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Chapter 1

General Introduction

1.1 Introduction

An artificial neural network has been investigated by many researchers for a long time. The

artificial neural network is known to solve nonlinear tasks; thus, it is often used to a brain signal

processing, a clustering, data mining, feature extraction, and so on. Among them, Multi-Layer

Perceptron is a hot point of related researches. In 1986, D.E. Rumelhart present a new learning

algorithm of a perceptron which is backpropagation (BP) algorithm [1]. In the BP algorithm,

we can obtain a good weight of connection between neurons and neurons from a derivative

of an objective function. By the BP algorithm, the artificial neural network is applied to

various nonlinear problems; thus, the artificial neural network was greatly attracted attentions.

However, the BP algorithm included many problems such as the vanishing of gradient and

the curse of dimensionality. If the neural network becomes higher dimensions, the gradient of

the objective function becomes very small; thereby, it could not be applied the difficult task.

Recently, some researchers proposed new network model and learning algorithm such as deep

belief network [2] and an autoencoder [3]. These works became possible to use a multilayer

network well. And also, a computer’s processing speed and a distributed processing improved

in recent years. From these reasons, currently, the large network can be simulated and many

researchers undertake research on the large artificial neural network; thereby, the artificial

neural network is re-evaluated.

The adult human brain and the rest of the central nervous system comprise up to one trillion

nerve cells, including excitable nerve cells and synapses. The cells in the central nervous system

are classified into two types, namely, neurons and glia, including astrocytes and oligodendro-

cytes. Many studies have investigated the biological features of neurons and their functions.

Neurons can transmit and gather electrochemical signals from each other , thereby accomplish-
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ing such brain tasks as thinking and memory. So far the astrocytes of the glia had not been

investigated deeply because the functions of astrocytes in the brain were difficult to investi-

gate. Hence, these cells were considered to be merely support cells for the neurons. Recently,

researchers discovered that an astrocyte can transmit signals by adjusting the concentration of

ions in the glia [4]–[6]. In addition, an astrocyte has many receptors for ions such as adenosine

triphosphate (ATP), glutamic acid (Glu), and calcium ions (Ca2+). These ions are important

for brain function because neurons also use ATP and Glu in synapses, and astrocytes generates

Ca2+ concentration wave [7][8]. Among them, I have focused on Ca2+ because astrocytes in-

duce ATP, D-serine, etc. in accordance with changes in Ca2+ concentration [9]–[12]. ATP and

D-serine directly influence the membrane potentials of neurons. A Ca2+ concentration wave is

transmitted to the astrocytes in a wide range of the brain. The neurons are also influenced by

the Ca2+ concentration wave through the ions emitted from the astrocytes. Thus, astrocyte

functions relate closely to brain functioning. Therefore, on the basis of the astrocyte functions,

I consider the modeling of astrocyte functions in an artificial neural network (ANN).

Recently, many kinds of ANN models have been proposed and widely applied in modern

technology. A multi-layer perceptron (MLP) is a feed forward ANN comprising layers of neu-

rons. In an MLP, the neurons comprise the neuron layers, and a neuron in one layer connects

only with neurons in other layers. Then, I can obtain the ideal input-output relation of an

ANN by setting up weights of network connections. In general, a backpropagation algorithm

is used for determining connection weights [1]. Using the BP algorithm, an MLP can be used

for various tasks such as pattern recognition, machine learning, and data mining. However,

MLPs involve two problems. First, an MLP is trapped in a local minimum because the BP

algorithm uses the steepest decent method. Second, an MLP does not have connections be-

tween neurons in the same layer. Furthermore, the neurons in a layer do not have position

dependency in an MLP. Simulated annealing (SA) [13] can be used to improve the BP algo-

rithm [14][15]. In SA, the network searches a wide range with the objective function, and the

searching range decreases with time. In this way, the SA can find a global solution. Moreover,

a modeling of glial functions in an ANN was reported by A.B. Porto-Pazos, A. Alvarellos, and

others [16]–[18]. These studies showed that glia improved the performance of a feed forward

neural network. That work drew attention to the relationship between glia and neurons. In

my model, I focus on the relationship among glia. I consider that a glial network can provide



4 Chapter 1 General Introduction

position relationships to neurons.

In this study, I propose a new MLP with a pulse glial chain (PGC) inspired by the functions

of astrocytes. All glia are individually connected to the neurons in the hidden layer of the

MLP and have an interactive effect in the glial network. A neuron output is greater than a

glial excitation threshold, hence it can excite a glial cell. The excited glial cell generates a

pulse, and the pulse influences the excitation threshold of the neuron and the states of the

neighboring glia. The glial pulse is attenuated exponentially and induces a pulse chain. The

neighboring glia are excited and generate pulses subsequent to those of the first excited glial cell,

thereby propagating the pulse in the glial network. The generated pulse is transmitted to the

connected neuron and influences the excitation threshold of this neuron. This pulse accelerates

the convergence of the weight update of the connected neuron because the pulse retains the

large value of the neuron. A neuron output greater than the glial excitation threshold almost

converges to a local optimum value, which is therefore retained by the pulse. The neighboring

neurons obtain energy from the pulses propagated by other glia. The influence of a pulse

is independent of the states of the neighboring neurons. Therefore, the neighboring neurons

deviate from the local optimum values of their neighboring neurons. I consider that the pulse

glial chain (PGC) accelerates the learning of the entire MLP network. This study confirms that

the MLP with PGC has better performance than the standard MLP in learning time series,

solving the Proben1 [19], and solving the two-spiral problem (TSP).



Chapter 2 Basic Theory about Artificial Neural Network 5

Chapter 2

Basic Theory about Artificial Neural

Network

In this chapter, I introduce a basic theory about artificial neural network. The artificial

neural networks are two general models of feed forward networks and recurrent network. Two

models are used for solving various nonlinear tasks, and these are used as usage. In this

study, I focus on the feed forward network because it has currently attracted many researchers

attentions for a solver of nonlinear classification.

2.1 Multi-Layer Perceptron

A perceptron was proposed by Rosenblatt in 1958 [20]. It is based on a formal neuron.

In addition, the perceptron is simply and is presented the neuron well. However, Minsky and

Papert confirmed a simple perceptron which was constructed from two layers could not solve a

linearly-inseparable problem [21]. In 1986, Rumelharts proposed a BP algorithm for learning

of the perceptron [1]. The perceptron can solve the linearly-inseparable problem by extending

to multilayer. The basically MLP is shown as Fig. 2.1. In the MLP, the neurons have multi

input and one output. The output of the neuron is calculated by Eq. (2.1).

yi(t+ 1) = f

 n∑
j=1

wij(t)xj(t)− θi(t)

 , (2.1)

where y is the output of the neuron, w is the weight of the connection, x is the input of the

neuron, and θ is the excitation threshold of the neuron. The output of the neuron inputs the

neurons in next layer.

