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Chapter 1 Introductory chapter

1.1 Research Backgrounds

As long with the development of mobile network techniques and the popularization
of smart terminals, the demand for mobile communication traffic has been explosively
increased. By the end of 2013, the average amount of digital traffic of global mobile
communication system had been 1.5 EB per month, while the number at the same
time of 2012 is 820 PB per month. At the end of 2014, this number had reached up to
2.5 EB per month [1]. As predicted by Cisco, digital traffic of global mobile
communication system will grow up to 24.3 EB per month at the end of 2019. In order
to meet the continuously increasing demand of digital traffic, higher requirements are
proposed for the next generation of mobile communications systems. In March of
2008, the International Telecommunications Union-Radio communications sector
(ITU-R) published a specification that determined the technical requirements for the
Four Generation (4G) of mobile communication system [2]. As required, Instructions
in the requirements, 4G system should be able to provide 100 Mbps mobile data
transmission services for high-speed mobile users (such as trains, cars on the user),
and provide 1 Gbps transmission services for the low-speed mobile users. As one of
the 4G standard, Term Evolution-Advanced Long (LTE-A) system has been realized the
peak data rate of 1 Gbps for downlink transmissions and 500 Mbps for uplink
transmissions. Furthermore, higher technical requirements are proposed for the fifth
Generation (5G) of mobile communication systems. European 5G summit in Munich
held in February 2014 defined the targets of 5G, including 10 Gbps peak data rate,
hundreds of Megabits per second for low-speed mobile users, more than ten
Megabits per second for high-speed mobile users, 1000 times of system capacity and
10 to 100 times of device connections than the current networks.

With the increasing demand of mobile communication, the scarcity of spectrum
resources is gradually exposed. Expensing new spectrum resources and improving
the spectrum efficiency are two most promising methods for alleviating the
spectrum-scarcity problem. To expanse spectrum resource for mobile communication
systems, ITU-R proposes a detailed program about available frequency bands and

bandwidths for different application scenarios, based on which each country further
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programs more specifically according its own situation. According to the transmission
characteristics of the wireless signal and the requirements of the mobile
communication system, the frequency suitable for land mobile communication
systems is in the band of High Frequency Ultra (UHF). However, in addition to the
mobile communication system, the UHF is also shared by digital TV, Wi-Fi and
Bluetooth and other wireless transmission techniques. At present, most of the UHF
has been occupied; therefore, additional frequency that can be exploited for mobile
communication system is not sufficient to meet the demands of data traffic in the
near future.

In addition to expanding spectrum resources, improving the spectrum efficiency
of mobile communication system is another effective way to alleviate the scarcity of
spectrum resources. The spectral efficiency of the mobile communication system can
be defined as the data rate per Hertz frequency (bit/s/Hz or bps/Hz). Although most of
the existing mobile communication systems use advanced physical layer access
technology, modulation coding technology to achieve spectral efficiency, but there are
many other factors that affect the effective use of spectrum resources, such as
intercell interference, inadequate resource allocation and so on.

The next generation mobile communication system must consider the serious
energy consumption problem while pursuing improvement of spectral efficiency.
According to the statistics in [3], the Information Communication Technology (ICT)
industry led to 3% of the total global emissions of greenhouse gas. This means that
ICT industry has been one of the major sources of environmental pollution around the
world. In addition to causing serious environmental pollution, energy consumption
also greatly increases the cost of operators. China Mobile c-ran project white paper [4]
pointed out that energy consumption has become an important part of the operator
costs. Among them, the energy consumption used for supporting sites is accounted
for 24% of the total capital, and the annual electricity consumption of sites is
accounted for up to 41%. Therefore, improving energy efficiency of the ICT industry is
the requirement of not only social development, but also the development of mobile
communications operators themselves. In order not to increase energy consumption,
5G mobile communication systems need to support more mobile data services at the
current level of energy consumption. For example, if the 5G mobile communication
system data rate increased by 100 times, then the energy consumption per bit should
be 1/100 or smaller of existing system [5], that is, the system energy efficiency to be
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increased by 100 times. However, there is a complex tradeoff between spectrum
efficiency and energy efficiency in mobile communication systems. Under ideal
conditions, energy efficiency and spectral efficiency is obviously in inverse proportion.
In the practical system, if the circuit power is considered, the relationship between
energy efficiency and spectral efficiency will be changed into a cup type curve [6]. In
addition, the relationship between energy efficiency and spectral efficiency will
become much more complex [7] when considering the imperfect channel state
information (State Information Channel, CSl), signal synchronization costs and other
similar problems. Improving spectrum efficiency by increase transmission power, as a
traditional solution in mobile communication system, is no longer appreciated. How to
greatly improve the spectrum efficiency while meeting the intense energy efficiency
requirements of the system becomes a crucial problem for the next generation mobile
communication system.

To meet the stringent requirements to the next generation mobile
communication systems, several advanced techniques have been proposed. Carrier
Aggregation (CA) is one of the most promising techniques to improve peak data rates.
With CA, several contiguous or non-contiguous spectrum fragments are combined to
serve a specific user, and the total bandwidth to the user can be up to 100 MHz in
LTE-A systems if the user equipment is sufficiently capable. In addition, CA is also
helpful to improve the spectrum efficiency of the network via making good use of
non-contiguous carrier components. Another attractive method to improve spectrum
efficiency of cellular networks is a new deployment widely known as Heterogeneous
Networks (HetHets). A HetNet is a dense-deployed network where several low-cost
low-power access points are added into a macro cell built by an eNodeB (eNB). Each
access point is connected to the eNB by a dedicated backhaul link, and is capable to
offload the heavy traffic load of the eNB. It is possible to obtain high-qualified
transmissions between access points and users since propagation distances are
shortened. Meanwhile, energy efficiency is improved in HetNets since power
demanded for transmission is relatively lower than that of traditional cellular
networks. However, the shortened distances between cells lead to exacerbated
intercell interference, which effect the performance of networks in terms of spectrum
efficiency. To deal with intercell interference Coordinated Multiple Points (CoMP) is
introduced into LTE-A. CoMP is an efficacious solution to mitigate intercell
interference by making Base Stations (BSs) or access points cooperate with each other.
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Appropriate algorithms of Radio Resource Management (RRM) are essential for
networks in practice. However, the techniques mentioned above significantly increase
the complexity of RRM in a practice network. CA involves carrier components
allocation which must be processed before further subcarrier and power allocation.
HetNets and CoMP ask the RRM be conducted jointly among multiple BSs. As a result,
RRM problem become NP-hard, and is impossible to achieve an optimal solution in
polynomial time. In this case, it is necessary to pursue simplified algorithms of RRM
for a network with these promising techniques, while maintain favorable network
performances. The thesis focuses on the rationale behind CA, HetNet and CoMP, and
dedicates to research on practical and efficacious algorithms of RRM in the network

with these techniques.

1.2 State of the Art Related Work

Intercell interference is one of the major factors that damage the performance of
networks, especially those are densely deployed. Therefore, RRM in a multicell
scenario should consider reducing the effect caused by intercell interference. To this
end, [8] suggest that the radio network controller (RNC) assign data traffic to each BS
on the principle of minimizing intercell interference, and then each BS adaptively
allocates subchannels to users. Similarly, in [9], the system selects a group of users
with minimal intercell interference to communication. In addition, authors of [10]
propose a Graph-theory-based scheduling algorithm to avoid intercell interference.

The application of the CA technique brings new challenges, especially in terms of
RRM of LTE-A systems. The first concern is the computation complexity of resource
allocation. There have been a few literatures on resource allocation with CA [11] [12]
[13]. These works have a similar study framework that first decomposes the complex
allocation problem into several subproblems, and then solves these sub-problems
step by step. Although the decomposed framework may not get the optimal solution
comparing with jointly allocation, it can significantly reduce computation complexity,
which is of importance to a real-time system.

CoMP is beneficial to reduce intercell interference via allowing the coordination
and cooperation between BSs. However, the complexity of RRM is significantly
intensified. Authors of [14] propose a scheduling algorithm based on Signal-

to-Leakage-plus-Noise Ratio (SLNR) for JP CoMP system. However, the limitation
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caused by backhaul link is not considered. To fulfill COMP transmissions, data packet
and control information must be shared between BSs via backhaul links. Therefore,
the capacity of backhaul links constrains the achievable data rates [15][16]. An
adaptive precoding and power allocation algorithm is proposed in [17], where
constrained backhaul capacity is considered. [18] proposes a system model that
switch between CS/CB CoMP and JP CoMP: CS/CB CoMP is used when there are
congestion on backhaul links, and JP CoMP is used in the other case.

Most references mentioned above are intended to improve spectrum efficiency
of mobile systems. As the ICT has rapidly spread and upgraded, the absolute energy
consumption caused by it becomes a big issue. Therefore, it is crucial to develop
highly energy-efficient mobile systems. For this end, researches have widely studied
on RRM with the purpose of improving energy efficiency. [19][20][21] build
mathematical formulation of jointly allocating spectrum and power with the objective
of minimizing total power allocation, and proposed RRM algorithm respectively. The
authors of [22] and [23] consider the BS selection problem associating with power
allocation. [24] limits the minimal data rate of each user, in order to avoid the
unfavorable case where transmission quality dramatically decreases caused by energy
saving. In addition, authors of [25] give a detailed review on energy efficiency RRM in

multiuser cellular networks.

1.3 Main Contributions and Framework of the Thesis

This thesis focuses on RRM in mobile systems with promising technologies such as CA,
HetNet and CoMP.

Chapter 2 introduces CA, HetNet and CoMP LTE-A system, which are considered
in this thesis in the following chapters. The rationales behind these techniques are
described to explain why they promising for significantly improve network
performance.

Chapter 3 considers RRM in the wireless communication system with CA
technique. We have decomposed the problem of resource allocation with CA into
three subproblems, CC allocation, RB allocation, and power allocation. For each
sub-problem, we propose low-complexity algorithms correspondingly.

Chapter 4 studies a constrained RRM problem being aimed at improving energy

efficiency in a CoMP-based HetNet. To solve the problem, we first propose a CE-based
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RB scheduling algorithm under the assumption of equal power allocation. Then a
KKT-based algorithm for power allocation is proposed. The proposed algorithms are
considered to be used in a centralized way at the first place. Since centralized strategy
for RRM takes a long time delay in large-scale networks, we modified the proposed to

adapt decentralized systems in order to shorten the time delay of RRM processing.



Chapter 2 Promising techniques in LTE-A: CA,
HetNet and CoMP

Long Term Evolution-A is proposed by 3GPP on the base of LTE (3GPP Release 8/9),
targeting at satisfying the requirements of IMT-Advanced. In addition to the previous
techniques in LTE system, several promising techniques are introduced in LTE-A, such
as CA, HetNet and (CoMP). This chapter explains the rationales behind these

techniques in details.

2.1 Carrier Aggregation

CA is introduced by Rel-10 as a main feature of LTE-A systems for meeting the peak
data rate requirements (1 Gbps and 500 Mbps for downlink and uplink, respectively)
for 4G mobile communication systems [26]. CA combines spectrum component in
continuous or non-continuous frequency bands to realize broadband transmission.
Each individual frequency band used by CA is referred to as a Component Carrier (CC).
The bandwidth of each CC could be 1.4, 3, 5, 10, 15 and 20 MHz, following the
bandwidth configuration in LTE system. As specified in Rel-10, CA technically allows at
most 5 CCs to be simultaneously used for a capable User Terminal (UE). This means
that a bandwidth of up to 100 MHz can be achieved by aggregating 5 20MHz-CCs. In
this way, peak data rates can be significantly improved.

To deal with different requirements and conditions of venders, the following

three categories of CA techniques are defined by 3GPP [27]:

1) Intraband contiguous CA supports aggregation of adjacent CC in the same
bandwidth. Intraband contiguous CA is easy to be deployed in the practical
system. However, it is difficult to have several contiguous CCs in a signal
frequency band due to the limitation of each band.

2) Intraband non-contiguous CA supports the aggregation of non-adjacent CCs in
the same bandwidth. Frequency resource of most mobile communication
operators has been severely fragmented. To deal with it, 3GPP also proposes
non-contiguous CA in LTE-A system to improve spectrum efficiency. CCs in
intraband non-contiguous CA are in the same frequency band, but frequency
intervals exist between them.

3) Interband non-contiguous CA supports the aggregation of non-adjacent CCs in
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the different bandwidth. It is obvious that interband non-contiguous CA takes
the best use of frequency fragments in the overall system, and can
theoretically achieve a favorable performance. However, the implementation
of the physical layer of interband CA is much more complex than intraband CA.

Fig. 2.1 shows an illustration of the three categories of CA technique.

