it is unclear why genes related to synapse
transmission were upregulated under conditions of
mitochondrial dysfunction in our microarray data,
it has been reported that oxidative stress induced
autophagy followed by synapse development (22).
Hence, upregulation of several autophagy genes in
Dak2 knockout flies implies that ROS induced syn-
apse development.

2.4. Proteasome

Among clusters of downregulated genes, those
related to the proteasome produced the highest
enrichment score (21.50 ; Figure 3A). Subsequent
KEGG map analyses of these genes (Figure 4) in-
dicated uniform downregulation of many structur-
al components of the proteasome, suggesting lower

A

B

Figure 1 DAVID Functional Annotation Cluster (FAC) ana-
lyses of gene expression patterns in Dak2 knockout flies.
(A) Major functional annotation clusters (FACs) for upregulated
genes (�2.0- fold). (B) Major FACs for downregulated genes
(�0.5- fold). Significance is determined by corresponding enrich-
ment scores.
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C

Figure 2 DAVID heat map analysis of biologically significant FACs containing upregulated genes in Dak2 knockout flies.
Gray and black shading indicates positive and unconfirmed correlations of annotated gene and functional GO terms, respectively.
(A) Polysaccharide binding ; GO terms for shading block No.1, IPR002557, chitin binding protein, peritrophin-A ; No.2, SM00494,
ChtBD2 ; No.3, GO, 0008061, chitin binding ; No.4, GO : 0006030, chitin metabolic processes ; No.5, 0006022, aminoglycan meta-
bolic process ; No.6, GO : 0005976, polysaccharide metabolic process ; No.7, GO : 0030247, polysaccharide binding ; No.8, GO : 0001871,
pattern binding. (B) Glycosyl hydrolases, family 13, catalytic region. GO terms for shading block No.1, IPR006589, glycosyl hydrolase,
family 13, subfamily, catalytic region ; No.2, SM00642, Aamy ; No.3, IPR006047, glycosyl hydrolase, family13, catabolic region. (C) Trans-
mission of nerve impulses ; GO terms for shading block No.1, GO : 0007268, synaptic transmission ; No.2, GO : 0007267, cell -cell
signaling ; No.3, GO : 0019226, transmission of nerve impulse.
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Figure 4 KEGG pathway map analysis of the proteasome.
KEGG pathway map analysis was performed using the gene list that contains�2-fold upregulated and�0.5- fold downregulated genes
compared with wild type flies, and obtained result for the proteasome is shown. Blue boxes indicate genes with expression levels�0.5-
fold of those in wild type flies, and green boxes indicate genes with expression levels�1- fold and�0.5- fold of those in wild type flies.

D

Figure 3 DAVID heat map analysis of biologically significant FACs containing downregulated genes in Dak2 knockout flies.
Gray and black shading indicates positive and unconfirmed correlations of annotated genes and functional GO terms, respectively.
(A) Proteasome ; GO terms for shading block No.1, proteasome ; No.2, dme03050, proteasome ; No.3, GO : 0000502, proteasome
complex. (B) Intracellular organelle lumen. GO terms for shading block No.1, GO : 0070013, intracellular organelle lumen ; No.2, GO :
0043233, organelle lumen ; No.3, GO : 0031974, membrane-enclosed lumen. (C) Mitochondrial matrix ; GO terms for shading block
No.1, ribosomal protein ; No.2, GO : 003279, ribosomal subunit ; No.3, GO : 0005761, mitochondrial ribosome ; No.4, GO : 0000313,
organellar ribosome ; No.5, GO : 0003735, structural constituent of ribosome ; No.6, GO : 0005840, ribosome ; No.7, GO : 0005759,
mitochondrial matrix ; and No.8, GO : 0031980, mitochondrial lumen. (D) Aminoacyl - tRNA ligase ; GO terms for shading block No.1,
aminoacyl - tRNA synthetase ; No.2, GO : 0006418, tRNA aminoacylation for protein translation ; No.3, GO : 0043039, tRNA amino-
acylation ; No.4, GO : 0043038, amino acid activation ; No.5, dme00970, aminoacyl - tRNA biosynthesis ; No.6, GO : 0016876, ligase
activity, forming aminoacyl - tRNA and related compounds ; No.7, GO : 0016875, ligase activity, forming carbon-oxygen bonds ; and
No.8, GO : 0004812, aminoacyl - tRNA ligase activity.
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proteasomal activity in Dak2 mutant flies. The pro-
teasome comprises the main proteolytic enzymes
of the ubiquitin-protease system. These components
of the multi-subunit 26S proteasome complex in-
cluded those of 20S catalytic core and 19S regula-
tory particles (23).