2.2 Back Propagation

In the MLP, the network output is decided by the connecting weight between the neurons.

For optimized weight, we often use the BP algorithm. This algorithm is one of a supervised
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Neuron

Figure 2.1 Multi-Layer Perceptron.

learning and uses the steepest descent method. In this algorithm, we compare network outputs

and supervised values and update the connecting weight between the neurons for decreasing

the error. The error is described by Eq. (2.2).

E =
N∑
i=1

(Ti −Oi), (2.2)

where E is error, T is supervised value, and O is output of the neuron in the output layer.

The updating weight is calculated from a partial differentiation of the error; thus, the updating

weight is described by Eq. (2.3).

w = −η∂E
∂w

(2.3)

where η is a learning coefficient. We can obtain every weight from Eq. (2.3) by using chain

rule. For network training, we repeat this sequence.

By the learning of network, the MLP can solve the linearly-inseparable problem. However,

the BP algorithm has some problems such as a local minimum and a disappearance of the

gradient. In the BP algorithm, the network learns from the partial differentiation of the error.

The error function is generally complex, and it has many local minimum. When the network

trapped into a local minimum, the learning of the network converges; thus, the BP algorithm

highly depends on the initial condition. Moreover, the derivative is disappointed when the

number of layers are increased. In this case, the network also can not learn by the BP algorithm.

We need to consider some methods for these problems when we use the BP algorithm.
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Chapter 3

Proposed Method

In this study, I propose a PGC inspired by the features of astrocytes. The glia are individu-

ally connected to neurons in the hidden layer and influence neighboring glia. The glia are only

connected to the neurons in the hidden layer, because the number of neurons in the input and

output layers depends on the simulation tasks. In addition, I consider that having connections

within the same layer is important for the MLP. The conventional MLP already has connec-

tions between different layers. For the reasons stated above, I connect glia to neurons only to

compare the glial effects in several different tasks. The proposed MLP with PGC is shown in

Fig. 3.1.

3.1 Glial pulse chain

All glia are connected to the nearest neurons in the hidden layer of an MLP and generate

pulses according to the outputs of the connected neurons. Here, I define the glial output

function as in Eq. (3.1).

ψi(t+ 1) =

[
1, {θn < yi ∪ ψi+1(t−D) = 1 ∪ ψi−1(t−D) = 1)} ∩ (t− τi > θg)

γψi(t), else,
, (3.1)

where ψ is the output of a glial cell, i is the position number of a glial cell in the hidden layer,

y is the output of the connected neuron, θn is the excitation threshold of the glial cell, D is

the delay time of a glial effect, τ is the time of the previous pulse generation, θg is the period

of inactivity, and γ is the attenuation parameter. In the excitation condition of Eq. (3.1),

yi > θn indicates that the neuron excites the glial cell when the neuron output is greater than

θn and has a constant value; thus, it is not changed with iteration. The glial cell is also excited

by receiving a glial pulse from its neighboring glial cell, because the glial pulse requires time

D to be transmitted to its neighboring glia, a condition described by ψi+1(t − D) = 1 and

ψi−1(t−D) = 1. The glial cell has an inactivity period θg; hence, t− τi > θg must be satisfied
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Neuron

Glia

Figure 3.1 MLP with PGC.

to generate a glial pulse. The glias do not learn based on the BP algorithm, even though the

neurons are trained based on that algorithm. The generation pattern of glial pulses changes

dynamically during MLP learning; an example pattern is shown in Fig. 3.2. In the figure, the

first glial cell is excited and generates its corresponding pulse with the excitation condition of

yi > θn as shown in Eq. (3.1). The first glial cell receives neuron output greater than θn, and

a pulse is propagated to the neighboring glial cells such that the transmitted pulse of the first

glial cell excites the neighboring glial cells according to ψi+1(t−D). Thus, the neighboring glial

cells generate the pulse with a delay from the first glial cell. Furthermore, the tenth glial cell

is excited at a time similar to that of the first glial cell, and the effect of the tenth glial cell is

also propagated to the neighboring glia. Finally, the seventh glial cell is excited independently

of the influences of the tenth and first glial cells. The seventh glial cell receives the pulse of

the tenth glial cell; however, it is not excited by using these pulses, because the seventh had

already begun the period of inactivity (i.e., to t − τi > θg.). The change in the generation

pattern of pulses depends on the neurons’ outputs, which are changed by the BP learning, and

the generation pattern Fig. 3.2 (b) is also different from Fig. 3.2 (a). From this example, we

can see that the generation pattern of pulses changes dynamically during learning.

Next, I focus on the responses of two glial cells. The outputs of the connected neurons and

the responses of two neighboring glial cells are shown in Fig. 3.3. In this figure, glial cells one
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Figure 3.2 An example of glial pulses (D = 5).

and two are connected to neurons one and two, respectively. Glial cell one neighbors glial cell

two; thus, they influence each other. During the data iterations, the input learning data are

switched in sequence with the iterations; thus, the output of a neuron changes dynamically

with the iterations. The output of neuron one is greater than the excitation threshold of the

connected glial cell one, and meanwhile, glial cell one is also excited by the output of neuron

one. Actually, I just observe the pulse generation in glial cell one, because the output of neuron

two is less than the excitation threshold of the connected glial cell two. However, glial cell one

influences the state of glial cell two, and glial cell two is excited by glial cell one. Thus, glial

cell two generates the pulse with a delay.
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Figure 3.3 Different patterns of the two glia excitations (θn = 0.9, D = 5, γ = 0.8, and

α = 0.5).

3.2 Neuron updating rule

A neuron is multi-input and single-output, and we can change its output by tuning con-

nection weights between neurons. The standard updating rule for a neuron is defined as in

Eq. (2.1). In this equation, the weight of the connection and the excitation threshold of the

neuron are learned based on the BP algorithm. Next, I show my proposed neuron updating

rule. Because glia may increase the membrane potential of a neuron in a biological system, I

add the glial effect ψ to the inner state of the neuron. Actually, the Ca2+ concentration of an

astrocyte liberates the ions (Glu, ATP, etc.) [22][23], and these ions influence the membrane

potential of the neuron. The inner state of the neuron increases as a result of the glial effect. In

this study, this updating rule is used only for the neurons in the hidden layer. Since I emphasize

the position relationship of neurons in the same layer, I arrange the glias in one dimension to

enable observation of the position relationship of neurons. The updating rule proposed in this

study is described by Eq. (3.2):

yi(t+ 1) = f

 n∑
j=1

wij(t)xj(t)− θi(t) + αψi(t)

