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Abstract—Flexible conversion between multi-level modulation
formats is one of the key processing functions to realize adaptive
modulation techniques for flexible networking aimed at high
spectral efficiency in optical fiber transmission. The authors
have proposed an all-optical format conversion systems from
binary phase-shift keying (BPSK) to quadrature PSK (QPSK)
and its reverse conversion from QPSK to BPSK. The latter
had an advantage of wavelength-shift-free conversion from an
incident QPSK to simultaneous two BPSK outputs without loss
of the transmitting data. However, it was limited only for a
single polarization signal. In this paper, we propose a novel
method of wavelength preserved conversion for polarization
division multiplexed QPSK signal with arbitrary polarization
rotation angle to the x-axis on thex-y polarization plane which
is orthogonal to the propagation axis. The method is based
on the orthogonal dual-pump four-wave-mixing (FWM) in the
highly nonlinear fiber with a nonlinear optical loop mirror
configuration, which has advantages that it separately outputs
the original signal and the phase conjugate signal and has
independent FWM efficiency of the signal polarization angle. We
show the system performances such as bit-error-rate and optical
signal-to-noise ratio penalty evaluated by numerical simulations.

Index Terms—Optical processing, modulation format, four-
wave mixing, PDM-QPSK, PDM-BPSK

I. I NTRODUCTION

A DVANCED modulation formats have been widely ex-
ploited as one of the promising technologies to increase

transmission capacity and spectral efficiency (SE) in optical
fiber communications with developing digital signal process-
ing to meet the demand in growing communication traffic [1],
[2]. Flexible conversion between different levels of multi-level
modulation formats without optical-to-electrical and electrical-
to-optical conversions will be expected to realize adaptive
modulation and demodulation technologies and efficient use
of the fiber spectral resources for elastic optical networks.

In order to increase SE, various all-optical methods have
been studied for conversions from lower-order to higher-order
modulation formats. For instance, conversions from on-off-
keying (OOK) to binary phase-shift keying (BPSK), quadra-
ture PSK (QPSK), or 8 PSK have been developed by using
nonlinear effects in a highly nonlinear fiber (HNLF) and a
semiconductor optical amplifier (SOA) [3], [4]. Conversions
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among different m-ary PSKs, we have proposed a passive
interference method to convert from BPSK to QPSK [5], and
the same principle was further applied to convert to quadrature
amplitude modulation (QAM) [6].

Reverse conversions from higher-order to lower-order mod-
ulation formats are suitable when the signals transmitted in
long-haul are then redirected to short-reach or local transmis-
sion [7]. For instance, several nonlinear methods have been re-
ported for conversions from QPSK to BPSK format. Methods
such as using phase erasure by four-wave mixing (FWM) [8],
and using phase-sensitive FWM in SOA [7], [9], HNLF [10]
or periodically poled lithium niobate (PPLN) [11] have been
reported. The method [8] outputs only a half of the original
data sequence as a BPSK stream by using a single pump
light. The methods [7], [10], [11] create two BPSK tributaries
without loss of the original data; however, four phase-arranged
pump lights are required. The method [9] extract two BPSK
tributaries onto the two orthogonal polarizations by using a
pump and four phase-arranged orthogonal probes. The output
BPSK signal in these methods has a different wavelength
from the incident QPSK signal. Such wavelength difference
would be ineffective since it might need additional wavelength
conversion when a signal once isolated for format conversion
is re-inserted into the same wavelength channel among other
WDM channels.

To overcome the issue, some wavelength preserved con-
version techniques have been reported so far. The method
proposed in [12] uses phase-squeezing by phase sensitive
amplification (PSA) in HNLF or PPLN. Experimental demon-
stration using dual-pump PSA [13] demultipexed each BPSK
tributaries from a QPSK signal separately, namely, the in-
phase or quadrature component of the input QPSK signal
can be selected by adjusting the relative phase. Recently
proposed conversion methods [14] and [15] also experi-
mentally extracted two BPSK tributaries by using polarizers
and a polarization beam splitter (PBS), respectively. Similar
technique has been further applied to decompose a 16QAM
signal in [16]. Methods in [14], [17] have reported that both
BPSK tributaries can be simultaneously extracted by using
a PBS when the parametric gain is sufficiently high so that
the original signal and the phase conjugate idler match in
intensity. Our previously reported method [18], [19] converted
a QPSK signal to two BPSK tributaries simultaneously without
loss of the original data by using FWM and interference, in
which the quantitative analyses based on bit-error-rate (BER)
were performed by numerical simulations. Above methods are
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limited to apply only to a single polarization input signal with
restricted polarization alignment of signal and pump waves.

To the best of our knowledge, no conversion techniques
from polarization division multiplexed (PDM)-QPSK signals
to PDM-BPSK signals have been reported so far. Although our
previously reported method [20] using a polarization-diversity
setup has aimed at polarization-insensitive conversion, it has
yet been for a single polarization QPSK signal. In this paper,
therefore, we propose a novel method of wavelength preserved
conversion for PDM-QPSK signals which can be applied to
arbitrary polarization rotation angle to thex-axis on thex-
y polarization plane which is orthogonal to the propagation
axis. This paper is organized as follows. The concept and
the detailed operation principle of the proposed scheme is
described in section II. Quantitative analyses based on BER are
described in section III so as to assess the conversion system
performance such as dependencies of signal OSNR, signal
power, pump power, polarization rotation angle, and laser
linewidth by numerical simulations. Issues to be considered
for practical use of the proposed system are also discussed
in section IV. Finally, conclusion and our future works are
described in section V.

