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Abstract

Nowadays, information technology is developing fast and used in more and more fields.

Therefore, numerous documents are saved in the computers which could be read by the

computers. Moreover the number of the documents increases extremely everyday. For

the important application, it becomes a research subject how to automatically classify,

organize and manage such numerous amount of literature and data, in the case most of

them are documents.

Due to the growing availability of digital textual documents, automatic text classifica-

tion (ATC) has been actively studied to organize a vast number of unstructured documents

into a set of categories, based on the textual contents of the document.

Text representation is the fundamental step in text classification task, in which a text is

represented by a set of features. Features play the important roles in training classification

model and prediction. Many previous studies focused on enriching text representation to

address text classification task. However, the traditional classification methods with VSM

(Vector Space Model) only studied intensively on the words and their relationship in some

specific corpus/dataset.

According to the previous researches, the key problem of text classification is the lack

of information, especially for the imbalanced dataset.

In this thesis, we propose the idea of the background knowledge, which could comple-

ment information for documents and train models to classify texts.

This study is based on Baidu Baike and character co-occurrence. Baidu Baike is an

online Chinese encyclopedia similar to Wikipedia, which is widely used by Chinese speakers

to learn basic concept and general knowledge. Two external corpora are employed for

extracting the features of character co-occurrence, People’s Daily news and Sougou news

corpus.

To predict the categories for new texts, SVM (Support Vector Machine), a machine

learning algorithm, is used to train the classification models. The performance of pro-

posed method is evaluated with Fudan University text classification corpus and Sougou

classification corpus in reduced version.



The results show that the background knowledge could complement the information for

the documents in text classification task. With the imbalanced corpus, the improvement

is obvious by adding the background knowledge.



Chapter 1

Introduction

Because computers and Internet are widely used, the extremely huge number of informa-

tion is produced everyday. Nowadays, the information already is full of our life. Most of

the information is stored as texts. A large number of unstructured texts is posted and

sorted in web pages, digital libraries and community. Therefore, the automatic method is

necessary to help people manage and filter these information instead of manual work.

Predicting the class labels for the online texts has been required by a variety of appli-

cations. For example, in spam filtering, classification methods are used to determine the

junk information automatically. In news organization, because most news is provide on

Internet and the amount is huge, it is impractical to finish this task manually. In emotion

classification, a text is classified by the emotion based on their meaning. In recommen-

dation systems, the class of the text would be an important tag, which determines if its

content might draw more attention to this customer.

1
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1.1 Text Classification and Background Knowledge

Depending on the classification task, there are different kinds of class sets. For example,

in spam filtering, there are 2 classes in this task, which is a binary classification problem.

It only determines if the text is spam mail or not. In news organization, on CNN.com, the

news channels include money, entertainment, tech, sport, travel, and so on. In emotion

classification, there are Joy, Love, Expectation, Surprise, Anxiety, Sorrow, Anger, and

Hate defined in Ren-CECps [29].

The motivation for exploiting background knowledge in text classification is attributed

to two reasons. First, more information from texts can make more reasonable classification.

Second, people have basic concepts and general knowledge in their mind, however, the

common corpora/datasets are some kinds of special case which would lack some basic

concepts and general knowledge. These basic concepts and general knowledge are the

background knowledge in our life.

1.1.1 Text Classification

The goal of text classification is predicting the correct class label for a given text. Text

classification task is defined as a set of training texts D={X1, ..., Xn}, each text is labeled

with a category value drawn from a set of k different discrete values which are indexed by

{1, ..., k} [1]. All the texts are split into 2 subsets, training texts and test texts. The train-

ing texts are used to train classification model by using machine learning algorithms. The

test texts are used to evaluate the performance of the model. For a test text whose cate-

gory is unknown, the model is used to predict its category. Each category is assigned with

a label. These labels are numeric values that represent the categories. Practically, text

classification task is computing the text’s label. For example, in the following sentence:

He played basketball yesterday.

The word basketball indicates that this text is related to sport. If sport is labeled by

1, the computer should give us 1 as the result.

For another example:

He played basketball at P.E. class yesterday.