 , (3.2)
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where α is the weight of the glial effect. The peak of the generated pulse changes according

to α. In this study, I choose an optimal value of α using heuristic search. In this expression,

the weight of connection and the excitation threshold of the neuron are obtained based on

the BP algorithm just as in the standard neuron updating rule. However, the glial effect is

independent of learning. ψ is updated using Eq. (3.1). Equations (2.1) and (3.2) are used as

sigmoidal functions to a neuron activating function expressed as in Eq. (3.3).

f(a) =
1

1 + e−a
, (3.3)

where a is the inner state of the neuron. Several activating functions, such as tangent hyperbolic,

using absolute value have been proposed for modeling MLP performance [24]. In this study,

I use the sigmoidal function as the activating function. This function is basic and is used

frequently [25] [26] because the derivative can easily be calculated, and it can easily be applied

to the BP algorithm. In my method, the activation function does not have an essential role;

therefore, I can change the sigmoidal function to other functions.
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Chapter 4

Simulations

In this section, I show my experimental results based on computer simulation of three

different tasks. I use six types of MLP for the performance comparison.

(1) Conventional MLP

(2) MLP with random noise

(3) MLP with SA noise

(4) MLP with randomly timed pulses

(5) MLP with glial pulse

(6) MLP with PGC

The network structures for the six types of MLP models are shown in Fig. 4.1. A conventional

MLP (1) does not have an external unit. An MLP with random noise (2) has a uniform random

noise that influences the excitation threshold of neurons in the hidden layer. An MLP with SA

noise (3) has a normally distributed noise that influences the excitation threshold of neurons

in the hidden layer and whose amplitude decreases exponentially with iteration. An MLP with

randomly timed pulses (4) has pulses at random times in the neurons in the hidden layer.

In such an MLP, the neurons in the hidden layer have a pulse that influences the excitation

threshold of the neuron, and this pulse is generated at random. In an MLP with a glial pulse

(5), the glia respond to the output of the connected neuron in the same manner as the proposed

MLP with PGC (6); however, the generated pulse is not propagated to neighboring glia. Thus,

the generated pulse only increases the excitation threshold of the connected neuron. In the

simulations, the optimal noise and pulse amplitude of each method is decided heuristically. In

addition, I obtain the proper parameters of the PGC based on a large number of simulation

experiments with various parameter values. Thus, the parameters are determined as θn = 0.9,
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D = 1, θg = 45, and γ = 0.8.

… …
…

…

Uniformed 
random noise

…

Random
timing pulse

(1) (2)

(4)

(5) (6)

Glia

Neuron

…

Normal 
distribution noise

(3)

t

Figure 4.1 Network structures of five MLPs.

Figure 4.2 is the output of external units in the MLPs (2)–(3). In this figure, the time scale

is an assumption. The MLP with random noise has the uniformed random noise, and the noise

amplitude is not changed with time shown as Fig. 4.2 (a). The MLP with SA noise has the

normal distribution noise, and the noise amplitude is decreased with time shown as Fig. 4.2 (b).

The MLP with randomly timed pulses has the pulse witch is generated at random shown as

Fig. 4.2 (c). The MLP with glial pulse has the pulse from the glia, and the glia is only excited

by the connecting neuron output shown as Fig. 4.2 (d). The MLP with PGC has the pulse
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from the glia, and the glia is excited by the connecting neuron output and the neighboring glial

pulse shown as Fig. 4.2 (e).

Here I use the mean square error (MSE) described by Eq. (4.1) as the error evaluation.

MSE =
1

N

N∑
n=1

(Tn −On)
2, (4.1)

where T is the target value, O is the output of MLP, and N is the number of learning data.

In this study, I use the average, the minimum, the maximum, the standard deviation, and

the accuracy of the MSE to evaluate the validation accuracy of the experimental result. MLP

performance is better when the MSE is smaller and the validation accuracy is larger. I calculate

the validation accuracy using a k-fold cross-validation estimate. Here, I fix the value of k to ten,

and obtain the validation accuracy for each simulation, and I also apply a Wilcoxon signed-rank

test to the experimental results. The Wilcoxon signed-rank test is one of the nonparametric

tests. I compare two results obtained from different methods and obtain a sampling probability.

If the sampling probability is less than 0.05, I conclude that the results have a broad distinction.

In contrast, if the sampling probability is greater than 0.05, I am not sure whether two results

are good or not.



Chapter 4 Simulations 15

Figure 4.2 Difference of output of external units. (a) MLP with random noise. (b) MLP

with SA noise. (c) MLP with randomly timed pulses. (d) MLP with glial pulse.

(e) MLP with PGC.
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4.1 Task 1: Learning time series

For the first task, I use successive chaotic time series as data sets, with the skew tent map

for the generation of the time series described by Eq. (4.2).

ϕi(t+ 1) =



1

Ai

ϕi(t) (0 ≤ ϕi(t) ≤ Ai)

1

1− Ai

(1− ϕi(t)) (Ai < ϕi(t) ≤ 1)

, (4.2)

I use A1 = 0.45 and A2 = 0.55. The generated chaotic time series vary with the value of A. The

data set includes the two successive chaotic time series obtained with A1 and A2. An example

of the successive chaotic time series is shown in Fig. 4.3. In this simulation, the MLP comprises

three layers (connected 4-40-1), and the simulation conditions are as shown in Table 4.1. The

column headings in the table indicate the following: the number of inputs is indicated for one

round of learning, the number of classifications is for the Boolean classification of the input

data, the training data sets are for the number of data sets used for learning, the unlearned

data sets are for the number of data sets used to show the performance of unlearning data sets,

and the validation is for the number of data sets used for validation obtained from ten-fold

cross-validation.

Table 4.1 Conditions of chaotic time series.

Num. of
inputs

Num. of
class.

Training
data sets

Unlearned
data sets Validation

4 2 200 200 20

I input four successive chaotic time series (ϕi(t), ϕi(t + 1), ϕi(t + 2) and ϕi(t + 3)) to the

neurons in the input layer, and the MLP learns the correlating classification. And also, ϕ1(t)-

ϕ1(t+3) and ϕ2(t)-ϕ2(t+3) are switched with time. I prepare ten data sets with each data set

including 200 successive chaotic time series, obtained from ten different initial values. I use ten

fold cross-validation for validation accuracy; thus, 180 and 20 data are used for learning and

validation, respectively. I obtain the simulation results from 100 trials for each data set; thus,

the total number of trials is 1,000, with each trial having 50,000 iterations.