II. OPERATION PRINCIPLE

Fig. 1 shows the schematic diagram of the proposed format
conversion system and signal spectra at each point. The setup
shown in Fig. 1(a) has two basic building blocks, that is,
the phase conjugator and the format converter. The phase
conjugator consists of a HNLF, a 3-dB coupler, circulators and
band-pass filters (BPFs). The principle of generating phase
conjugate signal from original signal by using orthogonal
dual-pump FWM in the HNLF with a nonlinear optical loop
mirror (NOLM) configuration has been reported in [21]. This
method has advantages that the original signal and the phase
conjugate signal come out at different ports separately and
FWM efficiency is independent of the signal polarization
angle. In Fig. 1(a), the original signal passes through the upper
BPF and is attenuated to have the same intensity as the weaker
phase conjugate signal going through the lower BPF.

The format converter located in the latter part of the
configuration consists of Y-dividers, Y-combiners, polarization
rotators, polarization beam splitters (PBSs) and polarization
beam combiners (PBCs). Thanks to the feature of the phase
conjugator, the polarization angle of the phase conjugate signal
is controlled individually. Then, the original QPSK signal and
the phase conjugate QPSK signal are superimposed by the
Y-combiners, thereby being converted to two BPSK signals.
By using PBSs and PBCs,y-polarization component of the
converted BPSK signals are exchanged and reconstructed to
in-phase PDM-BPSK and quadrature PDM-BPSK signals.

Here we formulate the conversion operation using the Jones
calculus. As shown in Fig. 1(b), an original PDM-QPSK signal
is combined with orthogonally polarized two pumps at the 3-
dB coupler, and then these signals are incident into the HNLF.
The original PDM-QPSK signal in the HNLF is written as(

Esx

Esy

)
=

(
Ex exp(i(ωst− βsz + ϕx(t)))
Ey exp(i(ωst− βsz + ϕy(t) + θ))

)
(1)

whereEx and Ey are the real-valued pulse envelopes,i =√
−1, ωs = 2πfs is the angular frequency,βs is the prop-

agation constant,ϕx(t) and ϕy(t) are the QPSK phases at
each polarization component,θ is the time invariant phase
difference betweenx- and y-polarization components. Note
that only QPSK phase terms relevant toϕx(t) andϕy(t) are
indicated on schematic signal spectra of each polarization
component in Figs. 1(b)-(i) for simplicity. Two continuous
wave (CW) pumps are written as(

Epx

Epy

)
=

(
Ep1 exp(i(ωp1t− βp1z))
Ep2 exp(i(ωp2t− βp2z))

)
(2)

whereEp1 and Ep2 are the real-valued amplitudes,ωp1 =
2πfp1 andωp2 = 2πfp2 are the angular frequencies,βp1 and
βp2 are the propagation constants. We assume that angular
frequencies are chosen to beωp1+ωp2 = 2ωs to induce center
frequency preserved FWM and the phase matching condition
βp1 + βp2 = 2βs is satisfied.

The orthogonal dual pump FWM generates a phase con-
jugate signal at the same center frequency while at the
orthogonal side of the polarization compared to the original
signal, namely, thex-polarization component of the original
signal contributes to produce they-polarization component of
the phase conjugate signal, and vice versa. It is still overlapped
with the original signal at the end of the HNLF as shown in
Fig. 1(c), however, they are separated after passing back the
3-dB coupler. The separated phase conjugate signal is written
as [21](

EFx

EFy

)
=

(
κEyEp1Ep2 exp(i(ωst− βsL− ϕy(t)− θ))
κExEp1Ep2 exp(i(ωst− βsL− ϕx(t)))

)
(3)

whereκ is the FWM efficiency,L is the HNLF length, and
exp(−iϕx(t)) and exp(−iϕy(t)) correspond to the complex
conjugate phase terms. For simplicity, the time-space factor
exp(i(ωst− βsL)) is not shown in the following equations.

The phase conjugate signal is divided into two streams
and they are polarization rotated at+90 and −90 degrees,
respectively, as shown in Figs. 1(d) and 1(e). These signals
can be calculated as(

E(d)x

E(d)y

)
=

1√
2

(
cos(−90) − sin(−90)
sin(−90) cos(−90)

)
×(

αEy exp(−i(ϕy(t) + θ))
αEx exp(−iϕx(t))

)
=

1√
2

(
αEx exp(−iϕx(t))
−αEy exp(−i(ϕy(t) + θ))

)
, (4)

(
E(e)x

E(e)y

)
=

1√
2

(
cos(90) − sin(90)
sin(90) cos(90)

)
×(

αEy exp(−i(ϕy(t) + θ))
αEx exp(−iϕx(t))

)
=

1√
2

(
−αEx exp(−iϕx(t))
αEy exp(−i(ϕy(t) + θ))

)
(5)

whereα = κEp1Ep2.
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Fig. 1. Schematic diagram of the proposed all-optical wavelength preserved modulation format conversion from PDM-QPSK to PDM-BPSK, (a) system
configuration and (b)-(f) signal spectra at each point indicated in (a).