2.5. Mitochondrial ribosome

The cluster with second highest enrichment
score (15.78) of downregulated genes was related to
“Membrane enclosed lumen,” with the common GO
terms intracellular organelle lumen, organelle lumen,
and membrane enclosed lumen (Figure 3B). Of the
105 genes included in this cluster, 31 encoded struc-
tural constituents of mitochondrial ribosomes. Genes
related to RNA editing, cell cycle, transcription, and
neurogenesis were also included in this cluster.

The cluster with third highest enrichment score
(8.46) related to the “Mitochondrial matrix” (Figure
3C). This cluster also comprised genes encoding
mitochondrial ribosomal proteins. Other mitochon-
drial ribosome subunits that were not listed in the
cluster were also downregulated, suggesting re-
duced mitochondrial translation activity in Dak2
knockout flies.

2.6. Aminoacyl tRNA biosynthesis

The fourth cluster of downregulated genes was
associated with “aminoacyl-tRNA ligase activity.”
Of the 20 genes in this cluster, 13 encoded amino-
acyl-tRNA synthetases (AARSs, Figure 3D), further
indicating reduced overall translational activity. All
AARSs on the list were cytosolic, although expres-
sion of mitochondrial AARSs were also generally
lower (0.93-0.41 fold), albeit insignificantly, than in
wild type flies.

DISCUSSION

The enzyme encoded by Dak2 is unique to mito-
chondrial intermembrane space and reversibly in-
terconverts ATP and AMP to 2 ADP. Mammals ex-
press the additional adenine nucleotide metaboliz-
ing enzyme mitochondrial creatine kinase (MtCK) in
the same cellular compartment, which may accom-
modate AK deficiencies. Because no phosphagen
kinases are present in mitochondrial intermembrane
space of D. melanogaster except Dak2 , Dak2 mutant
fruit flies are a useful model for investigations of
AK2 (5).

Drosophila development and energy demand

In our previous study, Dak2 knockout caused lar-
val mortality in Drosophila flies (5). In the present
study, tissue-specific roles of AK2 during larval de-
velopment were further investigated by analyzing
the effects of Dak2 knockdown in various tissue-
specific GAL4 strains. We found that all tissues/
organs examined were susceptible to the Dak2 RNAi
and resulted in larval mortality, suggesting that
Dak2 is essential for development in most of these
tissues.

As a source of ATP, glycolysis predominates over
the TCA cycle in stem cells and tumor cells, even
in the presence of normal mitochondria (24, 25).
However, glycolysis in Dak2 mutant D. melanogaster
failed to sustain normal growth and histogenesis,
despite increased expression of glycolytic aldolase
(2.3-fold) and hexokinase (2.0-fold). These data
clearly demonstrate that Dak2 is crucial for mito-
chondrial function during development in Drosophila
flies.

Mitochondrial gene expression and hearing loss

DAVID analyses of downregulated genes in Dak2
mutants revealed relatively high enrichment scores
for FAC mitochondrial translation machinery, indi-
cating impairment of mitochondrial translation in
Dak2 knockout flies.

In a report published in 1992, mutation of mito-
chondrial tRNALeu(UUR) was shown to cause deafness
(26), and thereafter many reports about mitochon-
drial tRNA and hearing impairment have been re-
ported (27-29). Furthermore, mutations in mito-
chondrial rRNA transfer and mitochondrial amino-
acyl tRNA synthetase genes were identified as causa-
tive of deafness (30, 31). Mutation of the mitochon-
drial ribosomal protein S12 (technical knockout, tko)
was also reported as a cause of deafness in fruit flies
(32). Taken together, these observations strongly
indicate functional associations between defects of
mitochondrial translation machinery and hearing
loss.

Zheng et al. suggested that impaired mitochon-
drial translational activity reduces the expression of
electron transport chain complexes, leading to defi-
ciencies of ATP production and increased produc-
tion of reactive oxygen species (ROS) in cochlear
and vestibular cells. Enhanced ROS production dam-
ages mitochondrial and cellular proteins, lipids, and
nucleic acids, and also auditory structure (27). Mi-
croarray analyses of Dak2 knockout flies indicated
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downregulation of multiple genes related to mito-
chondrial translation machinery, suggesting that
AK2 mutations may also cause failure of mitochon-
drial translational machinery and hearing loss in RD
patients (7). The Drosophila counterpart of mam-
malian auditory systems is known as Johnston’s or-
gan, which comprises specialized clusters of mecha-
nosensory neurons (33). However, it is unclear
whether Dak2 knockout impairs auditory function
in flies (34).