Table 4.2 shows the statistical results from 1,000 trials. In this simulation, the validation

accuracies are approximately 90 in the MLPs. From Table 4.2, we can see that the MLP with

PGC (6) has the best average. For the maximum, the MLP with PGC (6) obtains the best value
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Figure 4.3 Successive chaotic time series obtained by skew tent map.

of 0.11087, and its standard deviation 0.01347, the smallest of all. However, for the minimum,

the MLP with random noise (2) obtains the best value of 0.00000, though the other MLPs also

obtain adequate results.

Table 4.3 shows the Wilcoxon signed-rank test for the MLPs. The sampling probability

values are less than 0.05; thus, I guarantee that the differences in the average performance of

the MLPs in Table 4.2.

Table 4.2 Learning performance of time series.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.02868 0.00008 0.14008 0.02650 89.836

(2) 0.02464 0.00000 0.12016 0.02172 90.054

(3) 0.02841 0.00009 0.14011 0.02516 88.758

(4) 0.02804 0.00001 0.14003 0.02548 89.906

(5) 0.02840 0.00007 0.14010 0.02629 89.821

(6) 0.00756 0.00007 0.11087 0.01347 94.319

Table 4.4 shows a classification performance of unlearning time series. I prepare the un-

learning time series by using different initial values, with the number of data sets for unlearning

time series being the same as for the learning data sets. I also provide the unlearning time

series to the trained MLPs and compare the output of the MLPs with the true classification of

the chaos generated using Eq. (4.2).
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Table 4.3 Wilcoxon signed-rank test of learning performance of time series.

(1) (2) (3) (4) (5) (6)

(1) - 0.000 0.009 0.000 0.000 0.000

(2) 0.000 - 0.000 0.011 0.000 0.000

(3) 0.009 0.000 - 0.000 0.006 0.000

(4) 0.000 0.011 0.000 - 0.000 0.000

(5) 0.000 0.000 0.006 0.000 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

In this result, the validation accuracy becomes approximately 87 for every MLP. The

proposed MLP with PGC (6) has the best average, maximum, and standard deviation. The

MLP with random noise (2) has the best minimum. These results are similar to those for

learning performance.

Table 4.5 shows the Wilcoxon signed-rank test for the classification performance. The value

of the sampling probability of the MLP with PGC (6) is less than 0.05 as compared with

the others. I guarantee that the my method has better performance than the others, because

average of the proposed MLP with PGC (6) in Table 4.4 is less than the others. Although the

value of the sampling probability of the MLP with random noise (2) is smaller than the value

of the conventional MLP, this value is larger than the others. Therefore, I cannot say that the

MLP with random noise (2) is better than the others.

Table 4.4 Classification performance of unlearning time series.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.10164 0.00013 0.26408 0.06479 86.361

(2) 0.09946 0.00000 0.28116 0.06759 87.768

(3) 0.10164 0.00013 0.26408 0.06479 86.225

(4) 0.10094 0.00004 0.26800 0.06745 87.637

(5) 0.10179 0.00002 0.25382 0.06386 86.668

(6) 0.05681 0.00009 0.24771 0.05097 89.683
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Table 4.5 Wilcoxon signed-rank test of classification performance of time series.

(1) (2) (3) (4) (5) (6)

(1) - 0.258 1.000 0.417 0.959 0.000

(2) 0.000 - 0.258 0.724 0.154 0.000

(3) 0.000 0.000 - 0.417 0.959 0.000

(4) 0.000 0.011 0.000 - 0.386 0.000

(5) 0.000 0.000 0.006 0.000 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

4.2 Task 2: Proben1

In this simulation, I use Proben1, the benchmark problems for ANNs [19]. I choose Cancer,

Card, and Glass from the data sets of Proben1. Every data set has multivariable inputs and a

Boolean supervised signal. The number of input dimensions and classifications of each task is

shown in Table 4.6.

Table 4.6 Data sets of Proben1.

Data
Num. of
inputs

Num. of
class.

Training
data sets

Unlearned
data sets Validation

Cancer 9 2 350 174 35

Card 51 2 345 172 34

Glass 9 6 107 53 10

Here, the numbers of input dimensions and classifications for each task depends on the

number of input and output neurons, respectively. In addition, the number of neurons in the

hidden layer is 40, and the MLP comprises 9-40-2, 51-40-2 and 9-40-6 for solving Cancer, Card,

and Glass, respectively. The data sets are as in Table 4.6. Thus, I obtain the simulation results

from 100 trials for each benchmark problem, and each trial has 50,000 iterations. Table 4.7

shows the learning performance of the MLPs for each benchmark problem.

In this simulation, the validation accuracies are approximately 94, 83, and 91, in Cancer,

Card, and Glass, respectively. On an average, the proposed MLP with PGC (6) is the best of

all for every benchmark task. In the minimum and maximum results, the proposed MLP with

PGC (6) is the best for Cancer and Card, whereas the MLP with SA noise (3) has the best
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minimum and maximum results for Glass.

Table 4.7 Learning performance of Proben1.

Average Minimum Maximum Std. Dev. Accuracy [%]

Cancer (1) 0.00569 0.00286 0.01429 0.00132 93.891

(2) 0.00592 0.00287 0.01429 0.00164 94.095

(3) 0.00523 0.00001 0.00858 0.00129 94.404

(4) 0.00578 0.00286 0.01429 0.00141 93.963

(5) 0.00561 0.00286 0.02001 0.00207 93.983

(6) 0.00492 0.00000 0.00858 0.00177 94.255

Card (1) 0.01856 0.00581 0.03479 0.00653 83.553

(2) 0.01886 0.00581 0.03479 0.00638 83.614

(3) 0.01839 0.00581 0.03479 0.00657 89.195

(4) 0.01864 0.00581 0.03479 0.00668 83.556

(5) 0.01886 0.00294 0.03193 0.00610 83.606

(6) 0.01769 0.00002 0.03189 0.00702 83.741

Glass (1) 0.01058 0.00019 0.02942 0.00625 91.169

(2) 0.01091 0.00177 0.02373 0.00547 91.452

(3) 0.00952 0.00010 0.02245 0.00552 92.344

(4) 0.01081 0.00022 0.02411 0.00584 91.476

(5) 0.00903 0.00031 0.05939 0.00755 91.540

(6) 0.00892 0.00031 0.02814 0.00628 91.750

Tables 4.8-4.10 show results of the Wilcoxon signed-rank test for each model. In the learning

of Cancer, the resulting evaluation of the proposed MLP with PGC (6) is less than 0.05. I

guarantee that the my method has better performance than the others, because average of the

proposed MLP with PGC (6) in Table 4.7 is less than the others. In contrast, in the learning

of Card, the experimental result of my method is greater than 0.05. Although I cannot verify

the accuracy of the average, the average result of the proposed method is better than that of

the others. In the evaluation of Glass, the value of the sampling probability of the MLP with

PGC (6) is less than 0.05 as compared with the conventional MLP (1), the MLP with random

noise (2), and the MLP with randomly timed pulses (4); however, these values are greater than
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0.05 for the MLP with SA noise (3) and the MLP with a glial pulse (5).