The word class indicates that this text is also related to education. In this case, it is
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difficult to determine the correct label.

In general, there are several categories in a corpus. The text classifier has to determine

the category for each text.

The good classifier should try its best to predict the labels for texts with high precision,

and also include the possible text categories. To achieve more accurate prediction, in this

thesis, we use the background knowledge to enrich the text representation.

1.1.2 Background Knowledge

One corpus/dataset is just a part of universal set. Therefore, sometimes the information in

the training texts is not enough to predict the class labels for the test texts, which would

reduce the accuracy. In the extreme case, there is not any similar information between the

training and test texts, such as the imbalanced corpus, in which the size of some categories

is much smaller than others. When dealing with the classification problem, people first

search the concepts and knowledge stored in their mind, and compute similarities to make

decision. Similarly, this study assumes that is the computer also can work better for

classifying texts with the background knowledge.

The inspiration of background knowledge is from some previous researches. Ren (2010)

proposed the idea of employing “cloud computing” in NLP [32]. According to this idea,

the external unlabeled texts, as the background knowledge, add the new information to

each text for classification task.

Online encyclopedia

An encyclopedia is a type of reference work or compendium holding a comprehensive

summary of information from either all branches of knowledge or a particular branch of

knowledge.1 An online encyclopedia is an encyclopedia accessible through the internet.2

For example, Wikipedia is a well-known online encyclopedia. It has around 5 millions

articles in English. And a lot of users keep contributing their work to add the articles and

materials.

For another example, Baidu Baike, which is similar to Wikipedia, is an online ency-

1https://en.wikipedia.org/wiki/Encyclopedia
2https://en.wikipedia.org/wiki/Online encyclopedia
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clopedia in Chinese language. It has around 14 millions articles in Chinese. It is widely

used by Chinese speakers to learn basic concepts and general knowledge.

In this thesis, we complement information to texts based on Baidu Baike for text

classification in Chinese. With the information extracted from Baidu Baike, our method

can overcome the lack of similar information between training and test texts. For example,

there two sentences:

Training text: He likes playing basketball.

Test text: I love this game.

There are not any same words in these two sentences. We can determine the 1st

sentence is related to sports easily. However, if we don’t have any background knowledge,

we can not know the 2nd sentence is also related to basketball. Because it is a famous

slogan for NBA (National Basketball Association). This shows the effect of background

knowledge in text classification.

Character Co-occurrence

In English, characters are the 26 letters, A-Z. Each letter has its pronunciation but does

not have meaning. These characters spell words and tell people how to pronounce the

words. Words have meanings.

In Chinese, characters are not letters, they are named Hanzi. Each Hanzi has its

pronunciation. And, each Hanzi has its meaning. It is similar to English, Hanzi spells

words and tells people how to pronounce the words. However, the difference is that single

Hanzi is also used as a word to express meaning sometimes. For examples,马 (mǎ) means

horse in English. 跑 (pǎo) means run in English. 快 (kuàı) means hurry in English. In

these examples, these words include a noun, a verb and an adjective. All of them can

express by the single Hanzi. This is the reason that we focus on Chinese characters in this

thesis.

Based on English, some previous researches presented the word co-occurrence. The

word co-occurrence means some words often appearing in a sentence or text together,

which can imply the meaning/semantics of the sentence or text. With our experience,

some word co-occurrence means the specific meaning in some regularity. Therefore, word

co-occurrence can be regarded as the background knowledge. Because the character/Hanzi
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can express meaning by itself in Chinese. Thus, we investigate the Chinese characters co-

occurrence in this thesis.

1.2 Overview of Methods and Contributions

1.2.1 Acquiring Background Knowledge

In this study, we use the articles from Baidu Baike and the character co-occurrence from

unlabeled corpora as the background knowledge. In Baidu Baike, each article describes a

concept. The articles from Baidu Baike are regarded as the background knowledge. By

using Baidu Baike, we propose the text representation with the similarities between the

texts and articles from Baidu Baike. Figure 1.1 shows the difference between the proposed

method and the traditional method.

Figure 1.1: Difference between the proposed method and the conventional method. tfidf
is the TF-IDF weighting, ’Similarity’ is the similarity between the text and the article
from Baidu Baike.