These phase conjugate signals are then superimposed with
the attenuated and divided original signals at Y-combiners in
order to obtain converted BPSK signals. At the output of the
upper side Y-combiner, it is shown in Fig. 1(f) as(

E(f)x

E(f)y

)
=
1

2

(
αEx exp(iϕx(t))
αEy exp(i(ϕy(t) + θ))

)
+

1

2

(
αEx exp(−iϕx(t))
−αEy exp(−i(ϕy(t) + θ))

)
=

(
αEx cos(ϕx(t))
αEyi sin(ϕy(t) + θ)

)
. (6)

Similarly, at the output of the lower side Y-combiner, it is
shown in Fig. 1(g) as(

E(g)x

E(g)y

)
=
1

2

(
αEx exp(iϕx(t))
αEy exp(i(ϕy(t) + θ))

)
+

1

2

(
−αEx exp(−iϕx(t))
αEy exp(−i(ϕy(t) + θ))

)
=

(
αExi sin(ϕx(t))
αEy cos(ϕy(t) + θ)

)
. (7)

E(f)y and E(g)y are exchanged by using PBSs and PBCs
to reconstruct in-phase BPSK and quadrature BPSK signals
at both polarizations. The in-phase component is shown in
Fig. 1(h) as(

E(in−phase)x

E(in−phase)y

)
=

(
αEx cos(ϕx(t))
αEy cos(ϕy(t) + θ)

)
(8)

and the quadrature component is shown in Fig. 1(i) as(
E(quadrature)x

E(quadrature)y

)
=

(
αExi sin(ϕx(t))
αEyi sin(ϕy(t) + θ)

)
. (9)

The phase differenceθ betweenx- and y-polarization com-
ponents should be zero or integer multiples ofπ, i.e. θ =
±mπ (m = 0, 1, 2, . . .) so that the converted signal keeps the
BPSK phase.

When the original QPSK signal has a certain rotation angle
ψ to thex-axis on thex-y polarization plane, (1) is modified
as(

E′
sx

E′
sy

)
=

(
cosψ − sinψ
sinψ cosψ

)(
Ex exp(iϕx(t))
Ey exp(iϕy(t))

)
=

(
Ex cosψ exp(iϕx(t))− Ey sinψ exp(iϕy(t))
Ex sinψ exp(iϕx(t)) + Ey cosψ exp(iϕy(t))

)
(10)

whereθ = 0 is assumed. Applying similar manners from (2)
to (9), the output in-phase and quadrature components become(

E′
(in−phase)x

E′
(in−phase)y

)

=

(
αEx cosψ cos(ϕx(t))− αEy sinψ cos(ϕy(t))
αEx sinψ cos(ϕx(t)) + αEy cosψ cos(ϕy(t))

)
=

(
cosψ − sinψ
sinψ cosψ

)(
αEx cos(ϕx(t))
αEy cos(ϕy(t))

)
(11)

and(
E′

(quadrature)x

E′
(quadrature)y

)

=

(
αEx cosψ · i sin(ϕx(t))− αEy sinψ · i sin(ϕy(t))
αEx sinψ · i sin(ϕx(t)) + αEy cosψ · i sin(ϕy(t))

)
=

(
cosψ − sinψ
sinψ cosψ

)(
αExi sin(ϕx(t))
αEyi sin(ϕy(t))

)
, (12)
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Fig. 2. Setup used in numerical simulation.

respectively. As a result, the polarization rotation angleψ
does not matter because it is transferred to the output as it
is. Therefore, this method can be applied to arbitrary angles
of ψ for PDM-QPSK signals.

Consider when the original signal is assumed to propagate in
a retardation plate whose Jones matrix has complex elements, a
relative phase difference between each polarization component
is imposed on the signal. As a result, the converted signal
becomes no longer the PDM-BPSK signal.

III. N UMERICAL SIMULATION

The proposed format conversion method for PDM signal is
verified by numerical simulation using OptiSystem (Optiwave
Systems Inc.). The system setup is shown in Fig. 2. The orig-
inal 112 Gbit/s non-return-to-zero (NRZ) PDM-QPSK signal
at 28 Gbaud is generated by using a16-dBm laser source at
fs = 193.2 THz with 0.1-MHz linewidth, a PBS/PBC, and
IQ modulators with215 − 1 pseudorandom binary sequence
(PRBS) at bit rate ofR0 = 56 Gb/s for each polarization
component. Two CW pump laser sources are atfp1 = 193.0
THz andfp2 = 193.4 THz with 0.1-MHz linewidths and no
added noise. The CW laser sources for signal and pumps
are assumed to be phase-locked so that the phase matching
condition between them is maintained. The free-running local
oscillators (LOs) for coherent detection have power of10
dBm at fs with 0.1-MHz linewidths. Amplified spontaneous
emission (ASE) noise is added to both polarization compo-
nents of the original PDM-QPSK signal to measure bit-error-
rate (BER) performance. The phase shifter (PS1) is used to
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Fig. 3. Optical spectra with0.05 nm resolution at each point (a)-(f) shown
in Fig. 2.