Table 4.8 Wilcoxon signed-rank test of learning performance of Cancer.

(1) (2) (3) (4) (5) (6)

(1) - 0.000 0.490 0.000 0.000 0.000

(2) 0.000 - 0.000 0.000 0.000 0.000

(3) 0.490 0.000 - 0.062 0.000 0.004

(4) 0.000 0.000 0.062 - 0.000 0.000

(5) 0.000 0.000 0.000 0.000 - 0.000

(6) 0.000 0.000 0.004 0.000 0.000 -

Table 4.9 Wilcoxon signed-rank test of learning performance of Card.

(1) (2) (3) (4) (5) (6)

(1) - 0.026 0.086 0.981 0.022 0.795

(2) 0.026 - 0.008 0.075 0.562 0.731

(3) 0.086 0.008 - 0.073 0.006 0.999

(4) 0.981 0.075 0.073 - 0.062 0.631

(5) 0.022 0.562 0.006 0.062 - 0.255

(6) 0.795 0.731 0.999 0.631 0.255 -

Moreover, I show the classification performance of the unlearning data sets in Proben1. I

input the unlearning data sets to the trained MLPs and compare outputs of the MLPs with

the ideal classifications. In this simulation, the validation accuracies are approximately 98, 91,

and 91, in Cancer, Card, and Glass, respectively. The classification performance is shown in

Table 4.11, and the trend of the results is similar to that of Table 4.7. In every simulation,

the MLP with PGC (6) obtains the best performance on average and the minimum for Cancer,

Card, and Glass. The MLP with PGC (6) obtains the best maximum result only for Cancer;

however, the MLP with SA noise (3) obtains the best maximum result for Card and Glass.

Tables 4.12-4.14 show the results of the Wilcoxon singed-rank test in the classification of

Cancer, Card, and Glass, respectively. The value of the sampling probability of the MLP with

PGC (6) is less than 0.05 compared with the others in Cancer and Card. I guarantee that the

MLP with PGC (6) has better classification performance than the others. For Glass, the value



22 Chapter 4 Simulations

Table 4.10 Wilcoxon signed-rank test of learning performance of Glass.

(1) (2) (3) (4) (5) (6)

(1) - 0.199 0.274 0.102 0.003 0.028

(2) 0.199 - 0.056 0.630 0.000 0.000

(3) 0.274 0.056 - 0.106 0.130 0.211

(4) 0.102 0.630 0.106 - 0.000 0.002

(5) 0.003 0.000 0.130 0.000 - 0.655

(6) 0.028 0.000 0.210 0.002 0.655 -

Table 4.11 Classification performance of unlearning data set of Proben1.

Average Minimum Maximum Std. Dev. Accuracy [%]

Cancer (1) 0.01686 0.01275 0.01896 0.00110 98.195

(2) 0.01662 0.01312 0.01875 0.00119 98.211

(3) 0.01757 0.01325 0.02202 0.00094 98.220

(4) 0.01671 0.01268 0.01904 0.00111 98.210

(5) 0.01679 0.01358 0.02023 0.00118 98.207

(6) 0.01501 0.01193 0.01872 0.00130 98.280

Card (1) 0.08501 0.07414 0.10364 0.00599 91.431

(2) 0.08498 0.07453 0.10399 0.00592 91.441

(3) 0.08502 0.07411 0.10342 0.00604 91.437

(4) 0.08499 0.07418 0.10365 0.00599 91.433

(5) 0.08500 0.07395 0.10367 0.00593 91.435

(6) 0.08284 0.07044 0.10400 0.00595 91.457

Glass (1) 0.08837 0.08151 0.10872 0.00401 88.255

(2) 0.08889 0.08235 0.10983 0.00430 90.996

(3) 0.08609 0.08284 0.10279 0.00322 91.212

(4) 0.08817 0.08161 0.10847 0.00394 91.074

(5) 0.08709 0.08205 0.10814 0.00405 91.049

(6) 0.08342 0.08073 0.10770 0.00409 91.033
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of the sampling probability of the MLP with PGC(6) is less than 0.05 compared with the MLP

with random noise (2), the MLP with SA noise (3), and the MLP with randomly timed pulses

(4); however, the value of the sampling probability of this MLP is greater than 0.05 compared

with the conventional MLP (1) and the MLP with a glial pulse (5).

Table 4.12 Wilcoxon signed-rank test of classification performance of Cancer.

(1) (2) (3) (4) (5) (6)

(1) - 0.001 0.000 0.000 0.001 0.000

(2) 0.001 - 0.000 0.149 0.034 0.000

(3) 0.000 0.000 - 0.000 0.000 0.000

(4) 0.000 0.149 0.000 - 0.209 0.000

(5) 0.001 0.034 0.000 0.209 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

Table 4.13 Wilcoxon signed-rank test of classification performance of Card.

(1) (2) (3) (4) (5) (6)

(1) - 0.436 0.667 0.009 0.145 0.004

(2) 0.436 - 0.293 0.634 0.511 0.008

(3) 0.667 0.293 - 0.561 0.321 0.017

(4) 0.009 0.634 0.561 - 0.370 0.010

(5) 0.145 0.511 0.321 0.370 - 0.026

(6) 0.004 0.008 0.017 0.010 0.026 -

4.3 Task 3: Two-spiral problem

For the next simulation, I use the two-spiral problem (TSP), a well-known highly nonlinear

task for ANNs [27][28]. This task has two sets of different spiral points. For learning, I input the

coordinates of the spirals to the neurons in the input layer, and the MLPs learn the classification

of two spiral points. Here, I use two different spirals comprising 98 and 130 points, respectively,

as shown in Fig. 4.4. In the classification performance, I input coordinates between zero and

one after learning. I obtain the output of the network, and determine which coordinates fits

into which spirals. The simulation conditions of each spiral are as in Table 4.15. Figure 4.5
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Table 4.14 Wilcoxon signed-rank test of classification performance of Glass.

(1) (2) (3) (4) (5) (6)

(1) - 0.000 0.057 0.000 0.045 0.065

(2) 0.000 - 0.001 0.000 0.000 0.021

(3) 0.057 0.001 - 0.360 0.411 0.036

(4) 0.000 0.000 0.360 - 0.862 0.014

(5) 0.045 0.411 0.411 0.862 - 0.063

(6) 0.065 0.036 0.036 0.014 0.063 -

Table 4.15 Conditions of TSP.

Data
Num. of
inputs

Num. of
class.