For each category, some keywords are selected to represent their categories. To obtain

the keywords for each category, a TF-IDF liked method is proposed to weight and rank

the words, called CTF-ICF, which works on the category level, while TF-IDF works on

text level. To obtain the articles of the keywords, a program is implemented to search the
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concepts and download the articles from Baidu Baike. With the articles from Baidu Baike,

the performance is evaluated on different proportion of training and test texts. The results

show that the performance is improved by using the background knowledge. Specially, it

is robust for imbalanced corpus, in the case of small size of training texts.

To study character co-occurrence, we propose the text representation with the simi-

larities of character co-occurrence between texts and unlabeled corpora. The unlabeled

corpora are used to count the frequency of character co-occurrence. The frequency of

character co-occurrence is regarded as the background knowledge. Figure 1.2 shows the

difference between the proposed method and the traditional method.

Text representation & Feature  matrix

New Text representation & Feature  matrix

Conventional Method:

Proposed Method:

Figure 1.2: Difference between the proposed method and the conventional method. tfidf
is the TF-IDF weighting, ’Similarity’ is the similarity between the text and the unlabeled
corpus.

To study the impact of different background knowledge, two external corpora are

used as the background knowledge, People’s daily news and SougouCA news. For each

category, some key characters are selected to represent their categories, in order to reduce

the computation. The results show that the performance outperforms the traditional

method with the background knowledge. Specially, it obtains better performance for the
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imbalanced corpus.

1.2.2 Training Classification Model

To train classification model, the support vector machine (SVM) classifier is used in the

experiments, which is a geometric model. SVM is a supervised learning models for clas-

sification and regression task. The training data and test data has to be labeled before

using SVM. And then, each example is represented by a group of features. These fea-

tures usually are numeric values. After extracting the features, the examples are usually

represented as linear vectors in very high dimensions. The dimensions corresponds to the

features. Finally, with different kernel function, SVM can deal with linear and non-linear

classification task.

For example, the bag-of-words (BoW) model use the frequency of words to represent

sentences or documents. Each sentence or document is converted to the vector of word

frequency. Each index represents a word. The length of the vector is the same as the size

of the vocabulary. The vocabulary includes the words which appear in all the sentences

or documents. And then, these feature vectors are used to train the SVM classifier for

predicting the new examples.

In this thesis, TF-IDF algorithm is used to represent texts, instead of BoW model.

By using TF-IDF algorithm, the length of feature vectors also equals the size of the

vocabulary. Each index represents a word. But each value in the feature vectors is

computed with TF-IDF algorithm rather than the word frequency. Besides the TF-IDF

algorithm, the background knowledge is also used to complement the information for the

text representation, as showed in Figure 1.1 and 1.2. The similarities between the texts

and the background knowledge are added to the feature vectors for training the SVM

classifiers. Some other details will be introduced in the following section.

1.2.3 Other Machine Learning Methods

Most traditional machine learning algorithms, including Decision Trees, Support Vector

Machines (SVM), Naive Bayes (NB) and Neural Network [1], are designed to learn and

predict a single label or a sequence of labels for texts.
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In this thesis, we compare the results of traditional method without background knowl-

edge and the proposed method with background knowledge. To make sure the results from

traditional method and the proposed method are comparable, we use the same classifier

for these models with the different groups of features. The results are evaluated by the

precision and recall score. And we also make further discussion on these results.

1.3 Thesis Organization

This thesis covers the background, related work, methods, results, and discussions about

predicting text labels with the background knowledge, which is organized in the rest

chapters as follows.

Chapter 2: Background

In this chapter, we begin by reviewing the text classification task. We illustrate the

basic framework of text classification and present the overview of the workflow. Then we

focus on the different kinds of features for representing features, and review the methods

for extracting the features. We also introduce some machine learning methods used in

text classification.

Chapter 3: Related Work

In this chapter, we review the study of text classification about enriching text repre-

sentation with additional source. First, we introduce some related work about extracting

features from texts. Second, we discuss some methods about dealing with the imbalance

dataset of text classification. Third, some Wikipeida based method are surveyed. We re-

gards the Wikipeida as the knowledge base which can provide the background knowledge.