adjust the initial phase of the incident QPSK signal after the
modulation to have the same initial phase as the two pumps
which is set to zero in the simulation. The WDM combiner has
bandwidth of112 GHz. The3-dB coupler has50 : 50 coupling
ratio. The HNLF has nonlinearity ofn2 = 2.7×10−20 m2/W
and effective area ofAeff = 1.5 µm2 [22], length ofL = 100
m, and zero-dispersion wavelength atfs with its slope of zero.
Note that the effective area is an order of magnitude small
than typical HNLF since we need to obtain sufficient phase
conjugate signal power even in a relatively weak pump power
around10 dBm compared to other studies. The reason of the
weak pump power is that we plan to compare results obtained
by using HNLF and SOA in the future as in [18]. We use the
split-step Fourier method to calculate the HNLF propagation.
Circulators are assumed to have no insertion loss. Each BPF
after the circulator has a Gaussian-shape transmission function
with no insertion loss and bandwidth of56 GHz centered at
fs. The variable optical attenuator (VOA2) adjusts the intensity
of the original signal to the same value as that of the phase
conjugate signal. We set the VOA2 to 26.2 dB, 32.2 dB,
and 38.2 dB when pump powers are at13 dBm, 10 dBm,
and 7dBm, respectively. The phase shifter (PS2) adjusts the
phase of the phase conjugate signal in order to compensate
for a relative phase deviation caused by path length difference.
The phase conjugate signal is divided into two streams and
they are polarization rotated at+90 and −90 degrees, then
superimposed with the original signals at Y-combiners to be
converted to two BPSK signals. The insertion loss of the Y-
dividers and the Y-combiners is3 dB, while the polarization
rotators have no insertion loss. Using following PBSs and
PBCs, y-polarization components of the two BPSK signals
are exchanged to reconstruct in-phase BPSK and quadrature
BPSK signals for both polarizations. These PBSs and PBCs
are assumed to have ideal isolation and no insertion loss.
Although most of the above passive components except for
the HNLF have ideal properties, degradations expected on the
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converted signal in a real implementation are additional loss,
phase rotation due to intensity imbalance and phase mismatch
in between the original signal and the phase conjugate signal,
and crosstalk due to the imperfect isolation in the polarization
exchange by PBCs and PBSs. The two PDM-BPSK signals are
amplified by the EDFAs with36.5-dB gain and noise figure of
4 dB and coherently detected by using dual-polarization opti-
cal hybrids (DPOHs) and balanced photo detectors (BPDs) and
digitally processed by adaptive equalization [23], frequency
offset estimation [24] and carrier phase estimation [25] in
digital signal processor (DSP). Then, bit errors are directly
counted by bit error rate tester (BERT).

Fig. 3 shows optical spectra with0.05 nm resolution at
each point from (a) to (f) shown in Fig. 2. Solid and dashed
curves indicate signals or pumps onx- and y-polarization,
respectively. In this figure, the ASE noise is added to set
the original PDM-QPSK signal’s OSNR to16 dB. Note that
the CW pumps are slightly remained at outer side of the
signal in Figs. 3(d)-(f) due to the finite sideband suppression
of the BPFs after the circulators, which will not affect the
received signal quality since they are further suppressed by
the receiver’s bandwidth limitation assumed to be0.75 times
of the symbol rate with the form of Bessel function.

Fig. 4(a) shows the converted PDM-BPSK signal power as a
function of the original PDM-QPSK signal power with the two
pumps power of13 dBm, 10 dBm, and7 dBm as a parameter.
The original and the converted signal power are measured at

the input of the WDM combiner and at the output of the
PBC, respectively. The original PDM-QPSK signal is assumed
to havex and y components aligned to the polarization of
the pump 1 and 2, respectively. Each curve takes average
values between both polarization components. The OSNR of
the original signal is set to16 dB. It is found that the converted
signal power is proportional to the original signal power and
the two pumps power. When the original signal power of0
dBm and the two pumps power of10 dBm, the converted
signal power is−32.2 dBm. The conversion efficiency defined
as the ratio of the converted signal power to the original signal
power becomes−26.2 dB, −32.2 dB, and−38.2 dB at the
pump power of13 dBm, 10 dBm, and7 dBm, respectively.
Note that the OSNR of the signal is not degraded through
conversion process itself regardless of its efficiency since the
ASE noise added in advance is dominant and the quantum
noise is not added from the WDM combiner to the PBCs
in the simulation. Moreover, noise accumulation due to the
pump-to-idler phase noise transfer in the FWM process [26]
does not occur in our simulation because the signal and the
two pumps are assumed to be phase-locked. It also holds in
experimental verifications [27].