Intra-Band CC #1\/CC #2\/CC #3\/CC #4\/CC #5 CC #1\/CC #2\/CC #3
Contiguous user 1ljuser 2J/user 2Juser 3]user 4 to user b/ user 6/user 7
Intra-Band CC #1\/CC #2\/CC #3\/CC #4\/CC #5 CC #1\/CC #2\/CC #3
Non-Contiguous [user 1/user 2/user ljuser 3)user 4 to user 5/user 6)user 7

Inter-Band CC #1\/CC #2\/CC #3\/CC #4\/CC #5 CC #1\/CC #2\/CC #3
Non-Contiguous [user 1lJ/user 2f/user 3/user 4/user 5 e user 6)user 3/user 7

< —— Bandl ———————» |<— Band 2 —PI

Fig. 2-1 Types of Carrier Aggregation [28]

Application of the CA technique brings new challenges, especially in terms of
RRM of LTE-A systems. The first concern is the computation complexity of resource
allocation. Apart from the RB allocation and power allocation involved in LTE system,
scheduling CC resources for multiple UEs is also necessary, which brings serious
difficulties for RRM. In LTE-A system, a UE is supposed to be equipped with multiple
independent radio frequency chains (RFCs) to support CA. Consider a general LTE-A
system consisting of M CCs and K UEs, and each UE is equipped with S RFCs. In this

system, there are at most H§=1(,\S/,) possible results of CC allocation. The

computation cost and allocation delay would exert heavy burden on the eNB, which in
turn deteriorates the system performance, if an efficient allocation approach is absent.
Second, unlike conventional resource allocation, CC allocation is generally performed
before RB allocation and power allocation, which gives rise to great difficulties in
evaluation on the quality of solution of CC allocation itself at the system level. Last but
not least, with the limitation of available contiguous spectrum resources, interband
non-contiguous CA scheme is more realistic to wireless operators. However, using
non-contiguous CCs may introduce new constraints for resource allocation. For
example, the limitation of UEs’ capability of transmitting data on multiple CCs in the

same time restricts the achievable performance of CA.



2.2 Heterogeneous Network

Dense network is a new cellular network deployment where a large number of
low-power and low-cost access points are employed inside of the existing macro cell
coverage. In dense networks, access points can be deployed flexibly in indoor or
outdoor areas where channel quality is unfavorable, therefore avoiding the influence
of obstacles on radio signal transmissions. At the same time, the introduction of
access point shortens the transmission distance between BSs and users, reduces the
path loss in the process of the wireless signal transmission, and results in

improvement of the quality of the signal transmission [29][30] [31] [32] [33] [34].

eNodeB

Fig. 2-2 HetNet

3GPP introduces a dense deployment, defined as Heterogeneous Network
(HetNet), into LTE-A systems. Fig. 2-2 shows a simple example of a HetNet.
Low-power access points in HetNet are sometimes referred to as small cell sites
[33][34]. According to the functions, small cell sites can be classified into three
categories [35], they are Pico, Femto and Relay. Compared to enhanced NodeBs
(eNBs), which are macro BSs in LTE-A systems, these access points have
characteristics of smaller transmission power, more flexible deployment and lower
cost. In general, Pico [36][37] is configured with an omni-directional antenna without
sectoring. Its transmission power is in the range between 250 mW and 2 W. The Pico
is usually used for outdoor transmissions, but it also can be used for indoor
transmission (at this time the transmission power no more than 100 mW) if necessary.
Since it can be considered as an eNB with lower transmission power from the
perspective of network architecture, Pico also uses X2-based backhaul as
standardized in LTE-A systems. Pico is usually deployed according to the pre plan, so
it’s the location is relatively fixed. Pico is suitable for the crowded scenarios, such as

shopping centers, activity centers, and so on, since it is beneficial for accommodating



more users to access the cellular network at the same time, as well as improving
transmission quality.

Femto [38][39] is majorly used for indoor transmission, and its transmission
power is no more than 100 mW. Femto is connected to the eNB with Digital Subcarrier
Line (DSL) or cable. According to whether the user access to Femto is restricted,
Femto cells can be divided into two categories: open Femto and closed Femto. From
the user's point of view, open Femto is similar to Pico in features, since the connection
between user and open Femto can be established a connection at any time when the
user needs. However, closed Femto allows only authorized users to access while
restricts all the external users. It is obvious that close Femto is capable to improve the
safety and quality of transmission for authorized users. However, since omni-direction
antenna is used, closed Femto is a potential interference source to the external radio
transmissions in the neighborhood.

Different from Pico and Femto, the backhaul of a Relay [40][41] is usually a
wireless link. It is referred to as an in-band Relay if the frequency band used for
backhaul is the same to that for uplink and downlink transmission; otherwise, it is an
out-band Relay. Obviously, physical techniques of out-band Relay are less challenged
since there is no interference between backhaul transmissions and desired data
transmissions. However, the spectrum efficiency is decreased because it is necessary
to assign dedicated frequency band for backhaul. As a result, 3GPP prefers in-band

Relay for the future mobile communication systems.

Relay
[
oNB FLINEN A
{1 E user
i

Figure 2-3 lllustration of transmission through relay
In Relay systems, a transmission lasts two time slots. Take a downlink
transmission as an example. The desired data is transmitted by the eNB to both the
user and the Relay in the first slot (slot 1 in Fig. 2-3); and then in the next time slot
(slot 2 in Fig. 2-3), Relay transmits the processed data to the user. The example is
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illustrated in Fig. 2-3. As a result, the user receives two independent versions of the
desired data. The error probability of the transmission is reduced by the proper
combination processing at the receiver. This is also known as a diversity gain obtained
by introducing Relays into transmissions. In the scenario where it is impossible to
realize Lines-of-Sight (LOS) transmissions between the eNB and users, Relays are also
beneficial for covering holes existing in the coverage area.

Relay nodes can work in half-duplex mode or full-duplex mode. This kind of
classification is majorly used for in-band Relays. As to out-band Relays, signals that are
being transmitted by Relays will not interfere with the signals that are being received
by the Relays, since different frequency bands are used. However, interference occurs
in in-band Relay systems. It is reasonable to make Relay systems work in half-duplex
mode, which means receiving and transmitting at Relays will not happen at the same
time, in order to avoid the interference. If full-duplex mode is utilized, it is possible to
spatially divide the receiving processing from the transmitting processing by adjusting
the locations and angles of antennas. Generally, a Relay is equipped with a directional
antenna pointing to the eNB, and an omni-directional antenna for communicating
with users.

Table 2-1 gives a comparison of the main application scenarios and technical
features of eNB, Pico, Femto and Relay.

Table 2-1: Application and characteristic of TPs in HetNets

Transmission Radius of

Type Applications backhaul
power coverage
eNB Macro coverage 5~40 W 0.52 km  Dedicated links, X2
Pico Crowded area outside 250 mW~2W <300m Dedicated links, X2
Femto Office and home <100 mW <50 m DSL. cables
Holes of macro
Relay 250 mMW~2 W <300 m Wireless links, X2
coverage

2.3 Coordinated Multiple Points

HetNet is a promising deployment for mobile communications systems. However,
HetNet suffers from severe intercell interference, which seriously affects its
performance. Compared to traditional cellular network, intercell interference is

exacerbated in dense-deployed HetNet due to the shorter distance between BSs to
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users. In one hand, the number of interfering sources in the neighborhood is
increased since distances between BSs are shorter than before; on the other hand,
interfering signals are strengthened since the distance between interference BS and
the transmitting user is also shortened. Intercell interference affects the quality of
transmissions to the user in cell-edged areas, resulting in unfavorable performance of
the overall network. Therefore, avoiding intercell interference is one of the major
subjects in the field of mobile communication systems.

Frequency Reuse Partitioning (FRP) [42] is one of the typical techniques for
combating intercell interference. It splits the bandwidth of a system into several
independent parts, and uses each part in different areas to avoid intercell interference.
The benefit of interference avoidance brought by FRP is at the cost of spectrum
efficiency of the system. Although several improved solutions are proposed to
enhance spectrum efficiency, such as Partial Frequency Reuse (PFR) [43], Soft
Frequency Reuse (SFR) [44], FRP technique is still not capable to meet the demands of
future mobile communication systems.

Different from FRP, CoMP reduces intercell interference by allowing coordination
and cooperation between adjacent BSs with the universal frequency reuse of the
network, so that favorable data rates of cell-edged users and spectrum efficiency can
be obtained [45][46][47]. CoMP technique can be considered as a large-scaled
Multiple-Input Multiple Output (MIMO) system composed of several BSs. As in MIMO
system, the desired signal of a downlink transmission with CoMP is strengthened by
contributing multiple transmission antennas into the direction pointing to the target
user. For this reason, CoOMP technique is also called as network MIMO [48] sometimes.
In order to realize cooperation between BSs, it is necessary to connect BSs via
backhaul links to exchange control information and data between BSs. In addition, a
Control Unit (CU) is also needed as a command center. The CU can be an individual
entity or an entity embedded in a BS. It collects channel information from BSs that are
under its control, and jointly schedules radio resource according to given algorithms.
The scheduling results will be sent by the CU to each BS via backhaul links. At last,
each BS performs transmissions with the resource assigned by the CU.

According to the different ways to cooperate, COMP techniques are classified into
two categories: coordinated scheduling/coordinated beamforming (CS/CB) and joint
processing (JP) [49]. As illustrated in Fig. 2-4, CS/CB CoMP makes neighboring cells to

jointly precoding according to global channel state information (CSl) to avoid potential
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interference. In this case, user’s data is transmitted by its home BS (i.e., the BS that
the user has been registered with) only, so that no data needs to be shared between
BSs via backhaul links. In essence, a multicell scenario with CS/CB CoMP can be
modeled as an interference channel in Information Theory. However, due to the
complexity of the interference channel and the cellular network, the Capacity Region
of a CS/CB CoMP has not yet been conclusive. When CS/CB CoMP is employed, several
BSs jointly precode symbols that are going to be transmitted to a specific user
according to the known CSI between each BS and the user, aiming at reducing intercell
interference. One of the typical precoding methods is Dirty Paper Coding (DPC), which
is proved to be the optimal solution [50]. DPC is nonlinear and difficult to be used in
large-scale systems due to the high-level computational complexity. Therefore, it is
usually as a benchmark to evaluate performance of precoding design. Linear
precoding is capable to approximate the performance of DPC with much lower
computation, which makes it more valuable for practical applications. In this way,
linear precoding of CS/CB CoMP attracts many attentions in both academic and
industrial areas. Effective linear precode can be obtained based on the channel matrix
(each elements of which represents the channel coefficient between a transmit
antenna of a BS and a receive antenna of the user). The common solutions include QR
decomposing [51], SVD decomposing [52], figuring out the pseudo inverse matrix [53]
and so on. However, these solutions have a common restriction that the number of
receiving antennas must be no less than that of transmitting antennas in order to
ensure the operations of the channel matrices are reasonable. This means that the

number of users that can be served at the same time is very limited.

Controlling
information

Controlling
information

Fig. 2-4 Illustration of CS/CB CoMP
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Controlling information
& data

Controlling information
& data

Selecting the
“best” sign

(a) DCS CoMP

al

b) JT CoMP

Controlling information
& data

Controlling information
& data

Fig. 2-5 lllustrations of JP CoMP

Different from CS/CB CoMP, JP CoMP takes use of intercell interference instead of
avoiding it. JP CoMP allows one or more BSs in the neighborhood to transmit the
same data to a specific user at the same time, as shown in Fig. 2-5. In this way, not
only can the interference be decreased, but also can the desired signal be
strengthened. According to the different transmission modes, JP CoMP is further
divided into two categories: Dynamic Cell Selection (DCS) [54][55] and Joint
Transmission (JT) [56][57]. When DCS CoMP is employed, the BS with the best channel
condition to the specific user at present will be selected to transmit dataas shown in
Fig 2-5(a). It is noticeable that the selected BS will not always be the home BS of the

user due to the time variance of wireless channels. Compared to non-CoMP
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transmission, the strength of the desired signal is improved thanks to the dynamic
selection of transmitting BS according to instantaneous channel conditions in DCS
CoMP transmission. To avoid intercell interference and further improve the quality of
transmission, BSs that are not selected to transmit data in a DCS CoMP transmission
can maintain mute at the same time and frequency resource. In any way, DCS CoMP is
helpful for cell-edged users to obtain better quality of transmission.

Regardless of computational complexity, JT CoMP can achieve much better
performance than the others. JT CoMP allows a cluster of BSs to transmit data signal
to a specific user at the same time and frequency resource, as shown in Fig 2-5(b).
Due to the independence of each channel between BSs and the user, the user can
obtain several independent versions of the desired data, which brings significantly
improvement to the signal strength at receiver after combination. At the same time,
intercell interference in the considered cluster is completely avoided since all the BSs
in it are source nodes of desired data in this case.

It should be noted that, as mentioned in the [48], COMP technology is more
suitable for the transmission of cell edge users. A cell edge user usually refers to a
user located at the edge of the coverage area of its own home base station, and is
close to the coverage area of one or more neighboring BSs. The channel gains
between the users and the neighboring BSs are at same level of the channel gain to its
home BS. In this case, the influence caused by intercell interference is so severe that
transmissions to the user could probably be unsuccessful. CoMP technology takes use
of these interference sources, so that the adjacent multiple BSs jointly transmit data
signals and spacial diversity gain can be obtained to improve the quality of
transmissions. Instead, as to users located closed to their home BSs, CoMP brings
limited benefits to the transmissions at non-ignorable cost (overhead, processing
computing, etc.). In this point of view, it is better to use CoOMP technology for cell edge

users only, instead of all the users in the network.