Inspiring by these idea, we propose our methods. Finally, we present a term weight-

ing method. From this idea, we propose CTF-ICF method to select keywords for each

category.

Chapter 4: Extracting Background Knowledge for Text Classification

In this chapter, we discuss the methods that we have proposed for enriching the text

representation for text classification. We first introduce the method based on Baidu Baike.

The proposed method is illustrated with the workflow. And then, we introduce the details

for each step. The articles from Baidu Baike are used as the background knowledge in
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this method. To select keywords for each category, we proposed the CTF-ICF method.

To download the articles, a program is developed to extract the search results from Baiku

Baike. The text representation is enriched with the similarities between the texts and

the articles. Second, We introduce the method based on character co-occurrence. The

proposed method is also illustrated with its workflow. And then, The details for each step

are introduce. The texts from the additional corpus are used as the background knowledge

by counting the character co-occurrence. The key characters are selected for representing

their categories and reducing the computation. The text representation is enriched with

the similarities of the character co-occurrence between the texts and the additional corpus.

Finally, the evaluation methods and tools used in the experiments are introduced.

Chapter 5: Evaluation

In this chapter, we present the experimental results and discuss the findings. In the

first part, the experimental results of the proposed method based on Baidu Baike are

presented. In the second part, the experimental results of the proposed method based on

character co-occurrence are presented. In both parts, we first illustrate the classification

corpus and the setting in the experiments. To evaluate the method based on Baidu Baike,

we compare a baseline method, the traditional method, and the proposed method with

different numbers of keywords. To evaluate the method based on the additional corpus, we

compare the experiments with different classification corpora, additional corpora, numbers

of keys characters, and distance between words. Finally, we discuss some findings according

to the results.

Chapter 6: Contribution and Recommendation

In this chapter, we conclude the contributions of this thesis and discuss the directions

for future study. We find that the text classification is still a challenging task. To im-

prove the classification models, we can discovering more context sensitive features, feature

selection methods, as well as more appropriate machine learning methods.



Chapter 2

Background

In this chapter, we first review the methodologies for text classification. Concretely, we

illustrate the framework of text classification and overview. The framework includes text

representation, training model and prediction. For text representation, we review some

kinds of text features. For training model, some machine learning methods were introduced

for text classification. Lastly, we review some other methods for preprocessing.

2.1 Methodologies of Text Classification

The goal of text classification is predicting the correct class label for a given text. This is

a supervised classification task in which each text must be labeled before training model

and prediction. This task is defined as a set of training text D={X1, ..., Xn}, each text

is labeled with a category value drawn from a set of k different discrete values which are

indexed by {1, ..., k} [1].

2.1.1 Framework of Text Classification

The main steps of text classification include text representation, training classification

model and predicting class label. For example, predicting the topic of a news article from

a fixed list of topics such as ”game”, ”technology” and ”travel”. The framework of text

classification used by supervised classification is shown in Figure 2.1.

During training, the input text is converted into a group of features by using a feature

extractor. The details of feature extractors are discussed in the section 2.2. The machine

10
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Figure 2.1: The framework of text classification [3]

learning algorithm use the pairs of text features and labels to training the classification

model. During prediction, the new text is also converted into a group of features by the

same feature extractor. The model use these features to predict the class label for this

text.

2.1.2 Overview of Text Classification

The entire steps and elements include collecting corpus, selecting instances, resampling,

extracting features, weighting, selecting features, training model, predicting, and evaluat-

ing performance.

The corpus is most important for text classification. With the corpus having exact

labels, we can training the exact classifiers. Whereas we can not get the good classifiers

with inexact labels, despite using the best methods. Commonly, researchers choose opened

standard dateset to evaluate their methods.

In English, these datasets include 20 Newsgroups, Reuters-21578, WebKB and RCV1-

v2/LYRL2004 which are widely used benchmark collections in text classification task.1,2

The 20 Newsgroups has 20 categories and 18,821 documents. The Reuters-21578 has 2

versions, R8 and R52. The R8 has 8 categories and 7,674 documents. The R52 has 52

categories and 9,100 documents. The WebKB has 4 categories and 4,199 documents. The

RCV1-v2/LYRL2004 has 103 categories and 804,414 documents from four parent topics.