Fig. 4(b) shows the BER performance of the converted
PDM-BPSK signals as a function of power of the original
PDM-QPSK signal with its OSNR of14 dB and 16 dB as
a parameter. The signal power and the OSNR are measured
before entering the WDM combiner and power of the two CW
pumps is set to10 dBm. Each curve takes average BER values
between both polarization components. It is found that higher
OSNR shows better BER performance and there are certain
noise floors at higher signal power, which can be explained
qualitatively by the ASE noise accumulated in the EDFA. We
used a noise model for the EDFA as reported in [28, (23)],
which can be rewritten as

Sout(λs) = Ghν

(
10NF [dB]/10 − 1

G
+
Sin(λs)

hν

)
(13)

whereSout(λs) andSin(λs) arethe output and the input ASE
spectral density [W/Hz] at the signal wavelength, respectively,
G is the amplifier gain,hν is the photon energy, andNF is
the noise figure of the EDFA. The first term in the parentheses
is the spontaneous emission noise generated in the EDFA, the
second term is the shot noise, and the third term corresponds
to the noise existed in the signal before entering the EDFA.
The second term is negligible in highG as 36.5 dB in
the simulation compared to other terms. Therefore, curves in
Fig. 4(b) can be explained by the magnitude relation between
the first and the third terms. Let us consider that the range
of the converted PDM-BPSK signal power entering the EDFA
is from −44 to −29 dBm as shown in the curve of10-dBm
pump power in Fig. 4(a). Then, the third term is dominant
when the converted signal power is relatively strong and its
ONSR is assumed to be up to16 dB which we set for the
original signal. Therefore, the BER curves in Fig. 4(b) show
floors since the output OSNR suffers only a slight degradation
by the weak first term. Whereas both terms are comparable
when the power is relatively weak, which leads to add the
spontaneous emission noise amplified in the EDFA to the
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Fig. 5. Constellation map of (a) the original PDM-QPSK signal and
the converted (b) in-phase and (c) quadrature PDM-BPSK signals, and (d)
schematic of the phase-to-amplitude noise conversion.

already existed noise in the signal. Thus, the output OSNR is
degraded significantly, which results in degradation of BER.
When the OSNR of the converted signal is assumed to be
sufficiently high, for instance, over30 dB, the first term is
dominant and thus the output OSNR is significantly degraded
from the input OSNR. Note that included noise sources for the
photo detectors are LO-ASE beat noise, signal-ASE beat noise,
ASE-ASE beat noise, thermal noise, shot noise, and dark
current. Due to the BPD configuration, the LO-ASE beat noise
predominates over the others in the receiver [29]. In Fig. 4(b),
the7% overhead hard-decision forward error correction (FEC)
threshold oflog(3.8 × 10−3) = −2.42 is also shown. Error-
free conversion can be achieved since all curves are below the
threshold at moderate signal power.

Sample constellation maps of the original PDM-QPSK
signal, the converted in-phase and quadrature PDM-BPSK
signals are shown in Figs. 5(a), (b) and (c), respectively. The
original signal’s power and OSNR are0 dBm and 16 dB,
respectively. Note that in Fig. 5 the original signal’s field is
normalized to have average intensity of1. It is found that the
converted signals have squeezed constellation diagrams pro-
jected onto horizontal and vertical axes due to the conversion
principle, i.e. superimpose between the original and the phase
conjugate signals. Fig. 5(d) illustrates the schematic of the
phase-to-amplitude noise conversion compared with back-to-
back (B2B)-BPSK constellation. Let us consider a case that
the original QPSK signal at the constellation point ofπ/4 is
assumed to spread as radiusr by the noise added in advance
of the format conversion. In this case, the phase conjugate
signal generated by the FWM is to be at the constellation
point of −π/4 with similar noise spread. These two signals
are superimposed by a power combiner with3-dB loss. As
a result, phase-to-amplitude noise conversion occurs in the
converted BPSK signal whose noise spreads as

√
2r on the

in-phase (real) axis. Compared to the B2B-BPSK signal with
noise spreadr equivalent to the original QPSK signal, the
converted BPSK signal has

√
2-timesnoise spread on the in-

phase axis. Therefore, the converted BPSK signal has a 3-dB
OSNR penalty required for achieving the same BER as the
B2B-BPSK signal by hard-decision BER calculation in which
the decision threshold is on the quadrature (imaginary) axis. It
is worth noting that, in terms of BER calculation, one should
pay attention to the signal quality after the EDFA as described
in the former paragraph. If the first term in (13) is dominant,
resulting BER will have a negligible OSNR penalty compared
to the B2B case. A PSA operating in gain saturation [30] is one
of the candidate methods to compensate for such amplitude
noise.

Fig. 6 shows the BER performance of the converted PDM-
BPSK signals as a function of OSNR of the original PDM-
QPSK signal with its power and pump power as parameters.
In Fig. 6(a), the signal power measured before entering the
WDM combiner is changed in steps of6 dB as −12, −6
and 0 dBm, and the pump power is fixed to10 dBm. In
addition, BER performance of the original PDM-QPSK signal
at power of0 dBm is shown. As a reference, a B2B BER
performance evaluated for0-dBm PDM-BPSK signal without
format conversion is also plotted, which has 0.5-dB OSNR
penalty from theoretical value [31] due to additional degrada-
tions such as bandwidth limitation and noise accumulation at
the receiver. At OSNR of16 dB, the evaluatedlog(BER) are
−3.9 and−2.9 when the signal power are0 dBm and−6 dBm,
respectively, which exactly corresponds to the curve of16-dB
OSNR in Fig. 4. Moreover, the evaluatedlog(BER) increases
from −3.9 to −2.8 when the OSNR decreases from16 dB to
14 dB at signal power of0 dBm, which meets BER values
of OSNR of16 dB and14 dB at that signal power in Fig. 4.
It is found that there is negligible OSNR penalty in between
the original PDM-QPSK signal and the converted PDM-BPSK
signal at0-dBm signal power. It is also found that almost3-
dB OSNR penalty can be observed from B2B at signal power
of 0 dBm on the FEC threshold. The reason has already been
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Fig. 6. BER as a function of OSNR with (a) signal power and (b) pump
power as parameters.