2.4 Conclusion

This chapter gives an introduction of three promising technologies proposed in LTE-A
systems, including CA, HetNet and CoMP. CA is able to flexibly utilize limited spectrum
efficiency, and significantly improve peak data rates in this way. HetNet is a dense

deployment of cellular networks. By adding low-power access points into a macro cell,
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HetNet can dramatically increase the throughput of the network. However, there are
several challenges to HetNet. The major one of them is intercell interference that
leads to failure transmissions of cell edge users, and therefore decreases the
performance of the network. To combat with intercell interference, COMP technology
is proposed by 3GPP. COMP mitigates the effects of intercell interference by allowing
several BSs to cooperate with each other. The three technologies have attracted many

attentions in both academic and industrial area.
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Chapter 3 Resource allocation in LTE-A system
with Carrier Aggregation

CA technique is proved to be beneficial for improving spectrum efficiency and
therefore enhance network capacity. However, the use of CA brings several new
challenges, especially in the term of radio resource allocation. In this chapter, we
investigate the resource allocation problem in LTE-A systems, in order to maximize the
gains from CA technique. First, we formulate the resource allocation as an
optimization problem, aiming at maximizing sum capacity with multiple practical
constraints. Then, the formulated problem is divided into three-stage of CC, RB and
power allocation, in order to reduce the computational complexity. Specifically, for the
CC allocation, we propose a Cross Entropy (CE) based greedy algorithm, with an
approximate estimation of RB allocation and the equal power distribution. Given the
CC allocation results, we design a RB exchange-based allocation algorithm to further
improve the sum capacity. At last, we propose a Particle Swarm Optimization (PSO)
based Power Allocation (PA) scheme. Extensive numerical simulations are launched to

verify the efficiency of the proposed algorithms.

3.1 System Model

With CA, a user equipment (UE) is supposed to be equipped with multiple
independent RFCs and can be simultaneously scheduled on multiple CCs. CC
allocation determines which CC can be used by each RFC of users. On the base of CC
allocation, RB and power allocation can be implemented with less computational
complexity. The procedure of RRM in a mobile system with CA is illustrated by Fig. 3-1.

The goal of CC allocation is to assign each coming UE onto certain CC(s). In this
paper, we present an estimation approach of RB-allocation to assist CC allocation and
an average power distribution on per RB is adopted. Built on the approximations, we
design a novel CE based greedy algorithm for CC allocation (CEGA-CCA). Given the
solution of CC-allocation, RB-allocation can be further divided into the two categories:
Independent scheduling in each CC (IC scheduling) and across CC scheduling (AC
scheduling). IC scheme refers to allocating RBs in each CCs without considering others.

The advantage of IC scheme is its compatibility with existing RB allocation algorithms
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in LTE system. However, IC scheme is obviously a suboptimal solution. On the other
hand, AC scheme takes all CCs into consideration when allocating RBs, and it hereby
can achieve an overall better resource allocation than that of IC scheme. The main
drawback of AC scheme lies in the higher complexity. To solve the RB allocation
efficiently, this chapter studies the problem under the given CC allocation, and designs
a modified greedy algorithm based on a RB exchange strategy. Finally, to further
balance the tradeoff between fairness and sum capacity, under the condition of the
given CC allocation and the RB-allocation results before, we also investigate the power
allocation by using PSO algorithm, a kind of heuristic method, to make this work

complete. Fig. 3-1 illustrates the overall resource allocation strategy.

UE 4 || UE 5 |

RF 1 | RF2 | | RF 1 RF RF 1 | RF RE 1 | RF 2 RF 1 | RF 2
' T B - 1 S ~ 7 ) N . 7
\ g == . N /
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Figure 3-1 lllustration of the overall resource allocation strategy
In this chapter, we consider a LTE-A system comprising M CCs and K UEs. The CC
m consists of N, OFDM RBs, and each UE is equipped with S RFCs. Denote RFC index

of UE k by w, €{0,1}, where ;" =1 means RFC s of UE k is allowed to transmit

data over CC m, and means " =0 otherwise. Similarly, denote RB index by

B €{0,1}, where B;"" =1 means RB n of CC m is allocated to UE k. Let p™"
denotes the transmit power on RB n of CC m, then the data rate of RFC s of UE k on

CC m can be expressed as

p™ (hrr Y (3-1)

Nm
R =y Z Bl "Wlog,| 1+
p— r N,W

where Ny is the two sided spectral density of additive white Gaussian noise (AWGN),

18



2
1 BER
W is the bandwidth of each RB, T, :501(7") is the signal-noise ratio (SNR)

gap due to modulation [58], and BERy is the requirement of bit error rate (BER) for UEs
when M-QAM is adopted, h,ﬁ”"! is the channel gain for RFC s of UE k on RB n of CCm

due to pass loss, shadowing and fading. For simplification, we assume that RFCs are

independent and identical for the same UE, and therefore hy""=h;"" and vy =y .

Then the sum capacity of UE k can be expressed as

M M S
R=DRI=DDR. (3-2)
m=1 m=1 s=1

Fairness is an important performance metric in multiuser wireless
communication systems [59] [60]. By exploiting user fairness, we can explicitly control
the capacity ratios among UEs, and ensure that each UE, especially for cell-edge UEs,
achieves the expected data rate. In this paper, we adopt Jain’s index to evaluate

fairness the same as in [59],

(XrA)

KR

The maximum value of F = 1 will be achieved when Ry = Rk, Vk. In order to make

F: (3-3)

sure that every UE can be scheduled in each allocation, we define a non-continuous
point F =0, if 3k whose R, = 0.

Table 3-1 Important Denotations

Denotations Meaning
M number of CCs
K number of UEs
Nn, number of RBs in CC m
S Number of RFCs of each UE
Wes RFC index
i RB scheduling index
p™" transmit power on RB n of CCm
RK's data rate of RFC s of UE kon CCm
Ry the sum capacity of UE k
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The goal of this paper is to find the optimal resource allocation to maximize
system sum capacity while guaranteeing fairness among UEs. The system capacity is
the optimal object, and the fairness is constraints. Mathematically, the problem can

be formulated as a constrained optimization problem as,

>
Il
[N

K
(W,B,p)cargmax R,
k=1
M
st. Cl: Yy <Sy.e{0,1},Vk
m=1
K N, _
c2: YA =LA" {01}, ym (3-4)
k=1
Nm

77 total

C3: p™" <Pl ., p"" € [0 p" },Vm,n

3
[
-

C4.

Il
[EEN

where ¢ := [wf]KxM and B:z[ ,f"”] indicate the assignments of CC and

KxMx(maxN,, )

RB, respectively. The constraint C1 implies that one UE can transmit data over S CCs at

most; C2 indicates that each RB can only be assigned to one UE at a time; C3 means

the total power of all RBs should be positive but less than the power limitation P,

of CCm, Vm; and C4 is the fairness constraint.

The initial problem in Eqg. (3-4) is a typical mix-integer nonlinear programming
(MINP) problem, which is believed difficult to be solved in polynomial time. Here, we
adopt a skill of transferring objective function that combines the constraint C4 into
the original objection function. The rationale behind this transformation is from the
following proposition.

Proposition 1: Under the constraint condition of F=1 , if
($,B,p) € argmax X5 Ry, then (,B,p) € argmaxR,.

Proof: Suppose 3(Y’, B’, p’), such that min R, >min R,. According to definition
in Eq. (3-3) and the constraint F = 1, we obtain Yk_, R, =K minR,>YX_, R, =K minR,,
which is contradictory with ({,B,p) € argmax Yr_, R, thus (¢’, B’, p’) does not
exist. I

According to Proposition 1, the initial problem can be transformed into the

following one,
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(P) (lIJ,B p) € argmaxminR,

st Cl: Zy/k <S,y €{0,1},Vk

2 YA =10 (0,1}, vm

k=1 n=1

C3: men Pow P [ total] vm,n

(3-5)

To simplify problem (/7 ), we adopt a decomposed framework that decomposes
the problem into three suboptimal problems, CC allocation, RB allocation and power
allocation. Specifically, for CC allocation, we first present an effective method to
approximate RB allocation and power allocation, and then solve the CC allocation
problem under those approximations. Similarly, we solve RB allocation under the
given CC allocation results and approximate power-allocation. When CC allocation and
RB-allocation are given, the problem of power-allocation can be derived naturally. The

decomposed suboptimal problems can be written as follows:

(71) WeargmaxminR, (B,p)

M 3-6
st. €1 >yl <Sy.e{0,1},Vk 3-6)
m=1
(72) BeargmaxminR, (W,p)
€ (3-7)
st. €2 Y Y B =1,p""€{0,1},Vm
k=1 n=1
(73) peargmaxminR, (U,B)
(3-8)

st. C3 %p’”'“SPt;"tal,p”’ [O,Pt:;al] Vm,n
=1

The following sections present the respective solution to (1), (/72) and ( 73).
The entire strategy of RRM in a considered CA system is demonstrated in Fig. 3-2.

CC-Allocation

RB-Allocation Power-Allocation

Estimate RB
allocation and power with estimated Input
allocation. Input  — power allocation Input
|
Y

Solve the problem =1

Input the results

v
Solve the problem &'2 A ﬂ, Output
Solve the problem &1 — Output —— Output

Figure 3-2 Flowchart of the entire strategy for RRM
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3.2 Component Carriers Allocation

In this section, we first give an approximate estimation of B and p, respectively. Under
these estimations, we present a Cross Entropy based greedy algorithm for CC
allocation algorithm (CEGA-CCA).

A. Estimation of RB-Allocation and Power Allocation

For power allocation p, we assume that power is equal distributed on all RBs of the

total

same CC. Define the virtual power P:= , and then we can get

1

P"  P" N
pm,n :pmﬁ — total — total” "1 P'vm'n 3_9
Nm RcitaINm ( )
Define
‘ m,n2 m,—
Hrm =l (3-10)
N WP

According to the channel fading theory, large-scale fading is the domination of

m, n

H{"". Hence, for a specific UE k, all H;"" over the bandwidth are supposed to

fluctuate in the same level. We can estimate the sum capacity of UE k in CC m as

follows, based on the approximation In(1+x)—In(1+x") z(x'—x)l -, x—x'| <g:
+ X
N, N, m,nW
Ry =Zﬁk’""’WIog2(1+PH,T'")=Z—ﬂk In(1+PHL"’")
n=1 n=1 |n2
N - -
1 . m,n m,n m m
zEZﬂk'W((PHk’ —PH; )tan6’+ln(1+PHk )) (3-10)
n n=1
w m m m m
=E(o+\9k \ln(1+PHk ) =|oy \Wlog2(1+PHk )
where €is the set of RBs assigned to UE k over CC m, and operator |-| is the
cardinality number of the set which satisfies
AW (3-12)
_m Np m,nygym,n m
H, :anlﬁk H, Qk‘ (3-12)

and
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tang = d(ln(HPi_:q)) __ 1 (3-13)
d(1+PH;") (1+PH;")

According to the constraint of fairness, we can get
M - M -
> wrloriog, (1 +PH" ) = wr|op|iog, (1+ PH;?) (3-14)
m=1 m=1

However, it is nontrivial to get the solution Y because we cannot obtain the
accurate value of ‘QZ" prior to RB allocation. Hence, an approximate approach is
used that we assume the fairness is satisfied in each CC, i.e.

‘Q’k"‘logz(1+PE):‘Q’k".‘log2(1+PH_,:'.’),Vm (3-15)

and
“lorl=n,_,v 3-16
Zkzl‘ k‘_NM’ m (3-16)

Under the assumption that equal power is used for each transmission, the
approximate number of RBs assigned to UE k can be obtained by jointly solving Eq.
(3-15) and Eq. (3-16).

oy~ Wi Ny ,Y'm, k (3-17)

log, (1 + Pﬁ)z:zl(yfﬁ’/logz (1 + Pﬁ))

The estimated sum capacity of UE k over CC m can be written as follows

m(ets N Ww™
R = - Ve ymk (3-18)
zk-_l(l//ﬁ’/logz (1+PHI:’,’ ))
and therefore, R = An:’:lRI:n(ets).