1http://www.cs.umb.edu/ smimarog/textmining/datasets/
2http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm
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In Chinese, there are FUDAN University text classification corpus3,4 and Sougou text

classification corpora (SogouCA5 and SogouCS6). FUDAN University text classification

corpus has 20 categories and 19,637 documents. The SogouCA is 1.02GB in tar.gz file.

The SogouCS is 65GB in tar.gz file. In these two corpora, the number of the categories

depends on the websites where the news are from.

Selecting instances chooses the texts which are more discriminable than others for

training models. In other words, selecting instances filters out the noisy texts which re-

duces the accuracy for classifiers. Resampling is a little similar to selecting instances. The

difference is that resampling remove and create some texts for each category in the corpus.

Extracting features is also an important step, besides the corpus. Good features can get

good classifiers. Therefore, many work focused on how to extracting better features for

training model. Weighting often goes along with features. Depending on the features,

many weighting methods have been proposed. After weighting features, sometimes, se-

lecting features filters out the noisy features which have less effort for classifying texts.

This is similar to selecting instances, but selecting features works on the feature level. To

training classifiers, commonly, the machine learning methods are used. With the trained

classifier, we can predict the class label for a new text. Finally, The performance of the

classifier should be evaluated and presented to other researchers and engineers. The eval-

uation results tell them how the proposed methods can work and if there are any help for

their work.

It is regard to these steps, many researches had been conducted on text classification in

recent years. The previous work include instance selection [45][49][46], resampling methods

[7][16][51][28][36], feature selection [8][22][38][12][13][23], weighting method [21][39][34][17],

kernel function [19], ensemble of features and algorithms [52][26].

Instance Selection

To filter out noisy texts from the training texts, Wang et al. (2013) proposed the Border-

Instance-based Iteratively Adjusted Centroid Classifier (IACC BI), which uses the border

3http://www.datatang.com/data/44139
4http://www.datatang.com/data/43543
5http://www.sogou.com/labs/resource/ca.php
6http://www.sogou.com/labs/resource/cs.php
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instances to construct centroid vectors for the centroid-based classifier [49]. In 2013, Tsai

and Chang (2013) proposed the support vector oriented instance selection (SVOIS) to

select the training texts, based on the support vectors [45]. In 2014, Tsai et al. (2014)

proposed the biological-based genetic algorithm (BGA) to reduce the training texts, which

simulates the evolutionary process [46].

Resample

In text classification, the number of texts in the categories is different. In this case,

the rare categories have less texts than others. To balance the text distribution, Chen

et al. (2011) generated new texts for rare categories to resample the examples based on

probabilistic topic models [7]. Wang et al. (2013) used the boundary region cutting (BRC)

algorithm to remove samples for imbalanced text sets [51]. Iglesias et al. (2013) proposed

the content-based over-sampling HMM (COS-HMM) to generate new texts according to

current text [16] for the class imbalance problem. Qian et al. (2014) proposed a resampling

ensemble algorithm in which the small categories are oversampled and large categories are

undersampled [28]. Sáez et al. (2015) proposed the SMOTE-IPF method to filter out the

noisy and borderline examples. the SMOTE-IPF is an extension of SMOTE (Synthetic

Minority Over-sampling Technique). The IPF represents Iterative-Partitioning Filter.

Feature Selection

To filter out the noisy features, Covões and Hruschka (2011) proposed a filter-based algo-

rithm by splitting the set of features into clusters [8]. And the features are selected based

on feature-class correlations. Maldonado et al. (2011) proposed the kernel-penalized SVM

(KP-SVM) method, which selects relevant features during training SVM classifier [22].