Training
data sets

Unlearned
data sets Validation

98 2 2 98 98 9

130 2 2 130 130 13

shows the ideal results of the classification of coordinates. I change the coordinates from zero

to one in increments of 0.01 and input the coordinates to the trained MLP. Thus, the number

of generated test data for the analyses of the classification performance is 101×101. Moreover,

I ensure the ideal result by calculating a norm between coordinates and spiral points. Note

that in this simulation, the MLP comprises 2-40-1 neurons.

Figure 4.4 Supervised points. (a) 98 spiral points. (b) 130 spiral points.
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Figure 4.5 Ideal classification results of two spirals. (a) 98 spiral points. (b) 130 spiral

points.

4.3.1 Spirals consisting of 98 points

First, I show the experimental results from learning 98 points in Table 4.16. In this sim-

ulation, the validation accuracies are approximately 67; however, the validation accuracies of

the MLPs are more decentralized than in the previous simulations. From Table 4.16, the per-

formance of the conventional MLP (1) is the worst among all for the average error, because

the conventional MLP (1) is often trapped in a local minimum. In the case of the MLP with

PGC (6), the average error is the smallest of all. Energy is provided to the MLPs from several

sources, and the noise providing energy to the MLP can generally escape from the local min-

imum. In addition, I can see the difference in the performance of the MLPs from this table.

Table 4.16 Learning performance for 98 points.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.04153 0.00017 0.18387 0.02637 73.573

(2) 0.03711 0.00006 0.17352 0.02946 66.674

(3) 0.02957 0.00018 0.09213 0.02080 67.513

(4) 0.03666 0.00015 0.08208 0.02195 66.512

(5) 0.03249 0.00019 0.16390 0.02147 66.948

(6) 0.02072 0.00011 0.08192 0.01782 69.345

Table 4.17 shows the evaluation of the Wilcoxon signed-rank test in the learning of 98 spiral
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points. The evaluation of the MLP with PGC (6) is less than 0.05 compared with the others;

thus, I guarantee that the result of the MLP with PGC (6) for solving this task. The MLP with

SA noise (3) has a better performance in Table 4.16; however, the evaluation of the Wilcoxon

signed-rank test is greater than 0.05. Hence, I cannot say from this simulation that the MLP

with SA noise (3) has better performance.

Table 4.17 Wilcoxon signed-rank test of learning performance of 98 points.

(1) (2) (3) (4) (5) (6)

(1) - 0.085 0.001 0.008 0.008 0.000

(2) 0.085 - 0.173 0.592 0.592 0.000

(3) 0.001 0.173 - 0.211 0.211 0.002

(4) 0.446 0.375 0.010 - 0.225 0.000

(5) 0.008 0.592 0.211 0.225 - 0.000

(6) 0.000 0.000 0.002 0.000 0.000 -

I show the classification results in Table 4.18. The results show a trend similar to that in

Table 4.16. In general, the MLP has an overlearning problem when the MLP learns more than

required, losing its generalization capability. However, the proposed MLP with PGC (6) can

still obtain better approximation and classification performances.

Table 4.18 Classification performance of 98 spiral points.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.15029 0.08085 0.21127 0.02434 76.811

(2) 0.13966 0.08083 0.20378 0.02879 77.574

(3) 0.13664 0.07611 0.21963 0.02837 81.971

(4) 0.14702 0.07965 0.20083 0.02553 77.171

(5) 0.13805 0.07529 0.20362 0.02468 78.740

(6) 0.12233 0.08140 0.17042 0.01939 80.434

Table 4.19 shows the evaluation of the Wilcoxon signed-rank test as the classification results

of the 98 spiral points, and the trend of the evaluation is similar to that shown in Table 4.17.

In addition, the evaluation of the MLP with PGC (6) ensures classification performance.
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Table 4.19 Wilcoxon signed-rank test of classification performance of 98 points.

(1) (2) (3) (4) (5) (6)

(1) - 0.005 0.001 0.329 0.001 0.000

(2) 0.005 - 0.370 0.084 0.710 0.000

(3) 0.001 0.370 - 0.006 0.747 0.000

(4) 0.329 0.084 0.006 - 0.016 0.000

(5) 0.001 0.710 0.747 0.016 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

Figure 4.6 shows examples of the classification results. I can see from Fig. 4.6 that the MLP

with PGC (6) draws only the two spirals; in contrast, the others are decoupled in some parts.

4.3.2 Spirals consisting of 130 points

Here, I show the results of the MLP learning 130 spiral points. For the TSP, simulation

difficulty increases with increasing number of points. Table 4.20 shows the approximation

results. In this simulation, the validation accuracy becomes approximately 60. The validation

accuracies of the MLPs decrease from the results in Table 4.16. From this table, the differences

of the performances are greater than for Table 4.16. The conventional MLP (1) falls into the

local minimum more often than in the learning of 98 spiral points. Moreover, the MLP with

random noise (2), the MLP with SA noise (3), the MLP with randomly timed pulses (4), and

the MLP with glial pulse (5) have performance similar to the conventional MLP (1). I often

hope that noise is efficient for highly nonlinear problems; however, I observe little improvement

in learning performance by the methods of (2)-(5). The proposed MLP with PGC (6) also

obtains energy from the glias; however, this MLP has a performance twice as good as the

others for the average, the maximum, and the standard deviation. For the minimum, the MLP

with random noise (2) obtains the best results. The minimum of the MLP with the PGC (6) is

almost the same as that of the MLP with random noise (2). From these results, I can confirm

that the proposed PGC is efficient to improving MLP performance.

Table 4.21 shows the evaluation of the Wilcoxon signed-rank test for the learning perfor-

mance of 130 spiral points. The evaluation of the MLP with PGC (6) becomes zero; thus, I

guarantee that the result in Table 4.20.
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(b) MLP with random noise (2).

(c) MLP with SA noise (3).
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(d) MLP with randomly timed

pulses (4).

(e) MLP with glial pulse (5).
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(f) MLP with PGC (6).

Figure 4.6 Classification results of unlearned coordinates.
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Table 4.20 Learning performance of 130 points.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.12269 0.00831 0.23857 0.05554 61.194

(2) 0.10847 0.00047 0.24278 0.05742 62.847

(3) 0.09735 0.00107 0.24355 0.05356 64.960

(4) 0.11439 0.00740 0.26349 0.05742 59.386

(5) 0.09393 0.00130 0.25378 0.05544 59.386

(6) 0.03830 0.00063 0.12190 0.02589 62.368

Table 4.21 Wilcoxon signed-rank test of learning performance of 130 points.