B. GA-CCA: Greedy Algorithm for CC allocation.

Greedy algorithm is a typical method to achieve the objective. In this section, we first
present a greedy algorithm for CC allocation (GA-CCA). In each step, GA-CCA aims at
improving the capacity of the UE who has the minimal capacity (named a minimal
capacity UE). The proposed GA-CCA algorithm follows the three steps as shown in Fig.
3-3.
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Figure 3-3 Flowchart of GA-CCA

The details of the proposed GA-CCA algorithm are performed as the following
steps:

STEP 1 (Mobile Hashing Allocation): At the beginning of CC allocation, UEs select
CCs with equal probability;

STEP 2 (Capacity Estimation): Estimate capacity R}’ for all UEs according to
(3-18);

STEP 3 (Objective Enhancement): Find the minimal capacity UE ki, i.e.,

k . €argminR, (3-19)

1<k<K

Find CC m* where UE ki, has the minimal capacity if 1,//2:’ﬂn #0,i.e,

m" € arg min;mem{RE } (3-20)

If CC m* satisfies Eq. (3-20), it may not suit UE ki, or be over-crowded. The
proposed algorithm attempts at eliminating such allocations. Therefore, find CC u if it

exists, such that

pearg max > Rl (3-21)

1<psM,u#m
andset y," =0 and y; =1.

This process is repeated until we cannot find i in (3-21), and the search process

ends. The detailed implementation of GA-CCA is summarized as in Algorithm 3-1.

Algorithm 3-1 Greedy CCA Algorithm

1: (Initialization): Yk, m, set y, =0 and R/ =0.

2: for k<1to Kdo
3. Select S CCs from M CCs with equal probability.
4: if CCmis selected then

5: yp =1
6: endif
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7: end for
8: Find UE kmin that satisfies ky,, € argmin, {R}.
9: Find CC m' that satisfies m* € argmin_{R{' }.

min

10: While Ju€{1,...,M} satisfies ,ueargmaxszL’l do

puEm*

11:  Set y;" =0 and y; =1.

12:  Re-estimate capacity R,” for all UEs according to Eq. (3-18).

13: end while

C. CEGA-CCA: Cross Entropy based GA-CCA.

Although GA-CCA has low computation complexity, the quality of solution is tightly
dependent on the random allocation stage and easy to trap into local extremum. In
this section, we present a heuristic method to further improve the CC allocation on

the basis of GA-CCA.

" stepl1l )

@_» Strategy Space Encode each possible solution of { into a vector
L Encoding ) with bit-number elements.

\ A
4 Step 1-2 )
> Structure Structure the corresponding possibility vector.
\Possi bility Vect@

/
Step 4 Step 2 h
P Generate sufficient samples based on structured

Probability Samples el
Updating Generation ) possibility vector.

A

A
Step 3 h
P Evaluate system performance according the

Performance
) generated samples.
Evaluation )

Whether
the optimal performance
achieved?

No

Figure 3-4 Flowchart of CEGA-CCA

CE is a novel heuristic method [61]. It is firstly used to simulate small probability

matters, and then introduced to solve the optimization problem [62]. The basic steps
of CE includes four steps: (1) Set up the solution space, in order to map the initial
problem into the CE method; (2) Generate random samples from solution space
according to some probability distribution; (3) Evaluate each generated samples

according to the objective and constraints, and eliminate some inferior samples; (4)
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Update the parameters of the probability distribution, in order to obtain better
samples in the next iteration. A concrete understanding of the CE method is referred
to [61]. The procedure of the proposed CE based GA-CCA (CEGA-CCA) method is

illustrated in Fig. 3-4, and the details are explained to search for the optimal ¢ in
problem (7P1) as follows:

STEP 1 (Strategy Space Encoding). Set the iteration counter t=1. For UE k
equipped with S RFCs and M CCs candidates, we can order its CC selection strategy

lexicographically, and the strategy space is

©,=6,.6,..0, | (3-22)

where A = (M

S) is the size of ©,, and

0 ={wi =L i =Ly =0,y =0

sz :{l//; :11"'IW/f :Oll//kS+l :1r""Wll<w :0} (3-23)
ekA :{Wli :11"'rl/jlf :0'1//,:‘/’*-”1 :1""'1//;(\/’ :1}

Accordingly, we structure a A dimension probability vector in the t" iteration Pi: as:
A i
Poe = | PlePleriPly | 2 Pl =1 (3-24)

where p;'(t represents the probability that UE k select strategy 9,2]

Step 2 (Samples Generation). Use the probability vector Py ; to generate random

samples
X (2)=[ X (2),%; (2), X} (2) | A< 257 (3-25)
where Z is the number of samples, Xk (z) is a A dimension vector with only one

element “1” and (A-1) elements “0”, and the probability of X, (z)=1 is F,.
Step 3 (Performance Evaluation). Decode y,",Vm according to the generated

sample X« (z), and then substitute the ;" into GA-CCA algorithm to calculate the

value of objective function, denoted as V,. Rearrange V, in descending order as

Vi2...2V,. After that, let 1=V

22 be the sample g-quantile of the performance,

where g denotes the quantile coefficient and [e] is the ceiling operation.
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Step 4 (Probability Updating). Update the probability A/, forall 1<k <Kand 1<

k <A as follows

Z;I{VZM}XL (2)

P, = = (3-26)
ZZ:].I{VZZA}
where I{sz/m} is an indicated variable defined by
| 1 if V.22 327)
%24 710 otherwise

STEP 5: Ends the iteration if a convergence criterion is satisfied, which might be a

maximum number of iterations or P’ , Vk, i; otherwise set t := t + 1 and go to STEP 2.

k,t?

The implementation of CEGA-CCA is summarized as in Algorithm 3-2.
Algorithm 3-2 CE Enhanced Greedy CCA Algorithm

1: (Initialization): Vk, m, set ' =0 and R;'=0.

2: for t¢-1to T do
3: forz¢1toZdo

4 for k¢<-1to Kdo

5 Generate sample X,(z), according to Py
6: for m&1to Mdo

7 Calculate ;" according to X«(z)

8 end for

9 end for

10:  V,4GACCA Algorithm(Step 2 and Step 3)
11: end for

12: Rearrange V, in descending order as V; 2...2V,
13: fork<1toKdo

14: fori<1toAdo

15: updating P}, using Eq. (3-26)
16: end for

17:  endfor

18: end for
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3.3 Resource Blocks Allocation

In this section, we investigate the RB-allocation problem under the given CC allocation
results and estimated power allocation above. First, we use a greedy RB-allocation
algorithm in [58] and [59]. Then, we present a RB exchange based greedy algorithm
for RB allocation using the ratio of channel fading between two UEs in the same CC.
A. Greedy Resource Block Allocation Algorithm (MG-RBA)
The intuition behind greedy algorithm is to maximize the sum capacity by taking
advantage of multiuser diversity as possible, while maintaining a coarse proportional
fairness. Based on the greedy allocation, we design a modified greedy RB allocation
algorithm (MG-RBA) to make it suited for our problem.

The proposed MG-RBA algorithm consists of two stages, as shown in Fig. 3-5. For
the first stage, each UE selects one RB on the allocated CCs in sequence. After that,
the minimal capacity UE has the priority to select the best one of rest RBs until all RBs

are assigned to the corresponding UEs. The details of the proposed greedy RB

allocation algorithm are summarized as in Algorithm 3-3. For clarity, we denote C,,

and A, as the set of RBs allocated to CC m and the rest RBs in CC m, respectively.

MG-RBA
Each UE selects a RB on the allocated CCs in
Step 1
sequence.

The minimal capacity UE has the priority to select
Step 2 the best one of rest RBs until all RBs are assigned to

the corresponding UEs.

Fig. 3-5 Flowchart of MG-RBA

Algorithm 3-3 Greedy Resource Block Allocation Algorithm

Inpu.t: v, KI Mr |QT|, Nmr p=®l ]Cm=®r Am=®r szor vml k

Output: RB-allocation results p.

1: for m«<1ltoM do
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2: An={1, .., Nn},
3: if y,"=1 then

4: Km=Km+{k}

5:  endif

6: end for

7:for k<1toK do

8: for m«1ltoM do

9: if . =1 then

10: n"=argmax,{H;"}, kEK,,
11: o, =1

12: Ri=Re+Wlog, (1+PH{")
13: An=An-in"}

14: 1" |=1Q%"]-1

15: end if

16: end for

17:end for

18:for m«1to M do
19: while A, # @ do
20: Find kmi, that satisfies Ri.. < R Vk € Ky,

21: Find n” that satisfies Hel > Hg' ,vn

22: o =1,

kmin

23: R =Ry +Wlog, (1+PHkmn;?n )

24: Am=Apn-{n"}

25:  |of -1

min

_| m
kmin

26:  if |QF |=0 then
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27: K:mzlcm'{kmin}

28: end if
29: end while
30:end for

RB Exchange based Resource Block Algorithm (RE-RBA).

Based on the proposed MG-RBA algorithm, we further proposed an RB exchange
based algorithm (RE-RBA) to further balance the tradeoff between sum capacity and
proportional fairness. Specifically, for given solution p of MG-RBA, we can obtain the
capacity Ry, Vk under the equation power distribution assumption. After that, the
algorithm finds the minimal capacity UE k., and its maximal capacity CC m. -
Then, we adopt a conservative strategy to exchange RB from some UE to UE k.,

within CC m. According to [63], the candidate RB n* transferring to kmi, with lowest

Mmax,N

loss of sum capacity has to satisfy condition max{Hk _ /HZ."““’"}, where k'(k'#kyin)
n min

is the current owner of RB n* in CC mpa. If such RB exists, set p:;_m:w”*:l,

pem™ =0, and recalculate capacity R, =R, +Wlog, (1+PHkmm"i‘:X'") and

Re=Re-Wlog, (1+PH$maX’” ) This process is repeated until we cannot find out such RB

that can improve the capacity of certain R, , and the algorithm stops. Fig. 3-6 gives
a flowchart of the proposed RE-RBA, and the detailed implementation of RE-RBA is

summarized in Algorithm 3-4.

RE-RBA
Process MG-RBA to obtain a rough RB allocation
Step 1 esult
result.

Find the minimal capacity UE k., and its maximal
Step 2 capacity CC mpyax. Then exchange RB from some UE to
UE knin within CC m if better performance can be

achieved.

M WaaO

Figure 3-6 Flowchart of RE-RBA
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Algorithm 3-4 RE-RBA Algorithm

1: (Initialization): ¢, K, M, |QF'|, N, p=9, A,,=D, R,=0, Vm, k.
2: form<&1toMdo

An={1,.., N}

4: if y' =1 then
5 K=K, +{k}
6: end if
7

8

9

w

end for
for k¢1to Kdo
form&1toMdo

10: if . =1 then

11: n* = argmax,{H;""}, kKEK,,
12: " =1

13: R, =R, +Wlog,(1+PH]"),
14: »/4177 = /4111 - {n*}

15: Q'] = 19" — 1

16: end if

17: endfor

18: end for

19: for mé1to M do

20: while A4, # @
21: Find kmin satisfying Ri... SRk VkeK,,.

22:  For kmin, find n* satisfying H',Z’r;f>Hkmr;'i’n, Vn
23: " =1

24: R, =R, +Wlog, (1+PH,")

25 A, =.A,—{n"}
26: Q7| =197 —1
27:  if |QF| =0 then
28: Kow = Ly — tkimin}
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29: end if
30: end while
31: end for

3.4 Power allocation

After RB-allocation, we can further improve the objective by distributing power on
each RB. Substituting the obtained B with the given ¢ into problem (/7 3), the power

allocation can be seen as a constrained continuous variable optimization. In this
section, we propose a heuristic method based on the PSO algorithm. In contrast to
other heuristic methods, such as genetic algorithm (GA) and ant colony optimization
(ACO), PSO has better global searching capability at the beginning of the run and a
local searching capability near the end of the run thanks to the connections among
particles [64]. The standard PSO algorithm consists of the following steps: (1)
Construct the particle to map the solution of interest problem; (2) Create the
topology of particle swarm (particles’ position); (3) Calculate fitness value for each
particle and find out the best particle; (4) Updating particles’ position; (5) Repeat step
(3)-(4) until the stopping criterion is satisfied. Alone with the standard PSO algorithm,
the procedure of the proposed CE based power allocation (PSO-PA) is illustrated in Fig.
3-6.

Step 1 . { : 2w}
) particle = [particle™)
Particle e ¥ !
: [ Construction Vm={L.. M;
Step 2
Topology Initialize the position and velocity of each particle.
Creation
Step 3 Evaluate the current particle position and pick out
Particle the best one for updating until the optimal solution is
Adaptive achieved
Step 4
Particle
Updating

Whether
the optimal performance
achieved?