Shang et al. (2013) proposed the global information gain (GIG) and the maximizing

global information gain (MGIG) methods based on information gain (IG) for selecting

features. Guan et al. (2013) focused on reducing the computational overhead of Singu-

lar Value Decomposition (SVD) with Latent Semantic Indexing (LSI) [12]. They used

Spectrum Analysis (ISA) to reduce dimension fast. Hrala and Král (2013) evaluated five

feature selection methods with Czech corpus and stated that Maximum Entropy and SVM

outperform other methods [13]. Maldonado et al. (2014) focused on imbalanced data sets.
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They proposed a family of methods based on a backward elimination approach for ranking

and selecting features [23].

Weighting Method

In text classification, the weight correspond to the contribution for representing text.

Features with high weight mean they are important. Features with low weight mean they

are less important. To weight features, Christina Lioma and Roi Blanco (2009) proposed a

POS (Part of Speech) n-gram method to weight features [21]. Shi et al. (2011) proposed an

improved TF-IDF weighting method by adding concentration and dispersion information

[39]. Ren and Sohrab (2013) proposed the class-indexing-based term-weighting methods,

called TF.IDF.ICF and TF.IDF.ICSδF, which are the extension of TF-IDF method [34].

The ICF is the inverse class frequency. The ICSδF is the inverse class space density

frequency. Jiang et al. (2016) proposed the deep feature weighting (DFW) method to

compute feature weighted frequencies from training text [17]. With the naive Bayes model,

this method is used to estimate the conditional probabilities.

Kernel Function

Kim et al. (2014) proposed a kernel method, called language independent semantic (LIS)

kernel, to compute the similarities between short-text documents based on semantic an-

notations [19].

Ensemble Method

Xia et al. (2011) used the part-of-speech based features and the word-relation based fea-

tures to train classifiers with näıve Bayes, maximum entropy and support vector machines

[52]. Then three ensemble strategies are used to predict the class labels, namely the fixed

combination, weighted combination and meta-classifier combination. Onan et al. (2016)

investigated the ensemble of five statistical keyword extraction methods and four learn-

ing algorithms by using five ensemble methods [26]. The keyword extraction methods

include most frequent measure based keyword extraction, term frequency-inverse sentence

frequency based keyword extraction, co-occurrence statistical information based keyword

extraction, eccentricity-based keyword extraction and TextRank algorithm. The learning
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algorithms include Nav̈e Bayes, support vector machines, logistic regression and Random

Forest. The ensemble methods include AdaBoost, Bagging, Dagging, Random Subspace

and Majority Voting.

Features and Algorithms

To extract features from text, many kinds of features have been presented, such as words,

text structure [2], part-of-speech [10], n-gram [40], syntactic and semantic feature [5][54],

phrase pattern [53], feature transformation [47], and Neural Networks [20]. In the next

section, we will introduce these features.

Besides, many machine learning methods have been used for text classification, includ-

ing Nav̈e Bayes, support vector machines, logistic regression, centroid, K-nearest neighbor

(KNN), neural network, k-means, clustering, active learning and classifier combination

[18][27][9][14][15][26]. These methods will be introduced later.

2.2 Extracting Features for Text

In the section, we introduce several text features and the extraction methods. Text features

are the key aspect for text classification task. Therefore, extracting reasonable features

is an important. Machine learning methods uses text features to training classifiers. The

performance of classifiers depends on the discrimination of features. With good features,

we can train good classifiers.

2.2.1 Words

In most natural language processing problems, words are the common features for texts.

For example, the bag-of-word (BoW) model as mentioned above, each sentence or docu-

ment is converted to the vector of word frequency and each index represents a word.

Instead of BoW model, TF-IDF algorithm is used to represent text commonly. Words

are used as the features weighted by TF-IDF algorithm [37][30], referring to the Equations

2.1-2.3. Each text is represented by a vector of numeric value. Each index corresponds to

a word. The length of the feature vector equals the size of vocabulary. The vocabulary

includes the words from all texts. All the texts could form the feature matrix. Then, with
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the feature matrix, the classifiers are trained to predict the class labels.

TFij =
nij∑
k nkj

(2.1)

where nij is the frequency of word i in text j,
∑

k nij is the number of all words in text j.

IDFi = log
|D|

|D(wordi)|
(2.2)

where |D| is the number of texts in the corpus, |D(wordi)| is the number of texts which

contain word i.