described in the explanation for Fig. 5(d). On the other hand,
studies in [10], [11], [15] reported almost negligible or slight
penalties from B2B results. They evaluated BER as a function
of received power, not of OSNR. The ASE noise was not
intentionally loaded before format conversion, but the received
signal was preamplified by an EDFA. Therefore, the ASE
noise generated at the EDFA was dominant both for converted
signal and B2B signal, resulted in a negligible penalty except
for the experimental imperfections.

In Fig. 6(b), the pump power is changed in steps of3 dB as
+7, +10 and+13 dBm, and the signal power is fixed to−6
dBm. As can be seen in Figs. 6(a) and (b) that they have almost
the same curves except for the B2B curve. This is due to the
fact that with respect to the intensity of the phase conjugate
signal derived as (3),3-dB pump power change is equivalent
to 6-dB signal power change. Therefore, BER curves at signal
power of −12, −6 and 0 dBm in Fig. 6(a) correspond to
those at pump power of+7, +10 and+13 dBm in Fig. 6(b),
respectively.

Fig. 7 shows the BER performance of the converted PDM-
BPSK signals as a function of the polarization rotation angle
of the original PDM-QPSK signal with its OSNR of14 dB
and 16 dB as a parameter. Atψ = 0, x- and y-polarization
components are along with pump 1 and pump 2, respectively.
The signal power and the pump power are set to0 dBm and
10 dBm, respectively. It is found that there is no dependency
on BER toψ of the original signal. Therefore, it is confirmed
that this method can be used for arbitrary angles ofψ for

ψ

Fig. 7. BER as a function of polarization rotation angleψ with OSNR as a
parameter.

Fig. 8. OSNR penalty from B2B at BER on the FEC threshold as a function
of signal power with linewidth as a parameter.

PDM-QPSK signals.
Fig. 8 shows the OSNR penalty, which is the difference of

the OSNR required for BER on the FEC threshold between
the converted PDM-BPSK signal and the respective B2B
result, as a function of the original PDM-QPSK signal power
with linewidth of the signal and the pump laser sources
as a parameter. The pump power is set to10 dBm. At 0-
dBm signal power, almost3-dB OSNR penalty is observed
at any linewidths of0, 0.1, 1.0 MHz. When the signal power
decreases, the OSNR penalty increases with the linewidth. This
is because broader pump bandwidth, especially the bottom of
the spectrum, is overlapped with the signal bandwidth and
thereby causes crosstalk. For instance, the crosstalk on the
phase conjugate signal at1.0-MHz linewidth and−6-dBm
signal power is comparable to the (inverse of) required OSNR
for the target BER, which results in signal quality degradation.
The crosstalk is almost10-dB weaker at0.1-MHz linewidth
and−6-dBm signal power.

IV. D ISCUSSION

This section discusses some important issues for practical
use of the proposed conversion scheme. First, we consider the
phase difference ofθ between each polarization component
expressed as (1). This phase differenceθ is included within
cosine and sine functions of they-polarization component
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Fig. 9. Constellation diagrams of the original QPSK signal and the converted
two BPSK signals atθ = 0, 22.5, 45, 67.5 and90 degrees.
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Fig. 10. BER as a function of chromatic dispersion accumulated before
format conversion.

of the converted BPSK signals expressed as (8) and (9). It
means that taking cosine and sine after rotating the original
QPSK signals byθ becomes no longer the correct in-phase and
quadrature components projected onto horizontal and vertical
axes. Fig. 9 shows constellation diagrams of the original QPSK
signal and the converted two BPSK signals atθ = 0, 22.5, 45,
67.5 and90 degrees. The OSNR of the original QPSK signal
is set to26 dB. It is found thaty-polarization of the converted
in-phase BPSK 1 and the quadrature BPSK 2 atθ = 22.5,
45 and 67.5 degrees have four, three and four constellation
points, respectively, not corresponding to BPSK phases. At
θ = 90 degree, they look like the same constellation asθ = 0
degree, however, the in-phase and the quadrature components
are swapped which is easily calculated from (8) and (9).
Consider the pump phase adjustment to compensate forθ,
however, it will not work since it is equally included outside
of cosine and sine functions of both polarizations in (8) and
(9). Moreover, in experimental verifications, the relative phase
between both polarization channels will vary in time unless an
integrated PDM-modulator [32] is used. Further investigations
on how to deal with such time-variant and invariant phase are
our future works.