Fig. 3-6 Flowchart of PSO-PA
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Step 1: (Particle Construction).
Assume there are Z°° particles. We denote vector

particle ={particle]’}, m={1,..., M} (3-28)
as the zth particle, where particle?’={particle]'(n)}, n=1,..., N,, is an N, dimension
sub-vector that represents the power allocation in CC m, and each element
particle]'(n) in the vector is a power value. The particular particle structure is
illustrated in Fig. 3-7. Accordingly, we denote the vector velocity, with the same
structure as the velocity of the zth particle, and initialize it as the following

expression:
velocity' (n)=pm"(w-0.5), vm,n, z (3-29)

where w follows standard uniform distribution in [0, 1].
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Figure 3-7 illustration of particle structure in PSO
STEP 2: (Topology Creation).
The target of topology creation is to initialize the position particles (the value of
each element in particle,) and its velocity. We randomize all particles around

equation power distribution by the following expression:

particle;" (n)=pm"+pml-(w—0.5), vm, n, z (3-30)
where w follows standard uniform distribution in [0, 1].
STEP 3: (Particle Adapting).
The process of particle adapting is to evaluate the current particle position and pick
out the best one for particle updating and the final solution. Each particle is

comparable based on a fitness value that is related to the objective function and the

constrain conditions. As to the problem (/7 3) we define the fitness function of each
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particle using the penalty function skill [65]:

F, =minR, (v, p,particle, ) x 4, (3-31)
The fitness function is composed by two parts, where minkRk(l//,p,particIez)

indicates the minimal capacity of all UEs according to ¥, o and the current

position of particle z, and A, is a penalty factor to ensure the constraint C3 can be

satisfied. The expression of A, is

2
)\;1-\/2%:1(25;”1 particle’ (n) Pal) (3-32)

best best

Besides, we denote F~~ " and Gparticle™ ™ as the known highest fitness value and

F?est best

the corresponding position, and Pparticle™ as the known highest fitness value
of particle z and the corresponding position, respectively.

STEP 4: (Particle Updating).

After adapting, we should update the particle position and its velocity to approach
the excepted optimal solution. According to the suggestion in [66], the particles are

manipulated according to the following equations:

best
z

velocity! = ;((velocityQ” + cla)l(PparticIe —particIeT)

+¢,0, (Gparticle"’ESt —particle” )) (3-33)

particle] = particle] + velocity”’

where y is inertia coefficient in PSO algorithm and the variables w; and w; are random
variables with uniform distribution in interval [0, 1]. The relation between x, ¢, and ¢

can be given as

= 2 (3-34)

‘2—(c1 +c2)—\/(c1 +c,) —4(c, +¢,)

where ¢; = ¢; = 2.05 and y = 0.729. The algorithm will repeat step (3) and (4) until the

stopping criterion is reached. In this paper, we use the maximal iteration times Trso as
the stopping criterion. The implementation of power allocation algorithm is

summarized in Algorithm 3-5.

Algorithm 3-5 PSO based Power Allocation Algorithm

Input: K, M, N, hg"", Ty, v, Vm,n,k;

CC-allocation results ¥ and RB-allocation results p;
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Output: The power allocation results p;

1: for z&1to 2% do

2: Initialize particle, and velocity, according to Eqg. (3-29) and Eq. (3-30),
respectively.

3: end for

4:for t&<1to T7°° do

5:  for z&1t0Z™° do

6: Calculate F, according to Eq. (3-31).
7: if FES'<F, then

8: Foest=F , Pparticle?eSt=particIez*
9: end if

10:  end for

11: Find Z that satisfies F>F,, Vz.
12: if F**'<F then

. best_ . best_ .
13: F>*'=F+, Gparticle™ =particle,.

14: endif

15: for z¢1t0Z™° do

16: Updating velocity, and particle, according to Eq. (3-33).
17: end for

18: end for

3.5 Simulation

To evaluate the performance of the proposed algorithms, extensive simulations are
carried out. The simulation layout is shown in Fig. 3-8. For large-scale path loss, the
COST-231 Hata model is considered [67].

PLy, =(44.9-6.55l0g(hy ) )log(d/1000) + 46.3+(35.46 1.1k )log(F, )

(3-35)
—13.82l0g( hys ) +0.7hy,5 +C

where hgs = 32m and hys = 1.5m are the height of eNB and UE respectively. The
coverage radius of eNB is 1000m. There are 4 CCs in LTE-A system and the central
frequency F,, equals to 700MHz, 1900MHz, 2300MHz and 3400MHz with bandwidth
20MHz, 10MHz, 10MHz, and 20MHz, respectively; the shadowing is implemented by

lognormal distribution with standard deviation values of 6dB. For small-scale fading,
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the Clarke’s flat fading model with six independent Rayleigh multipath is adopted, the
same as in [59]. The power delay profile is assumed exponentially decaying with e
where [ is the multipath index. Hence, the relative power of the six multipath
components is [0, -0.869, -17.37, -26.06, —34.74, -43.43]. Other parameters related

to the following simulations are list in Table 3-2.
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Figure 3-8 The simulation layout
Table 3-2 Simulation parameter setting
Parameter Value
Maximal transmission power in CC 1 Ptlota| S5Watt
Maximal transmission power in CC 2 'thotal 10Watt
Maximal transmission power in CC3 P, 10Watt
Maximal transmission power in CC 4 P, 10Watt
Power spectral density N s10™
Bandwidth of each RB W 180kHz
Number of UEs K 16~32
Number of RFCs for each UE S 2
BER requirement BER 10°
Number of samples in PSO Z*>° 100
Maximal number of iterations in PSO 7°°° 500

A. RB Allocation Estimation
To verify the effectiveness of the proposed RB allocation estimation approach, we
compare actual allocation results with estimated allocation results by exploiting
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proposed approach in this chapter in terms of sum capacity. As shown in Fig. 3-9, we
can see that there is a little gap between actual allocation results and the approximate
RB allocation approach, which indicates that the proposed RB allocation estimation
approach is good enough to evaluate the CC allocation performance. In addition, it is

observed that the proposed RB estimation approach can get a coarse fairness among

UEs.
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Figure 3-9 The effectiveness of proposed approximate RB allocation approach

B. CC Allocation

In Fig. 3-10, we present the convergence of proposed CEGA-CCA in terms of minimal
UE’s capacity, user fairness and the sum capacity. The start points represent the
system performance by using GA-CCA algorithm. It can be seen that the GA-CCA
algorithm can approach a relatively fair solution with F > 0.95. As the increase of
iterations, the minimal UE’s capacity (the objective of P1) of CC-allocation is improved
by about 7.6% (from 33.77 Mbps to 36.51 Mbps). Besides, it is observed that there is a
tradeoff relationship between UE’s sum capacity and user fairness index, which means
one increases usually as the other one decreases. This result has also been observed

in other resources allocation related works.
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Figure 3-10 The convergence of proposed GA-CCA algorithm with different
performance metrics

Table 3-3 Performance comparisons of different CC allocation algorithms

Minimal UE’s
Algorithms Fairness Sum capacity
capacity
Mobile Hashing 25.60Mbps 0.9186 604.49 Mbps
Round Robin 32.78Mbps 0.9252 614.53 Mbps
GA-CCA 33.77Mbps 0.9668 646.09 Mbps
CEGA-CCA 36.35Mbps 0.9679 661.45 Mbps

To further illustrate the efficiency and the effectiveness of the proposed
CEGA-CCA algorithm, we compare the proposed GA-CCA and CEGA-CCA algorithms
with the MH and the RR algorithms, as shown in Table 3-3. Due to the contribution of
the proposed estimated RB allocation and equal power distribution in this chapter, the
Mobile Hashing can also get a coarse fairness even through there is no extra balance
effort. According to Table 3-3, we can see that the proposed GA-CCA and CEGA-CCA
outperform Mobile Hashing and Round Robin in all aspects. Specifically, in contrast to
the Mobile Hashing scheme, the proposed CEGA-CCA algorithm can get 40.4%, 5.4%
and 9.4% improvement in terms of minimal UE’s capacity, fairness and sum capacity,

respectively.
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C. RB Allocation

On the basis of the obtained CC-allocation result, we show the convergence of the
proposed RE-RBA algorithm in Fig. 3-11, where the start points is the performance of
the MG-RBA algorithm. As shown in Fig. 3-11, the RE-RBA converges to a stable
solution with only several iterations. Furthermore, it is observed that all performance
metrics can be improved with the increase of iterations, which indicates the capability

of the proposed algorithm to drag the search out of the local extreme.

w
o
o

Minimal
@

UE's capacity
(Mbps)
(98]
(@)}
oo

w
o
9

0.969

1rness

0.968

Fa

0.967

Sum capacity
(Mbps)

Iteration times

Fig. 3-11 Convergence of proposed RE-RBA algorithm with different performance
metrics

Table 3-4 Utility function with optimal channel allocation

Algorithms MinimaI.UE’s Fairness | Sum capacity
capacity

CEGA-CCA 36.35 Mbps 0.9679 | 661.45 Mbps
CEGA-CCA + GA-RBA 36.71 Mbps 0.9675 | 674.32 Mbps
CEGA-CCA + RE-RBA 36.96 Mbps 0.9680 | 675.93 Mbps
CEGA-CCA+PSO-PA 37.38 Mbps 0.9782 | 643.09 Mbps
CEGA-CCA + GA-RBA + PSO-PA 37.96 Mbps 0.9769 | 655.62 Mbps
CEGA-CCA + RE-RBA + PSO-PA 38.08 Mbps 0.9777 | 657.47 Mbps

We also present the comparison results of CEGA-CCA without RB allocation, the
GA-BRA and RE-BRA in Table 3-4. In contrast to the result without RB allocation, the
proposed GA-RBA algorithm has better performance in terms of minimal UE’s
capacity and sum capacity, but slightly worse in terms of fairness. This is because the

GA-RBA facilitates better use of multi-user diversity. As the enhanced method, the
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proposed RE-RBA is superior to the others in all aspects. Compared to the non-RBA

case, the RE-RBA algorithm can obtain 1.7%, 0.01% and 2.2% improvement in terms

of minimal UEs capacity, fairness and sum capacity, respectively.
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Figure 3-13 Power distributions after using the PSO-PA algorithm

D. Power allocation

Given the results of CC allocation and RB allocation, we can further improve the

objective of problem (/73) using the proposed PSO-PA algorithm. The performance of

the proposed PSO-PA algorithm is shown in Fig. 3-12. As the increase of iterations,

there is a slightly improvement in terms of minimal UE’s capacity and fairness, but the

40



sum capacity decreases. This indicates that the power allocation just plays a fine
adjustment role in all resource allocation process. We also show the detail power
distribution in all RBs. As shown in Fig. 3-13, it can be seen that the power limitations
in all CCs can be satisfied well, which verifies the effectiveness of our designed fitness
function. As shown in Table 3-4, it is obvious that the system performance in terms of
minimal UE’s capacity and fairness is improved by the proposed PSO-PA algorithm.

It is worth noting that although all allocation stages can benefit the system
performance, the levels of their contributions to the objective improvement are
different. In CC-allocation stage, the minimal UE’s capacity can be improve up to 40%,
while this value is only 2% in both RB-allocation and power-allocation stages.

E. Complexity

In Fig. 3-14, we also present the time complexity of the proposed algorithms with the
variation of K. It is seen that the time consumption of the three stages will increase
linearly when the number of UEs increases, which indicates that the proposed

algorithms are processable in polynomial time with respect to K.
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Figure 3-14 The time complexity of the proposed algorithms

3.6 Conclusion

CA is a promising technique to support higher data rate transmissions for the next
generation wireless communication systems, while how to perform resource

allocation with CA technique is still an open issue. In this paper, we have decomposed
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the problem of resource allocation with CA into three subproblems, CC Allocation, RB
Allocation, and power Allocation. For each subproblem, we have proposed
low-complexity algorithms correspondingly. From the results, we have found that the
proposed CC Allocation algorithm can get higher gains in terms of both minimal UE’s
sum capacity and proportional fairness, and the RB Allocation and the Power
Allocation algorithms can also benefit to balance the tradeoff between the sum
capacity and proportional fairness. However, we have also found that the CC
allocation occupies most of the time consumption from our simulation results, and

there is space remaining to lower the complexity of the CC allocation in future study.
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Chapter 4 Energy-efficient radio resource
management in HetNets with Coordinated
Multiple Points

Energy-efficiency and spectrum-efficiency are the most important issues for future
mobile systems. HetNets with CoMP are wildly approved as a promising solution to
meet increasing demands of mobile data traffic and reduce energy consumptions.
However, hyper-dense deployments and complex coordination mechanism introduce
several challenges in RRM of mobile systems. To address this issue, we present an
RRM approach for CoMP-based HetNets, which aims to maximize weighted energy
efficiency while guaranteeing the data rate of each transmission. The proposed RRM
approach is based on a CE optimization method that is an effective and low-complex
heuristic algorithm. Furthermore, we also give the implementations of the proposed
RRM approach in centralized and decentralized mode, respectively. At last, Extensive

simulations are conducted to validate the effectiveness of the proposed schemes.

4.1 Research on energy-efficient resource allocation

Electric energy is one of the crucial elements that support the continuingly growing
wireless mobile traffic. Energy consumption originating in wireless mobile
communications increases the operating cost of vendors. Meanwhile, waste and
environmental pollution caused by wireless mobile systems attracts wide attentions.
The investigation report published by Ofcom shows that the energy consumption
caused by the global Information and Communication Technology (ICT) industry
accounts for about 3% of the all, i.e., around 600 TWh (1 TWh = 10° kWh), and the
number will grow up to 1700 TWh by 2030 [68]. At the same time, energy
consumption increases the CO2 remission, which exacerbates environmental damage.
Therefore deeply researching on energy-efficient wireless communication system is
not only the social responsibility of the ICT industry, but also a demand for its own
development [69].