(1) (2) (3) (4) (5) (6)

(1) - 0.091 0.001 0.541 0.001 0.000

(2) 0.091 - 0.173 0.514 0.106 0.000

(3) 0.001 0.173 - 0.071 0.682 0.000

(4) 0.541 0.514 0.071 - 0.012 0.000

(5) 0.001 0.106 0.682 0.012 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

Table 4.22 shows the classification results for learning 130 spirals points, and the MLP with

PGC (6) is the best of all by nearly every measure; therefore, I conclude that pulse propagation

is important for MLP performance.

Table 4.23 shows the evaluation of the Wilcoxon signed-rank test of classification perfor-

mance of 130 spiral points. The evaluation of the MLP with PGC (6) is less than 0.05 compared

to the others; thus I guarantee that the differences in the average results in Table 4.22.

Figure 4.7 shows dependencies of learning and classification performances for the weight

of glial effect α in the proposed MLP with PGC (6). In addition, I show a change in the

performances of the MLP with random noise (2) and in the MLP with SA noise by changing

the amplitudes of the uniform random and a SA noises, respectively. Note that I change the

weight of the glial effect α and the amplitude of the uniform random noise from zero to one,

and when α is equal to zero, the proposed MLP with PGC (6) is the same as the conventional

MLP (1). Generally, the learning performance corresponds with changes in the classification
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Table 4.22 Classification performance of 130 points.

Average Minimum Maximum Std. Dev. Accuracy [%]

(1) 0.21782 0.10565 0.29477 0.03858 71.968

(2) 0.19278 0.10460 0.33065 0.04434 72.701

(3) 0.19671 0.13272 0.28846 0.03166 75.660

(4) 0.20432 0.12082 0.31958 0.03851 72.451

(5) 0.19397 0.12303 0.29973 0.03730 74.182

(6) 0.14731 0.08792 0.23723 0.02826 75.870

Table 4.23 Wilcoxon signed-rank test of classification performance of 130 points.

(1) (2) (3) (4) (5) (6)

(1) - 0.091 0.000 0.017 0.000 0.000

(2) 0.000 - 0.403 0.057 0.667 0.000

(3) 0.000 0.403 - 0.186 0.543 0.000

(4) 0.017 0.057 0.186 - 0.051 0.000

(5) 0.000 0.667 0.543 0.051 - 0.000

(6) 0.000 0.000 0.000 0.000 0.000 -

performance in the proposed MLP with PGC (6). The proposed MLP with PGC (6) has the

best result for α equal to 0.5. In contrast, the MLP with random noise (2) has the best result

with the amplitude of the uniform random noise equal to 0.2 in learning performance. In the

case of the MLP with SA noise (3), the results are nearly unchanged with the amplitude of the

noise at any time. I consider that the normal distribution noise rarely generates a large value

in the transient state; thus, the dependency of the amplitude of the noise is lower with SA.

From the difference in the results between the proposed MLP with PGC (6) and the MLP with

random noise (2), the proposed MLP with PGC (6) can with a larger α than the MLP with

random noise (2), because the glia provide energy to the network instantaneously through the

generated pulse. Furthermore, I can use the large noise amplitude for the MLP with SA noise

(3); however, the normal distribution noise is minimally effective for MLP performance. Thus,

the MLP can reduce the error even if it receives a pulse of large amplitude from the glia. From

this result, I conclude that the proposed PGC is more suitable for difficult tasks. In fact, my
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model improves MLP performance more in more difficult tasks.

Figure 4.7 Dependency of the learning and classification performances for the weight of

glial effect α.

Next, I show the dependency of learning performance on the number of neurons in the

hidden layer of the MLPs in Fig. 4.8. We know that the performance of each MLP improves

with the number of neurons, but once the number of neurons in the hidden layer is greater than

50, the learning performance decreases or remains on the same level, because the MLP requires

long iterations for convergence when it contains many neurons. In the case of the MLP with

PGC (6), the learning performance is similar to that of the others when the number of neurons

is small. In addition, when the number of neurons increases, the difference in performance

between the MLP with PGC (6) and the others increases. Thus, I can consider that the effect

of the glia increases with the number of neurons. In the PGC, the pulse is propagated to the

other glia. If the number of neurons is small, the pulse propagation finishes instantaneously;

therefore, PGC has no effect on the MLP.

Finally, I show examples of the classification of unlearned coordinates results in Fig. 4.9.

The conventional MLP (1) cannot represent the two spirals, and in the MLP with random noise

(2) and the MLP with randomly timed pulses (4), the spirals are divided into several parts.

The spirals of the MLP with SA noise (3) have a false area in the center of the image. The
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Figure 4.8 Dependency of learning and classification performance for the number of neu-

rons in the hidden layer.

MLP with glial pulse (5) draw a part of spirals; however, there exists many errors in the upper

area of the figure. The spirals of the MLP with PGC (6) are divided in only one part.
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(b) MLP with random noise (2).

(c) MLP with SA noise (3).
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(d) MLP with randomly timed

pulses (4).

(e) MLP with glial pulse (5).
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(f) MLP with PGC (6).

Figure 4.9 Classification results of unlearned coordinates.
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Chapter 5

Discussions

In this section, I discuss the effects of the PGC on the MLP.

Firstly, I discuss the updating rule of the weights based on the BP algorithm. The updating

rule of the weights between the hidden and output layers is as follows.

∆wkj = η(Tk −Ok)Ok(1−Ok)Hj, (5.1)

where T is the target point, O is the output of the neuron in the output layer, H is the output

of the neuron, and η is the learning coefficient in the hidden layer. The updating rule of the

weights between the input and hidden layers is expressed by Eq. (5.2).

∆wji = ηXiHj(1−Hj)
n∑

k=1

wkj(Tk −Ok)Ok(1−Ok), (5.2)

where X is the output of the neuron in the input layer. Equations (5.1) and (5.2) are pro-

portional to H and H(1 − H), respectively. The glial excitation depends on the outputs of

neurons in the hidden layer; hence, I consider the relationships between the two equations and

a neuron’s output in the hidden layer. The weight update between the hidden and output lay-

ers, and the weight update between the input and hidden layers depend on H and H(1−H),

respectively. The descriptions of H and H(1−H) are illustrated in Fig. 5.1. I can see from this

figure that the weight update between the hidden and output layers increases with H and the

weight update between the input and hidden layers decreases when H becomes greater than

0.5.

Next, I show total updates of the weights and the ratio of the number of pulse generations

in each glial cell to the total iteration in Figs. 5.2 and 5.3. I obtain the ratios of number of

iterations and the number of neurons whose output is greater than the excitation threshold of

the glia to the total number of iterations.