Next, we consider undergone transmission impairments

ψ

Fig. 11. BER as a function of polarization rotation angleψ with 3-dB PDL
on the vertical axis.

before format conversion such as chromatic dispersion (CD),
polarization dependent loss (PDL), polarization mode disper-
sion (PMD), and nonlinear effects. They normally degrade a
signal simultaneously, though, we evaluate them independently
and nonlinear effects are ignored for simplicity. Consider CD
accumulated before format conversion, the incident signal’s
amplitude and phase are degraded. As expressed in (8) and (9),
the amplitude goes out as it is through the system, however,
the phase are included in sine and cosine function. Therefore,
conventional post-processing dispersion compensation (DC)
methods such as optical DC (ODC) and frequency domain
electrical DC (EDC) at the receiver may not compensate for
the accumulated CD even when using known information
about transmission channel, for instance, fiber length, disper-
sion coefficient, and etc. A simple solution is to apply ODC
before format conversion. Fig. 10 shows the BER performance
of the converted PDM-BPSK signals as a function of CD
accumulated before format conversion. In the simulation, a CD
emulator is placed before the WDM combiner, assuming the
dispersion coefficient of17 ps/nm/km and the dispersion slope
of 0.075 ps/nm2/km at fs without fiber loss. Accumulated
CD is emulated by changing its fiber length from0 km to
30 km. The signal and the pump powers are set to−3 dBm
and 10 dBm, respectively. It is found that BER exceeds the
FEC threshold over85-ps/nm CD which corresponds to5-
km fiber length without the use of ODC, whereas it keeps
below the FEC threshold with ODC placed between the CD
emulator and the WDM combiner. In the B2B case in which no
format conversion is performed and a CD emulator is placed
before the receiver, a13-dB OSNR B2B curve shows a gradual
BER increase despite no ODC. This is because the13-tap
adaptive equalizer in the receiver DSP partly compensates
for the accumulated CD. The reason why the13-dB OSNR
B2B curve, 3-dB less than the original signal, is plotted is
that the converted signal has3-dB OSNR penalty compared
to the B2B case to achieve the same BER as explained in
Fig. 5(d). Note that if the converted in-phase and quadrature
PDM-BPSK signals are allowed to be received at the same
time and transformed into a complex exponential signal using
Euler’s formula, the accumulated CD can be compensated by
the conventional EDC.
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Then, we evaluate the influence of PDL on the original
PDM signal. As described in [33], the system PDL shows
statistical nature in point-to-point transmission system because
there is a number of optical devices with constant PDL in
network nodes connected by a transmission fiber in which
the state of polarization (SOP) can be randomly converted.
However, we conduct a deterministic calculation to evaluate
two impairments by PDL, namely, the level imbalance and
the loss of orthogonality. The former corresponds to power
loss on the lossy polarization axis and the latter corresponds
to crosstalk on both polarization axes [34]. In the simulation,
the signal and the pump powers are set to−3 dBm and10
dBm, respectively. A PDL element with 3-dB loss only on the
vertical axis is placed before the WDM combiner. Fig. 11
shows the BER performance of the converted PDM-BPSK
signals as a function of the polarization rotation angleψ of
the original PDM-QPSK signal with its OSNR of16 dB.
It is found that all results are below the FEC threshold. At
ψ = 0 degree, onlyy-polarization component shows worse
BER which exactly corresponds to−6-dBm signal power in
Fig. 4. Whenψ increases,x-pol andy-pol curves are crossed
at 45 degree at which both polarization components show the
same BER due to the same loss on the vertical axis, and
then separated again up to 90 degree at which originallyx-
polarization component shows worse BER. As explained in
Fig. 5(d) about the3-dB OSNR penalty, B2B results with
OSNR of13 dB plotted in Fig. 11 also show the similar curves.
Therefore, it is confirmed that the conversion method does not
suffer additional performance degradation by the deterministic
PDL.

Consider PMD, as reported in [35], it also shows statistical
nature since the single-mode fiber contains arbitrary birefrin-
gence varying in time and in length due to random imperfec-
tions and asymmetries such as stress, heat and vibration. It
may cause delay and superposition between two polarization
components, pulse deformation and related phase change. In
this discussion, we conduct a deterministic calculation to
evaluate combined impairments by PMD, namely, frequency
independent differential group delay (DGD), frequency depen-
dence of DGD and the principle states of polarization (PSP)
as described in [36]. In the simulation, the signal and the

µ

Fig. 13. Examples of (a)(b) constellations and (c)(d) waveforms of the
converted quadrature BPSK signal onx-polarization when phase-locking
between signal and pumps is (b)(d) activated and (a)(c) not activated.

pump powers are set to−3 dBm and10 dBm, respectively. A
PMD emulator is placed before the WDM combiner, assuming
that emulated fiber length is50 km, negligible chromatic
dispersion and slope, frequency dependence of DGD called
polarization chromatic dispersion is1.3 ps/GHz, and frequency
dependence of the PSP referred to as depolarization rate is
10.8 deg/GHz [36]. Fig. 12 shows the BER performance
of the converted PDM-BPSK signals as a function of the
value of DGD with OSNR of16 dB. It is found that the
BER exceeds the FEC threshold and becomes monotonically
worse with DGD. In the B2B case in which a PMD emulator
is placed before the receiver, a13-dB OSNR B2B curve
shows a slight BER increase but below the FEC threshold.
This is because the adaptive equalizer in the receiver DSP
aggressively compensates for the PMD effects in the B2B
case, whereas the format conversion is strongly affected by
the PMD-induced phase change even when the receiver DSP is
activated. Further investigation to suppress such PMD effects
on the PDM signals is our another future work.