In 2009, Mobile Virtual Centre of Excellence (MVCE), an international research

organization of UK, proposed an idea of Green Radio and kicked off the corresponding
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research plan. In 2008, Celtic from Europe initiated a project named as Optimising
Power Efficiency in mobile Radio Networks (OPERA-NET). OPERA-NET project
contributed to improve the energy efficiency of wireless communication system at all
aspects such as system, architecture and terminals, based on the high correlation
between devices in current networks. In 2010, Energy Aware Radio and Network
Technologies (EARTH) project [70][71], which is similar to Green Radio is, is started by
a European organization FP 7 IP. The project is aiming at reducing energy waste in
wireless wideband network without any loss of QoS. EARTH is one of the most
significant research projects on energy-efficiency wireless communications systems. It
has conducted the fundamental works for standardization development, efficiency
evaluation, network architecture, performance optimization, prototype design and so
on, which strongly influences future works [72]. In the same year, an alliance of
several major mobile network operators, mobile network device vendors and research
institutions from all over the world firmly launched Green Touch [70][71] project.
According to the research outcome published in 2013, Green Touch project claimed
that network energy consumption was able to fulfill a 90% reduction, by jointly
optimizing network technologies, architecture, algorithms and protocols [73].
Addition to the projects mentions above, there are many other projects has been
launched to deeply research on environment-friendly communication and
computation techniques, as well as other relative fields, such as Communication
Green (ComGreen) project from German, Green-T project started by European Celtic,
Technical Committee on Green Communications & Computing (TCGCC) organized by

IEEE, and so on.

4.2 Evaluation index sign system of energy efficiency

In mobile communication systems, energy efficiency reflects the tradeoff between
system performance and required energy consumption. There are many different
definitions of energy efficiency can be utilized in various scenarios. According to
EARTH, energy efficiency in wireless communication systems can be categorized into
component level, node level and network level [74].

Network components are the major contributors to energy consumption of BSs.
Around the components of BSs, transceiver systems and baseband process units

account for the main part. Fortunately, it is possible to adjust transceiver systems, as
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well as baseband process units, to reduce energy consumption. This is one of the
most attractive concerns in the related research area. Moreover, it is efficacious to
reduce the total energy consumption by optimizing energy supplying systems and
cooling systems of BSs.

Node-level energy efficiency is a ratio of effective energy output and total energy
consumption of a BS and its accessories, such as backhaul links, Remote Radio Heads
(RRH) and so forth. EARTH expresses the different meanings of node-level energy
efficiency defined by Alliance for Telecommunications Industry Solutions (ATIS) and
European Telecommunications Standards Institute (ETSI), respectively. The definition
and method of ATIS are more general, while the definition of ETSI is more explicit. ETSI
classifies power consumption of a BS according to the deployment mode (centralized
or distributed), with consideration of traffic situations in busy time, middle time and

idle time. As to a centralized BS, the power efficiency is defined as:

Poto +P t +P t

__ _BH™BH med”~med low"~low
equipment — tBH Tt it (4_1)

med low

where Pgy, Pmed and Py, are average power required in busy time, middle time and
idle time, respectively; an tay, tmeqd and tiow are the corresponding time durations.
A similar definition of power efficiency in distributed system is
=P + Py
Poscton + Prcactmea + Pouction P

_ " BH,C med,C"med low,C"low BH,RRH

equipment

to TPy eriitoed + Powrnidt (4-2)

med,RRH med low,RRH" low
ty, +t o+t

tBH + tmed + tlow med low

where Pc and Pgrry represent the power consumption caused by the control unit and
RRH of a BS, respectively.

ETSI also provides a definition of side-level power efficiency, which integrating
power consumption of the energy supplying system, as well as the cooling system,
with node-level power efficiency by introducing a scale factor. Consequently, the

centralized site-level power efficiency can be expressed as

P

site

= PSF-CF-P

equipment

(4-3)

where PSF and CF are scale factors of the energy supplying system and the cooling
system respectively. PSF and CF are constants without units in specific application
scenarios.

Different from the centralized system, it is necessary to consider the loss due to

energy supplying for RRH in a distributed system. Therefore, ETSI introduces a Power
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Feeding Factor (PFF) into site-level power consumption expression in distributed

systems

P._=PSF-CF-P

site equipment

+PSF -CF -PFF Py, (4-4)

According to the definitions provided by ETSI, ERTH proposes a method for
quantifying energy efficiency (aslo known as Energy Consumption Index, shorted by

ECI, in the reports.)

ECl = % (4-5)

where P represents the power consumed by a site; KPI is an index that relates with
the QoS level of users, and coverage and data rate of a BS is the most common uses as
KPI in specific optimization problems.

To demonstrate more details, ECI can be further decomposed as
ECI _ @ _ Psite ] Pequipment — i Requipment — i Pequipment PRF — iii (4_6)

P KPl n, KPI 7, P. KPI 7, n,KPl

equipment

where 1/n, is the energy transformation ratio of the site; 1/n; is the energy
transformation ratio of the RRH; Pgg/KPI reflects the relationship between power of
Radio Frequency (RF) and users’ QoS.

Energy transformation in the site is illustrated in Fig. (4-1).
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Fig. 4-1 lllustration of energy transformation

According to the decomposed expression of power consumption, we can
separate the overall energy-efficiency improving problem into several subproblems,
and independently optimize the system performance via 1/n,, 1/n, and KPI. Usually,
KPI is related to not only Prs, but also the resource scheduling algorithm, power
control algorithm, interference coordination methods, fairness requirement, capacity
limit of backhaul links and so forth.

Eqg. (4-6) gives a precise expression of energy efficiency at each node. However,
we still cannot calculate the network-level energy efficiency by multiplying node-level

energy efficiency by the number of nodes in the network, due to problems such as
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intercell interference, handover, network traffic and wireless channel conditions.
Moreover, it is not rational to consider network-level energy efficiency without
consideration of network service qualities. Consequently, different definitions of
energy efficiency are used at the network level. The widely used network-level energy
efficiency includes: energy per bit information, power per unit of coverage and power
per user.

1. Energy per bit information

Energy per bit information is defined as the ratio between energy consumption in the

network and the amount of effective information it produced,
A =§(J/bit) or ﬂ.,z%(Watt/bps) (4-7)

where E is the energy consumption of the network; I is the effective information
transmitted under the consumed energy; P is the power consumption of the network;
and R is the obtained data rate.

Energy per bit information is the most common evaluation index sign of wireless
communication systems in the academic field. It also be used for theoretical analysis
and energy efficiency evaluation for a single link, since both energy consumption of
network and the amount of effective information is capable to be explicitly output.
The major defect of energy per bit information is the lack of considerations like the
mutual influence between neighboring cells, fairness and so forth. As the result, this
evaluation index sign could not comprehensively reflect the energy efficiency of the
network.

2. Power per unit of coverage
Power per unit of coverage is a ratio of power consumption and the coverage area,

which can be expressed as
P
A :Z(Watt/mz) (4-8)

where A is the area of coverage in the unit of m?.

The amount of CO, emission can be easily calculated according to power per unit
of coverage. In addition, this evaluation index can also be used as one of the
parameters accessing coverage performance of cellular networks. It is noticeable that
there is an implicit relationship between network coverage and effective transmission
of information. The coverage of a network can usually be determined by SINR of the
user access and the sensitivity of user receivers. This means that SINRs within the

coverage must be higher than a given threshold. Since higher SINR leads to better
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data rate, the amount of information transmitted effectively is large with higher
SINRs.

3. Power per user

Power per user is the ratio of power consumption and the number of users being

served,

A :Ni(Watt/user) (4-9)

s

This is an intuitive evaluation index for mobile network operators. It is also
suitable to be used to evaluation Quality of Service (QoS), Quality of Experience (QoE)
and other key metrics of the network. However, the diversity of user types is ignored
in this evaluation index, which makes it is not very useful for theoretical analysis.

Beside the evaluation index mentioned above, compositions that integrating the
three network-level energy efficiency are also proposed, such as power /cell/unit

area/user.

4.3 System Model

For the sake of simplicity, each independent transmitter, including the macro cell site
and micro cell sites, is referred to as a Transmit Point (TP) in this paper. We consider a
downlink system in a CoMP-based HetNet with M TPs and K user elements (UEs), as
shown in Fig. 4-2. Nt and Ngrrepresent the number of antennas on each TP and each
UE, respectively. A control unit (CU) is assumed to be located at the center of the
network, which is responsible for managing data information, as well as collecting all
the CSI in this network. TPs are connected with the CU by backhaul links, through
which control information and data packets are delivered to TPs from CU. Since JT
CoMP is employed in our work, there are a large number of data packets need to be

transmitted via backhaul links.

48



A //”4 o W8 E

" IE g“‘“ - /m

\\

\é \\\\ 1/( 1 /{,/} 2 =

Figure 4-2 System model

The unit of radio resource in both time and frequency dimensions is referred to
as RBs. As defined in LTE standard, an RB consists of 12 consecutive subcarriers for a
duration of a transmit time interval (TTI) [75]. In this chapter, we assume all TPs share
the same spectrum bandwidth, which is divided into totally Ngg RBs. Important
notations used in this chapter are listed in Table 4-1. Several other important
assumptions are considered in our work: Channel fading is considered to be
quasi-static, so that channel coefficients remain constant during per TTI; perfect CSI
acknowledgement is assumed at both receivers and transmitters; TPs are
synchronized in terms of time, frequency and phase, which is reasonable in the
considered system thanks to backhaul connections.

Table 4-1 Important denotations

Denotations Meaning
N/K number of TPs / UEs
Nt/ Ng number of antennas on each TP / UE

M the set consists of all the TPs

M, CoMP set of UE k

B scheduling index

U, the set consists of UEs that attaching to TP m
R, data rate of UE k on RB n
R, accumulated average data rate of UE k
P, transmit power used at TP m on RB n
Ngre number of RBs
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4.3.1 CoMP set selection

Ideally, a UE can achieve the optimal data rate if all TPs cooperatively transmit to it.

However, the corresponding power consumption and computational complexity is

unaffordable. An alternative is to select a CoMP set for the UE according to channel

conditions. TPs in the CoMP set can provide the UE a favorable data rate at a much
lower cost. A UE-specific selection of CoOMP set includes three steps:

1. TPs deliver reference signals (RSs) periodically.

2. A UE hears the channels and measures them according to the strength of the
received RSs. Based on the measurements and a given selection rule, the UE
decides its own CoMP set.

3. The UE acknowledges its decision to the CU.

Denote M, as the CoOMP set of UE k, and M as the set including all TPs in the
network. UE k decides its M, following the rule below:

m=arg ,,RS(the strongest) or

RS(the strongest)—RS(TP m)<A (4-10)

me A, otherwise

me M,

where RS indicates the strength of the reference signal, and A is a threshold in dB. UE
k distinguishes the strongest RS at the first place, and adds the corresponding TP to
the CoMP set M. Other TPs will be added to M, only if strength of their RSs is no
less than RS(the strongest) -A dB. As suggested in LTE releases, a rational A is in the
range of 5~6 dB [76].

In the case where M, includes only ‘the strongest TP’, UE k is referred to as a
non-CoMP UE, since no cooperation occurs during downlink transmissions towards it.
On the contrary, UE k' is referred to as a CoMP UE if its COMP set M, includes more
than one TPs. A CoMP UE is possibly is located at an overlapping area of neighboring
cells where intercell interference seriously damages transmissions. To combat with
interference, TPs in M, are asked to conduct JT CoMP transmissions to UE k' for

strengthening transmit signals and reducing intercell interference.

4.3.2 Dynamic JT CoMP transmission

JT CoMP allows TPs in UE’s COMP set to simultaneously transmit the desired data

signal to it. Due to spatially separation of transmit antennas, multiple versions of the
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desired signal will be received by the UE, which generates extra spatial diversity gain
and strengthens the signal. The obtained data rate of a JT CoMP transmission to UE k

on RB nis given as

2
D IHm W Pl
R! =blog| 1+ —"=% - (4-11)
Mo w25 + 07
meM\M,

where H) . is an NgxN7 channel matrix between TP m and UE k on the nth RB.

M\M, is the complementary of M, in M, which includes all the interfering TPs.

n

w, is the precoding vector with dimension of Ntx1, which maps data streams onto
H
the transmit antennas of TP m, and (w,"n) w’ =1,VYm,n. p_ is the power used by

TP m for transmitting on RB n, and n; ”C’./l/(O,UZINR) is the corresponding complex

Gaussian noise vector. b represents the bandwidth of an RB, which is standardized to
be 180 kHz in LTE-Advanced systems [75].

Eq. (4-11) implies a static coordinated strategy where TPsin M, are all required
to serve UE k all the time. However, static strategies are not always optimal due to the
time variation of wireless channels. To further improve the network performance, we
use a dynamic JT CoMP strategy where a subset of each M, rather than M, is

adaptively determined to perform JT CoMP transmission. Define a scheduling index

,Bn,ke{O,l} to indicate scheduling results, where S =1 means that TP m is

m

chosen to transmit to UE k on the nth RB. Then the data rate of a dynamic JT

transmission can be given as

M
> Ao owi | e
R =blog| 1+ ——m= - (4-12)
> (1- B )Mo ewil | oo+ 07
m'=1

where Z:ﬂﬂ:’,k >1.