Proteasome activity and immunodeficiency

We found that the downregulated gene cluster
with the highest enrichment score was related to
subunits of the proteasome (Figure 1B). It is ac-
cepted that the proteasome plays important roles in
immune regulatory systems involving antigen proc-
essing and inflammatory responses (35, 36).

Fruit fly immunity is predominantly mediated by
toll and IMD pathways (37). In the toll pathway,
infectious signals of gram-positive bacteria, yeast,
and fungi are primarily transmitted to transcription
factors such as dif and dorsal. Subsequently, these
factors are translocated into the nucleus, where
they promote transcription of target genes such as
drosomycin. Activities of these transcription factors
are regulated by cactus, a Drosophila homolog of
mammalian I-κB. Cactus binds to dif and dorsal to
inactivate their activities, and in response to infec-
tion, it is degraded by the proteasome, and the tran-
scription factors are activated and released into the
nucleus. Hence, insufficient proteasomal activity
leads to reduced expression of target genes (38).
The importance of the proteasome to immune func-
tion has also been demonstrated in humans (39).
Thus, AK2 mutations in RD patients may also lower
proteasomal activity following inactivation of NF-
κB, which is the human counterpart of dif and dor-
sal, leading to impaired regulation of target immune
related genes.

Inhibition of mitochondrial complex I reduces
ATP production and suppresses the activity of the
proteasome (40). Knockdown of AK2 in immune
cells resulted in deficiencies in ATP production (8).
Hence, the present observations of ATP deficiency in
Dak2 mutant flies may also be relevant to humans.

Barjaktarevic et al. argued that inactivation of the
transcription factor Gfi-1 (growth factor independ-
ence 1) caused immunodeficiency, incomplete de-
velopment of mouse inner ears, and reticular dys-
genesis (41). Proteasomal regulation of Gfi-1 ac-
tivity (42) further implies the involvement of the

proteasome in the expression of genes that are re-
quired for developments of the immune system.

Reduced proteasome activity was also expected to
lower drosomycin expression in Drosophila. How-
ever, the present microarray data show that Dak2
mutation led to a 5-fold increase in drosomycin ex-
pression. Drosomycin is usually induced by infec-
tions of gram-positive bacteria and ROS such as
H2O2 (43). Although the relationship between ROS
production and AK2 depletion remains unclear, ele-
vated ROS in AK2 mutants (6) may reflect induc-
tion of drosomycin by ROS.

To determine whether dorsal and senseless (Dro-
sophila homolog of Gfi-1) regulate the proteasome
and the mitochondrial translational system, we ex-
amined transcription factor binding to promoters
of the genes included in the clusters “proteasome
complex” (Figure 5A), “membrane-enclosed lumen”
(Figure 5B), “mitochondrial matrix” (Figure 5C),
and “aminoacyl-tRNA ligase activity” (Figure 5D)
using the DroID database, which estimates tran-
scription factor-target gene interactions (12). These
in silico analyses revealed that almost all promoters
contain corresponding putative binding sites.

In summary, the present bioinformatics analy-
ses clearly demonstrate that AK2 mutations inhibit
proteasomal expression, leading to suppression of
NF-κB and target immune genes. Accordingly, we
propose a working hypotheses for the effects of AK2
deficiency on cellular responses in D. melanogaster
and human systems as shown in Figures 6A and
6B, respectively. In Drosophila flies, Dak2 deficiency
results in decreased ATP levels, followed by inhib-
ited proteasome activity. Consequently, the activi-
ties of transcription factors dif and dorsal are de-
creased, while the inhibitory activities of senseless
are increased, resulting in decreased expression of
target genes for proteasome subunits and mitochon-
drial translational systems. Furthermore, Dak2 de-
pletion induces production of ROS, accumulation of
AMP, and expression of drosomycin independently
of the toll pathway. In humans, AK2 mutation re-
duces proteasome activity by lowering ATP levels
and inhibits NF-κB activity while activating Gfi-1.
Hence, transcriptional insufficiencies in cells with
inactive AK2 reduce the expression of proteasome
subunits and proteins of mitochondrial and hema-
topoietic translational systems, resulting in sensori-
neural deafness and impaired immunity, respec-
tively. Further analyses are required to confirm
these hypotheses.
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CONCLUSIONS

Dak2 is an essential gene for the development of
D. melanogaster . Deletion of Dak2 resulted in per-
turbations of morphogenesis and larval develop-
ment by affecting gene expression patterns and
downregulating genes encoding proteasomal sub-
units and mitochondrial translation machinery, thus
reducing target gene expression. The present analy-
ses indicate the utility of Dak2 knockout flies in in-
vestigations of mechanisms of RD phenotypes and
may facilitate future developments of therapeutic
strategies for RD patients.
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