Finally, we discuss on how to achieve the phase-locking
between signal and pump laser sources. In the proposed
method, dynamic adjustment is needed for the phase-locking
and to guarantee the state of polarization of the incident PDM-
QPSK signal asθ = ±mπ (m = 0, 1, 2, . . .) as already
described. Note that when the pump power is constant, values
of PS1, PS2, and VOA2 in Fig. 2 can be fixed after they have
been once optimized. They don’t depend on the original signal
intensity. In order to stabilize the phase fluctuation, a feedback
loop architecture is usually employed. For instance as reported
in [13], the output of an optical phase comparator has been
used as the error signal in a phase-locked loop. Another possi-
ble phase-locking method reported in [17] utilizes a multiply-
filter-divide technique. A frequency comb source with a single
common laser can also be used to lock the phase between
two pumps needed for our method. Note that even when the
frequency comb source is used not only for the two pumps

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JLT.2016.2620170

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. X, NO. XX, XXXX 2016 10

but also for the signal, phase stabilization is necessary since
the signal is modulated whereas the pumps are not modulated.
Fig. 13 shows constellations and waveforms of the converted
quadrature BPSK signal onx-polarization measured after the
PBS when the phase-locking method in [17] between signal
and pumps is implemented or not. In the simulation, 1-MHz
linewidth is set to the CW laser for the original signal. No
ASE noise is added to the original signal. Two pumps are
assumed to have zero linewidth. Therefore, only the signal
phase is adjusted by the phase-locking method shown in [17,
Fig. 2] which generates a feedback signal by using a photo
detector, a radio frequency (RF) amplifier, a RF detector,
analog-to-digital converter, and a DSP. As shown in Fig. 13,
the amplitude fluctuation caused by the phase drift is clearly
reduced by using the phase-locking method. Note that the
amplitude fluctuation will change in each calculation iteration
because such phase drift normally shows stochastic nature.

The other aspect of the phase-locking in our system is the
stabilization of the interference at Y-combiners between the
original signal and the phase conjugate signal they have prop-
agated along different paths. Consider a case where a relative
phase difference of−2δ is remained to the phase conjugate
signal expressed as (4) and (5) compared to the original signal,
the converted BPSK signals after the Y-combiners expressed
as (6) and (7) are modified as(

E′
(f)x

E′
(f)y

)
=
1

2

(
αEx exp(iϕx(t))
αEy exp(iϕy(t))

)
+

1

2

(
αEx exp(−iϕx(t)) exp(−i2δ)
−αEy exp(−iϕy(t)) exp(−i2δ)

)
=

(
αEx cos(ϕx(t) + δ) exp(−iδ)
αEyi sin(ϕy(t) + δ) exp(−iδ)

)
(14)

and(
E′

(g)x

E′
(g)y

)
=
1

2

(
αEx exp(iϕx(t))
αEy exp(iϕy(t))

)
+

1

2

(
−αEx exp(−iϕx(t)) exp(−i2δ)
αEy exp(−iϕy(t)) exp(−i2δ)

)
=

(
αExi sin(ϕx(t) + δ) exp(−iδ)
αEy cos(ϕy(t) + δ) exp(−iδ)

)
, (15)

respectively, whereθ = 0 is assumed. As a result,δ included
in the sine and cosine functions will affect on both polarization
components as well asθ in the original equations and shown
in Fig. 9. The termexp(−iδ) corresponds to a phase shift
applied after the conversion. A possible solution to stabilize
the interference is the photonic integrated circuit. Although
simulations are performed with a HNLF, any nonlinear media
supporting the possibility of integration can be used such as
SOA and silicon nanowires. By using such media, integration
of the processing system is possible. The reason why we used
the HNLF in the simulation is to avoid considering param-
eters such as pattern effect, additional noise generation, and
conversion efficiency dependence by signal-pump frequency
separation when using the SOA.

V. CONCLUSION

In this paper, we have proposed an all-optical modulation
format conversion system from a PDM-QPSK signal to two
PDM-BPSK signals. Based on the principle of the orthogonal
dual-pump FWM in NOLM and the coherent superposition,
the proposed system can be applied to polarization multiplexed
signals. In addition, the system has advantages of wavelength
preserved conversion without any loss of data of the incident
signal.

We have evaluated the system performance by numerical
simulations. BER performances are affected not only by the
signal power but also the pump power due to the conversion
efficiency, whereas independent of the polarization rotation
angle of the original signal. OSNR penalty from B2B shows
almost3 dB because of the phase-to-amplitude noise conver-
sion caused by the operation principle.

Since the proposed system is limited to incident signals with
θ = ±mπ (m = 0, 1, 2, . . .) as discussed in section 4, we will
develop advanced methods to treat signals with arbitraryθ.
Moreover, taking the phase-locking mechanism in to account,
suppressing technique for PMD effects and experimental ver-
ification are also other issues to be investigated as our future
works.
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