4.3.3 Problem Formulation

In this chapter, we consider a practical RRM problem in terms of both spectrum and
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power in a CoMP-based HetNet modeled in the last section. To improve synthesis
performance, the objective involves data rates, power consumption and fairness
among UEs at the same time.

The optimal data rate of the network can be achieved if resources are allocated
to UEs with better channel conditions, regardless of those in ’poor’ condition. A
side-effect of this scheme is unfavorable fairness of UEs’ data rates. In order to
improve the fairness, we introduce the concept of proportional fairness into the
objective of the RRM problem. As in [77], we weighted UE’s data rate by its average
data rate defined by

R =aR ™ +(1-a)R, (4-13)

where 0<ax<1 is the forgetting factor. The introduced weights bring UEs with worse
channel conditions more possibility to occupy resources, and therefore increase the
UEs’ data rates.

Additionally, for the purpose of conserving energy, energy efficiency should be
thoughtfully considered. The energy efficiency is defined as the ratio of obtained data
rate to the total power consumed correspondingly. Combining with proportional
fairness principle, the objective of the RRM problem is formulated as,

NRB n M Ngg

max ZZ ZZZﬂm o (4-14)

k1n1 m=1n=1 k=1

In a practical network, system performance is restricted by several factors. In
addition to limited transmit power at each TP, finite capacity of backhaul links defines
the upper limit of throughput achieved by a TP during a TTI. Furthermore, to
guarantee quality of transmissions, we impose a threshold to data rate of each
transmission. In summary, the RRM problem of the considered system can be

formulated as

NRB n M Ngg

ma SR S5

m=1n=1 k=1

st. Cl 0<p <§,Vm,n

K
c2 B, <{01},> Br, <1,Ym,n,k (4-15)
k=1

NRB
C3 Zi B RI<C,,Vm

n=1 k=1

C4 R'>=R,.,Vk,n

thres /

In Eq. (4-15), C1 shows the power constraint at each transmission where S is the
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largest transmit power allowed by the system; C2 ensures each index fp, ,to be a bit
number, so that a TP can serve no more than one UE on each RB; C3 demonstrates the
constrained throughput of a TP caused by limited capacity of backhaul connections to
the CU, where C,, represents the capacity of the backhaul link connecting TP m and
the CU; and C4 guarantees the data rate of each ongoing transmission, where Rinres is

the given threshold of data rate.

4.4 Centralized solution

Since the problem in Eq. (4-15) is NP-hard, it is unpractical to achieve the optimal
solution. An alternative method is to consider the problem as a combination of a
scheduling problem under the consumption of equal power allocation and a power
allocation problem with given scheduling result. In this way, an approximated solution
to the problem can be obtained in a polynomial time. In the rest of this section, we
propose a heuristic algorithm based on CE for RB scheduling with equal transmit
power at the first place. Then a KKT-method to solve the power allocation problem is
presented.

The algorithm involving both RB scheduling and power allocation proposed in
this section is centralized, which means that the resource allocation is operated at the
CU with global CSls. The centralized algorithm is capable to achieve a favorable system

performance, but it requires significant computational effort of the CU.

4.4.1 CE-Based scheduling algorithm

First, we propose a RB scheduling algorithm based on CE method. The objective of the

considered RB scheduling problem becomes

NRB n M Ngg K
max ZZ ZZZ (4-16)
ﬁmk Pm k=1 n= 1 m=1n=1 k=1

where S is the fixed transmit power. The objective is constraints by C2-C4 in (4-15).
We first propose a CE-based algorithm to solve the RB scheduling problem described
above.

CE method is a typical heuristic algorithm to estimate probabilities of rare events
in complex stochastic networks [78], and to deal with linear programming. The basic

idea of CE method is to generate sufficient samples under a given strategy, and then
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update the generating strategy according to samples. After iteratively repeating this
procedure, generated samples will converge to the optimal solution. The proposed
CE-based scheduling algorithm follows three major stages including initialization,
iteration and a complementary stage to close unfavorable transmissions, as illustrated

in Fig. 4-3.

Initialize the . - Update
° Generate surficial . pd .
generalion > » Filter samples »  generation
e samples o
probability probability
Stage One _
NO

-
Convergent?

Stage Two .

Output RB Removing
scheduling unqualitied f Output  /

resull transmissions

Stage Three

Figure 4-3 The flowchart of CE-based centralized RB scheduling algorithm

1 Initialization
LTE X'"=[xﬂ),...,x%,...,xgvm)](x{?,) € [o, L{m]) denote a sample generated according to

a given probability, which presents a possible scheduling result of TP m. x'(’},) =0
means that no transmission is scheduled on RB n of TP m, otherwise x'(’},) is the ID of

the scheduled UE. In the CE method, the scheduling problem is regarded as a

stochastic procedure. The distribution of XE'Z,) is denoted by q™"= [qgn’”,q’l’"”,...,

u

qmn, ..., qu;,:l], where qL"'”zlP’{x'(’Z,fu}, u € [0, U,]. Obviously, " has the attributes

of 0< qZ"”Sl, Yu,m,n and Zue[o, u,197" =1,Vm,n.

For the sake of accelerating convergence, we design the initial probability
distribution according to estimated data rates. We first defined P{x'('},)=0}= Pro

where Pry is a given value. This probability gives an opportunity to TP m to
scheduling no transmission on RB n. For each u € U, the data rate Rj is estimated
based on the fixed JT COMP transmission as given by (4-11) at the initialization stage.
As suggested by C4 in (4-15), the transmission is considered to be unqualified if
Ry < Rinres- For the rest of optional UEs, the probability is defined as g"" =

(RL /R X (1- Pro) where Ry indicates the sum data rate of all possible qualified

transmissions, and defined as
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Ro.= > R (4-17)

tot
keum 'RE ZRthres

Summarily, the initial distribution of x’(’,’q) is

Pr,, u=0
4P =1(1-PL) xR /RT, uell,, and R]2R,,. (4-18)
O, ueuml and R: <Rt’hres

2 Iteration

Each iteration of the proposed algorithm includes three steps. First, the algorithm
generates adequate samples according to a given strategy. Then it is necessary to
exclude samples those are not satisfied the constraints, and to select ‘good’ samples
for the next stage. At last, probability distribution needs to be updated according to
the selected samples, so that 'better’ samples will be generated in the next iteration.
After sufficient iterations, the algorithm gradually approaches the optimal solution.

Let Nspam denote the number of samples generated in each iteration for each TP, and

X7, ...,XﬁSAM denote the corresponding samples, where X" = [x,f?l),...,x,'-?n), .

xffNRB)]. Each sample can map into a scheduling index set {,B:’n,k,Vk,n}, and leads to a

weighted energy efficiency of TP m given as

Nes R" Neg
LX) Y s )
n=1 R"r”?n) n=1,X{(n)#0

where ZN”‘I . oS represents the total power consumption at TP m according to
N=1,X{(p)#

sample X[. The sum data rate of TP m can be estimated as R,,,(X,f”)=2gf§‘ R)'Zlg?n).

A qualified sample should satisfy two requirements. First, the sum data rate R,
cannot exceed the backhaul capacity of TP m. Therefore, samples those lead to
overlarge sum data rates, i.e., R,,(X"")>C,,, will be removed. Second, the value of

f,(X") should be high enough. Samples whose weighted energy efficiency
t)

thres is a threshold that increases after

m t) .
[ (X< fihes Will also be removed, where

each iteration until it converges. Consequently, Nim (Nim £ Nsam) qualified samples are
left for updating the generation probability. Without loss of generality, qualified
samples are denoted as X"(1<j< Nyy).

At the last stage of iteration, possibility distributions are updated on the basis of

qgualified samples in order to generate better samples in the next iteration. The
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updated possibility P{x’(’zfu} is
a7 =N(x5y =u) /Ny, (4-20)

where N(x'"

i) =u) represents the number of times that UE u appears in N,y samples

on the nth RB.

The proposed iteration algorithm is summarized as the Algorithm 4-1.

Algorithm 4-1 Iteration in CE-based scheduling algorithm

1: finax = fmax_pre = 0, counter = 1

2: while counter < Nspp do

3:  Generate samples X"according to the distribution g™".

4:  Calculate utility function of X", i.e., f(X{"), according to (3-9).

5:  Calculate the sum data rate of X", i.e., R,(X™)=Y ey Rk

6: if fIX") <A  then

thres
7: CONTINUE;
8: endif
9: if Rm(X")>C,, then
10: CONTINUE;

11: endif
12: ?Z)unterzxm

13: counter=counter+1

14:end while

15:for i=1 to Nsay do

16: Calculate f(X{") according to (3-9)

17:end for

18:Sort samples in a descending order in terms of f(X"). Denote the

am am am
consequence by X;,X;, ..., Xsam-

19:Calculate Nyy=[(1-p)Nsam], and let ff”l):f()A(le)

hres

20:if f(Xy,) >f _ then

~m am
21: out=X1, fmax_pre = fmax fmaxzf(xl )

22:end if
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23:Update q"™" according to (4-20)

24:Map Xgx into B, and recalculate R} according to (3-3).

3 Removing unqualified transmissions

The algorithm proposed above cannot ensure that data rate of each transmission is as
high as the given threshold Riyes. Since we put our purpose on improve energy
efficiency, it is reasonable to close transmissions those are estimated to be
unqualified.

Algorithm 4-2 summaries the entire RB scheduling algorithm proposed above.

Algorithm 4-2 Centralized RB scheduling algorithm

1: Calculate R} according to Eq. (4-11).

2: Initialized probability distribution q" (¥m) according to Eq. (4-18).
3:fort=1:tn.xdo

4: form=1:Mdo

5: Process Algorithm 1, and output XJ.(Vm).

6: end for

7: Map obtained X, into {,B”mk}.

8: Update R} according to Eq. (3-3) and obtained {ﬂ:’n'k}.

9: if (all the elements in g™ (Vm) converge) then

10: Output Xout

11: BREAK
12: endif
13:end for

14: Map obtained X7, into {ﬁ” }

m,k
15:for n=1:NRs do

16: for u=1:Kdo

17: if R{<Ries then

18: Let the corresponding ﬁ”mu =0
19: end if

20: end for

21:end for
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4.4.2 Power allocation algorithm

The considered power allocation problem is non-convex, for which optimal solution
does not exist. In this section, we use an analytical method on the base of
KKT-condition to approach a local optimal solution of power allocation. To simply the
problem, we intend to decompose the problem into independent subproblems with

much less variables. The overall power allocation algorithm is illustrated in Fig. 4-4.

The complete power
decompose allocation reslut

Subproblem 1 |——i ResultonRB 1 |

The entire
power allocation

problem

Subproblem Ngg |——i Resulton RB Ngg

parallel computing

Figure 4-4 The flowchart of KKT-based power allocation algorithm

With the obtained RB scheduling result, the power allocation problem can be given as,

K NRB M Ngg
max ZZ PHNI S
B kP k=1 m=1n=1 k=1

s.t. Cl: 0< SS,Vm,n
P (4-21)

Nga

C3: zz B R <C,,¥Ym

n=1 k=1

C4: R!>R,..,Vk,n

thres”
The objective function in Eq. (4-21) is a well-known non-convex function for
which optimal solution does not exist. In this work, we use an analytical method on
the base of KKT-condition to approach a local optimal solution of power allocation.
A solution of Eq. (4-21) can be achieved by solving its dual function in terms of
backhaul and data rate constraints given as

Neg [ K R,': M .
e 255/ T[S e[ Bt )

n=1 k=1 n=1 k=1

st. 0<p, <5Vm,n

where {A,,,Vm} and {un k,‘v’n,k} are non-negative Lagrangian multipliers. However,

the dual function given above is still hard to be solved since it involves too much
variables (MNgg variables and Lagrangian multipliers). To further simply the problem,
we intend to decompose Eq. (4-22) into independent subproblems with fewer
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variables.
Let 8 ZNRBZk_lﬁmk B,,=0 indicates the situation where non transmission is

scheduled for TP m. This is unreasonable in the high-loading network we considered.