Figure 5.2 compares the characteristics of the hidden and output layers in the conventional
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Figure 5.1 Input-output characteristics of H(1−H).

and the proposed MLP. I can see that there is a positive correlation between the total updates of

weights and the number of pulse generations in Figs 5.2 (a) and (b). The characteristics relating

to the hidden and output layers are in accordance with Eq. (5.1); however, the correlation

between the total updates of weights and the number of pulse generations of the proposed

MLP is much weaker than that of the conventional MLP. The correlation coefficient of the

conventional MLP is 0.84, while the correlation coefficient of the proposed MLP is 0.65.

Figure 5.3 compares the characteristics of the input and hidden layers in the conventional

and the proposed MLP. I can see that there is a negative correlation between the total updating

weights and the number pulse generations in Figs. 5.3 (a) and (b). The characteristics relating

the input and hidden layers are in line with Eq. (5.2); however, the correlation between the

total updates of weights and the number of pulse generations of the proposed MLP is much

weaker than that of the conventional MLP. The correlation coefficient of the conventional MLP

is −0.65, whereas the correlation coefficient of the proposed MLP is −0.21.

In the characteristics of the proposed MLP, I can see the position dependency of the total

updates of the weights at the 20th and 35th neurons. The generated pulse increases the con-

nected neuron output, and this pulse is propagated to the neighboring glia. The propagated

pulse increases the outputs of the neighboring neurons irrespective of the inner state of the

neighboring neurons, thereby displacing the learning points of the neighboring neurons. Thus,

the updates of the weights in the neighboring neurons are changed, and the correlation coef-

ficient of the proposed MLP is decreased. Therefore, I conclude that the neurons influence
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the neighboring neurons through the glial pulse generation, thereby improving the learning

performance of the MLP.

Finally, I investigate the updated weights in detail when the MLPs learn chaotic time

series. The updated weights are placed into five classes according to the state of the glial pulse.

I periodically obtain the average of the updated weights of the hidden and output layers that

meet the following requirements for a fixed period and unify the updated weights obtained from

the same requirements of the neurons. The five types of updated weights are as follows: (A)

dwgp(τgp) is the updated weight when the pulse input to the excitation threshold of the neuron

and the glia is excited by the connected neuron, (B) dwgp(τgp − 1) is the updated weight when

the pulse is generated, (C) dwrp(τrp) is the updated weight when the neuron receives another

glial pulse, (D) dwrp(τrp − 1) is the updated weight when another glial pulse was propagated

previously, and (E) dwnp(τnp) is the updated weight when the connected glial pulse becomes

statistically small. Figures 5.4 and 5.5 show the updated weight in the conventional MLP (1)

and the MLP with PGC (6), respectively, during the iteration.

In Fig. 5.4, I assume the pulse generation of glia based on the proposed method; however,

this pulse is not input to the neuron. dwgp(τgp) overlaps with dwgp(τgp − 1), and dwrp(τrp)

overlaps with dwrp(τrp−1) and dwnp(τnp). According to this characteristic, the updated weight

is not influenced for a short time. Moreover, the updated weight increases when the glia

generate the pulse for the connected neuron because dwgp(τgp) and dwgp(τgp−1) are larger than

dwrp(τrp), dwrp(τrp − 1), and dwnp(τnp). In the error curve shown as MSE, the error reduction

converges earlier.

In contrast, the error curve oscillates in Fig. 5.5, and every updated weight is different in

comparison with Fig. 5.4. In particular, I can observe three characteristics, as follows.

1. dwgp(τgp) is smaller overall than dwgp(τgp−1). This means that the updated weight when

the glial cell generates a pulse from the connected neuron is smaller than that when the

neuron receives a pulse from a connected glial cell. As a result of this characteristic,

the glial pulse by which the glial cell is excited by the connected neuron decreases the

updated weight, because the glial pulse increases the output of the connected neuron.

The output of the connected neuron is already greater when the neuron receives the pulse

of the connected glial cell; thus, the output of the connected neuron becomes closer to
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one as a result of the pulse. According to Fig. 5.1, the updated weight decreases when

the neuron output is close to one.

2. dwrp(τrp) is larger overall than dwrp(τrp − 1). This means that the updated weight when

the neuron receives the propagated pulse from another glial cell is greater than when

another glial pulse was previously propagated. As a result of this characteristic, the other

glial pulse increases the updated weight because this pulse increases the output neuron

irrespective of the previous output of this neuron.

3. dwnp(τnp) is similarly small to dwrp(τrp − 1). As a result of this characteristic, the weight

is slowly updated when the glial pulse becomes statistically small.

Overall, I conclude that the MLP with PGC (6) can find the various solutions because the

updated weights are changed in various ways by the glial pulse. Moreover, the updated weight

becomes small when the glial pulse becomes statistically small. Then, the MLP with PGC

(6) can search specifically for the solution. In fact, the error curve shows that the MLP with

PGC (6) obtains various solutions during the iteration and finds a better solution at the end

of learning.
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Figure 5.2 Comparison of the total updated weights between the hidden layer and the

output layer and the generated pulse. (a) The conventional MLP. (b) The

proposed MLP.
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Figure 5.3 Comparison of the total updated weights between the input layer and the hid-

den layer and the generated pulse. (a) The conventional MLP. (b) The pro-

posed MLP.
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Figure 5.4 Updated weights at pulse generation and received pulse in the conventional

MLP (1).
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Figure 5.5 Updated weights at pulse generation and received pulse in the MLP with PGC

(6).
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Chapter 6

Overall Conclusion

In this study, I proposed an MLP with PGC. The PGC was inspired by the biological

features of glia, and I connected the glia to hidden layer neurons. Glial cells generate a pulse

depending on the output of a connected neuron. The pulses affect the neighboring glial cells

and the excitation threshold of the connected neuron. The pulse increases or decreases the

excitation threshold of the connected neuron; thus, it gives the energy to the network. This

energy helps escaping out from the local minimum, because the glias are independent from the

BP learning. For updating weights, I also found that the position relationships depend on the

generation of the pulses. I compared the learning and classification performances of MLPs by

using three different simulations which are the successive chaotic time series, Proben1 and TSP.

From the simulations, I confirmed that the proposed MLP has better performance than other

MLPs. Finally, I discussed the works of the PGC. From comparison of the updated weight, the

proposed MLP has correlation between the updated weight and the position of the neuron. In

the standard MLP, the neurons in the same layer does not have the position dependency. The

PGC gives the position dependency to the MLP. Moreover, the convergence of the proposed

MLP is faster than the other MLPs. These results, I confirmed that the PGC is efficient to

help the learning of the network.

In our future works, I will verify the correlation between the position of the neuron in the

hidden layer and the pulse generation. And also, I will apply to the large neural network. In the

large network, the position dependency is larger to be expected, because the number of related

neuron increased. I forecast the clustering of neuron occurring more in the large network. I

consider that the PGC is possible to happen the clustering of the neurons and improves the

network performance.
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