Thus we suppose that S # 0, consequently C, can be rewritten as

SR n Cm & n Cm
Cm = Zﬂm,kMRBK—: Zﬂm,kﬂ_ (4'23)
n=1 k=1 ZZﬂ,’;,k n=1 k=1 'm
n=1 k=1

After substituting Eq. (4-23) into Eq. (4-22), the problem can be decomposed into
Ngg independent subproblems, where each subproblem is given as
NRB

K R: M ) K M ) )
max zi me zzﬂ“mﬁmk(R __J+Zzltlnk(R thres) (4_24)

Pl k=1 m=1 k=1 m=1 m n=1 k=1

R,
st. 0<p,<S5Vm

Each subproblem in Eq. (4-24) involves M variables with Lagrangian multipliers
only, and can be solved independently on each RB. The computational complexity is
significantly reduced in this way. In the rest of this subsection, we proposed an

iterative method to solve each subproblem.
Let f,(p", Am K, ) denote the objective function of Eq. (4-24). Take the first

order derivative in terms of p7 and make it equal to zero, then a possible value of

power allocation, denoted by ﬁfn, can be obtained as follows,

M
~n (R ptot ; ] _An 1

pm = K R,, aR" m X ‘ 2
e _ H"m' *an
(ptot )2 Zl: Rk k—;k#k'L tot  m=1 " k ] aprrrlv k

where pp = M, p;, and k" is the UE that is scheduled on RB n of TP m,i.e., /ffn =1

(4-25)

The derivative 0Rg/0p) and A7, are given by

2 n n
or; __blr) mi ¥ k£ (4-26)
On 1470 Y Bl MW,
m'e M
and
A=Y ‘an W, (4-27)

m'e M\{m}
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respectively.

The obtained p:’n above may not in the range of [0, S]. Therefore, the real

power allocation need to be adjusted following the rule given by

p"O=max{min{p" , s}, 0} (4-28)
where t indicates the times of iteration. Lagrangian multipliers can be updated in each
iteration by sub-gradient method [79] as follows,

Neg K
A = max{/"t,(;) _Ugﬂ(zz Br.R; —cmj,o}

n=1 k=1

(4-29)
:ul(wtljl) = max{y,(,t,z - U,Ett) (Rthres _Rl? )'0}

(t)

where Uf;) and U; and the step sizes used in the current iteration for updating A,

and up .

4.5 Decentralized solution

The centralized strategy of resource allocation proposed above is processed on the
CU with the global CSlIs at the beginning of each TTI. It is possible that the time delay
caused by processing is too long to guarantee the effectiveness of a large-scale
system involving numerous TPs and UEs. An alternative method for shortening time
delay is a decentralized strategy that distributes calculations to each TP instead of the
CU. Under a decentralized strategy, global CSls are shared among TPs at the first place.
Then resource allocation is processed at each TP independently and simultaneously,
according to the known CSIs and a given strategy. In this way, the time delay of
processing can be significantly decreased even in a large-scale network. However, due
to the lass of knowledge about scheduling results of other TPs, the accuracy of the
decentralized is unavoidably worse than the centralized.

In this section, we propose a decentralized strategy with the similar CE-based
scheduling and KKT-based power allocation to the centralized proposed above.
Simulation results presented in Section 4.6 will prove that the decline of system

performance under the proposed decentralized strategy is acceptable.

4.5.1 Decentralized RB Scheduling Algorithm

A decentralized RB scheduling algorithm based on CE method is proposed in this
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subsection. The same to the centralized proposed in subsection 4.4, the decentralized

scheduling algorithm initializes the probability distribution q" at the first place. Then

the iteration procedure is processed to obtain RB scheduling results. It should be

noticed that the decentralized strategy cannot accurately estimate data rates of

ongoing transmissions due to the lass of information about scheduling results of other

TPs. Therefore, the decentralized scheduling algorithm deletes the procedure of

removing unqualified transmissions (stages three of the centralized). In the simulation

’

we consider unqualified transmissions as failures, which waste energy and contribute

nothing on data rates of the system. The overall algorithm is illustrated in Fig. 4-5.

Algorithm 4-3 summarizes the decentralized RB scheduling based on CE method.

For each TP
In|t|a||ze.the .| Generate surficial o . Updat?
generation g samoles »  Filter samples > generation
probability P probability
RB A
scheduling Stage One
NO
Convergent?
Stage Two
. |
A J
Output RB
scheduling result Subproblem 1 |——i ResultonRB 1 |
The entire : :
Power power allocation
allocation

problem

decompose

Subproblem Ngg |—

i Resulton RB Ngg

Power allocation

parallel computing

result on each TP

Fig.4-5 The flowchart of decentralized algorithm

Algorithm 4-3 Decentralized RB scheduling algorithm

1: Calculate R} according to Eq. (4-11).

2: Initialized probability distribution " (¥m) according to Eq. (4-18).

3:fort=1:thxdo

4:  Process Algorithm 1, and output Xg.(Vm).

5:  if (all the elements in q"=[g™", (Vn)] converge) then
6 Output Xout

7: BREAK

8 end if

9: end for

10:Map obtained X0

}

into {ﬂ"m B
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4.5.2 Power Allocation Algorithm

In this subsection, we modify the power allocation algorithm proposed in subsection
4.4.2 to be decentralized, so that it can be processed at each TP independently and

simultaneously. The individual power allocation problem of each TP is given by

max Zzﬂmk ZZﬂm P

Prm /0 k=1 n—1 k=1 n—1
st. Cl1 0<p’ <SS, Vn
. Pr (4-30)
c3 ZZﬁmkR <
n=1 k=1
C4 R'=R,..Vnkel,

As in subsection 4.4, we constitute and solve the dual function of Eq. (4-30),
instead of solving it directly. The dual function in terms of constraints C3 and C4 is

given as

P =1\ k=1 n=1 k=1

max i(iﬂmk Ry Z,Bm P j (ZRB:ZK:,B,:,kR_Cm)

+ZZﬂn «Pm k(Rn thres) (4-31)

st. 0<p] <5,Vn

Substituting Eq. (4-23) into Eq. (4-31), we can decompose the power allocation
problem into Ngg independent subproblems. Let f,, denote the objective of the

subproblem on RB n of TP m, which is given as

Jon Zﬂmk Z:Bmkp _Zﬂ“ mk[Rn_ﬂ_J"'Zﬂnkﬂmk(Rn thres)

(4-32)

Z:ﬂﬂ,’;lk =0 means that TP m does not schedule any transmissions on RB n. In

this case, power allocation is not required, i.e,, pp=0. In the case where

Z:ﬂﬂn’;,k =1, transmit power p! can be obtained by an iterative method proposed
in the rest of this subsection.

Let kK denote the UE of TP m scheduled on RB n (i.e., Zf:lﬁ"mfﬁfn k*=1). Take

the first order derivative of f,, , with respect to p7, we obtain
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—af’";“=f—1n—ﬂmwnk*jaRk:*—_ v (4-33)
8pm Rk*pm ’ 8pm Rk*(p;)
where
OR". bzﬁ;,k* Hnm,k"wnm
I; — - meM > (4-34)
Fn ur owi o > [ wi | g o?
' m'e M\{m} ’

Let of,/0p) =0. An expression of p"

solving the equation, which is given as

in the tth iteration can be obtained by

2 2
‘H"m,k*w"m p+ > ‘H:’n,yk*w"m. p) 4 o
R”* m:e,'\/l
p") = E—kx m'sm (4-35)
K noon | 1
oy )

where multipliers A, and p_,+ should be updated according to Eq. (4-29). A

suboptimal p” can be approached after sufficient iterations.

4.6 Simulation and analysis

We consider a HetNet downlink system with 37 TPs, where only 19 TPs of them
conduct actual communications to UEs and the others wrap them around to produce
virtual interference. The radius of each small cell is 250m since a dense deployment is
considered. The system includes 100 RBs, each of which has a bandwidth of 180 kHz.
Therefore, the overall bandwidth of the system is 18 MHz. In addition, 2x2 MIMO links
are created using space channel model (SCM) [80]. Each simulation lasts 20 TTls
where a TTl is 1 ms. Important parameters used in the simulation are listed in Table
4-2.

Simulation is conducted to prove the proposed algorithms effective. A greedy
algorithm, named as max capacity, is also simulated as a benchmark. Max capacity
algorithm tends to allocate resources to UEs with good channel conditions, in order to
achieve the optimal throughput of the network. In this way, UEs with worse channel
conditions are possible to have no chance to communicate. Therefore, the fairness of
max capacity algorithm is unfavorable. Figs. (4-6), (4-7) and (4-8) compare the

performances of max capacity algorithm to that of the proposed.
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Table 4-2 Parameters in the simulation

Parameter Value
Layout of cells 37 hexagon cells; wrap-around used
Radius of cells 250m
Central frequency 2GHz
Number of RBs, Ngg 100
Limit of transmit power, S 20Watt
NtxNg 2%2
Number of TTIs /duration of TTI 20/ 1ms
a 0.1
Channel model SCM (pathloss + shadowing + MIMO fading)
Minimal distance (TP and UE) 35m
Height of transmit/receive antenna 35m/ 1.5m
Penetration loss 20dB
Traffic model Full buffer
Speed of UE 10m/s

Figs. 4-6 and 4-7 demonstrate average throughput per TP and fairness factor (as
defined by Eqg. (3-3)) of the system under different resource allocation algorithms,
when transmit power of each TP is 20Watt. It is obvious that max capacity algorithm
achieves an outstanding throughput, and a much worse fairness factor than the
proposed. The future maobile system targets to provide not only high throughput of
the network, but also quality service to every UE. Therefore, the max capacity is no
longer appropriate. The proposed algorithms have much better fairness factors. More
importantly, as shown in Fig. 4-8, the proposed centralized algorithm can also achieve

energy efficiency as well as that of max capacity.
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Figure 4-6 Throughput per TP under different resource allocation algorithms
(20Watt, infinite Cp, Rinres=180kbps)
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Figs. 4-6, 4-7 and 4-8 also compare the performance of the centralized algorithm
proposed in Section 4.4 and that of the decentralized algorithm in Section 4.5. The
results show that both energy efficiency and throughput are decreased when
decentralized algorithm is used.

Fig. 4-9 shows system performances of the proposed algorithms when transmit
power of each TP is 40Watt. Comparing the results to Figs. 4-6, 4-7 and 4-8, it can be
seen that the energy efficiency of the centralized algorithm significantly reduces when
transmit power of each TP is up to 40Watt, while the throughput does not increase.
This proves that high-level transmit power is not suitable in a dense network.
Additionally, the results show that the decentralized algorithm is more robust since

both energy efficiency and throughput are changed a little when different transmit
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power is used.
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Fig. 4-9 System performances under different strategies

(40Watt, infinite Cp,, Rinres=180kbps)

Simulations are also conducted under infinite, 100 Mbps and 80 Mbps backhaul
limits, respectively, with a fixed Ries Of 360 kbps, to clearly illustrate the effect on
system performance caused by backhaul constraints. Restricted backhaul capacity
leads to a low throughput per TP, as shown in Fig. 4-10(a), since fewer transmissions
are scheduled in this case. However, the tendency is different in terms of energy
efficiency. Fig. 4-10(b) shows that the energy efficiencies of the proposed algorithms

under different backhaul limits are almost the same. This is explained by the fact that

the power consumed by transmissions

restricted.

is also reduced when backhaul capacity is
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Fig. 4-10 System performances under different backhaul capacity
(20 Watts, Rinres = 360 kbps).

At last, we conduct simulations when Rines is 180 kbps, 360 kbps and 540 kbps,
respectively, with the fixed backhaul capacity of 100 Mbps. This shows that the
throughput of our proposals grows as the increase in Rires, as shown in Fig. 4-11(a).
This is because more resources are assigned to the UEs with better channel conditions,
which are possible to achieve for quality transmissions. Fig. 4-11(b) illustrates that the
value of Riues hardly affects the energy efficiency of the system. Since those
transmissions estimated to be inferior to the given Rins are closed, no (or little)
power is wasted. Therefore, that energy efficiency of the system can be maintained at

a high level.
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Fig. 4-11 System performance under different Rinres (20 Watts, C,, = 100 Mbps).

4.7 Conclusion

In this chapter, we have studied a constrained RRM problem aiming at improving
energy efficiency in a CoMP-based HetNet. To solve the problem, we first propose a
CE-based RB scheduling algorithm under the assumption of equal power allocation.
Then, a KKT-based algorithm for power allocation is presented. The proposed
algorithms are considered to be used in a centralized way at the first place. Since the
centralized strategy for RRM takes a long time delay in large-scale networks, we
modified the proposed one in order to adapt to a decentralized system in order to
shorten the time delay for processing. Simulation results compare performances of
both the centralized and the decentralized and discuss the influence on system

performance caused by the considered constraints.
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Chapter 5 Conclusion

Spectrum and energy efficiency of the next generation wireless communication
system is one of the major considerations that have obtained world-wide attention in
the fields of both academic and industry. This thesis studies the RRM problems of the
next generation cellular network with high technologies including CA, HetNet and
CoMP, aiming at improving spectrum and energy efficiency. We first introduce the
rationale behind CA, HetNet and CoMP. Then we consider a cellular network with CA
and formulate the RRM involving CA allocation, RB allocation and power allocation in
Chapter 3. The algorithms to solve the decomposed subproblems are also proposed.
In Chapter 4, we consider a HetNet where JT CoMP is employed to reduce intercell
interference. Joint spectrum and power allocation problem is studied with the
objective of improving energy efficiency. In addition, in order to meet the diverse
requirement in different scenarios, both centralized and decentralized algorithms for
RRM are proposed. Extensive simulations are conducted to verify that the proposed

algorithms are beneficial for improving resource efficiency.
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