The discriminability of word i to document j could be weighted as following:

wij = TFij × IDFi (2.3)

2.2.2 Structure

Aĺıas. (2008) represented texts as a directional weighted word-based graph based on as-

sociative relational network [2]. The associative relational network (ARN) is a graph

model. Figure 2.2 shows the Word-based associative relational network. The nodes rep-

resent words. The edges means the co-occurrence relation between words. Each node and

edge has its weight. Each node is weighted by TF-IDF and inverse term frequency (ITF)

methods, referring to the Equation 2.4.

ITF ki = log(
|τk|
TF ki

) (2.4)

Where |τk| represents the number of words/terms, and TF ki is the frequency of the ith

term in text k.

The edge weight ωij represents between words/terms in text, i.e the co-occurrences

times. Finally, each text is represent as:

(ω1, ..., ω|τ |, ω11, ..., ω1|τ |, ..., ω|τ |1, ..., ω|τ ||τ |)
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Figure 2.2: Word-based associative relational network [2].

2.2.3 Part-of-Speech

Feldman et al. (2009) used the statistics of POS (part-of-speech) histograms to classify

text [10]. By POS tagging, they selected a set of k POS. Then, they used a sliding window

ω to count the histogram of the POS set. For example,

φ = {{numPOS1 , ..., numPOSK}1, ..., {numPOS1 , ..., numPOSK}n}

Where n is the sliding times, POSi indicates each POS, and , numPOSi is the frequency of

POSi. With φ, µ(φ) and σ(φ) are computed, which are the mean and standard deviation

of φ, respectively. Finally, [µ(φ)σ(φ)]T is used as the feature vector.

2.2.4 N-gram

The traditional n-gram methods use the successive two or several words as the features

to classify texts. Sidorov et al. (2012) proposed the syntactic n-grams (sn-grams) to

represent texts [40]. The difference between the sn-grams and the traditional n-grams is

that the neighbors of words are selected according to the syntactic relations of words, i.e.

the dependency tree. Figure 2.3 shows an example of sn-gram.

From this tree, we can extract the following sn-grams:
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Figure 2.3: An example of sn-grams [40].

• nsubj → nn

• dobj → amod

• dobj → prep → pobj

• prep → pobj → amod

• dobj → prep → pobj → amod

2.2.5 Syntactic and Semantic

Çelik and Güngör (2013) used semantic features such as synonyms, hypernyms, hyponyms,

meronyms and topics from WordNet to represent texts [5]. In this method, a word is

represented as

wordi = {s1, s2, ..., sm}

Where wordi is the synset of word and si is the synset of synonyms, hypernyms, hyponyms,

meronyms or topics. And a text is represented as

ti = {word1, word2, ..., word3}

Finally, a text is represented by the synsets of all words, as

ti = {s1, s2, ..., sk}
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2.2.6 Phrase Pattern

Zhang et al. (2013) extracted the phrase patterns with part-of-speech (POS) to classify

texts [53]. This is similar to n-grams, but phrase patterns are the n-grams that allow the

gaps between words. Figure 2.4 shows the example of pharse patterns. The extracted

result is ({you}, {NEGATIVE POLARITY}, {right, JJ POS})

Figure 2.4: An example of pharse patterns [53].

2.2.7 Feature Transformation

Uysal and Gunal (2014) proposed the genetic algorithm oriented latent semantic features

(GALSF), which used filter-based methods and latent semantic indexing (LSI) to select

features and represent texts.

2.2.8 Learning Features

Lai et al. (2015) proposed the recurrent convolutional neural networks to learning text

representation [20].

Figure 2.5 shows the structure of the recurrent convolutional neural network. In this

network, each word is represented by word embedding. The left and right context of the

word are computed by the recurrent method. xi indicates feature vector of the word, its

left and right context. Then, xi is mapped to yi by convolutional method. With the

max-pooling layer, all yi is converted to a single vector. Finally, the results output from
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Figure 2.5: The structure of the recurrent convolutional neural network [20].

the max-pooling layer.

2.3 Machine Learning Methods for Text Classification

In the section, we will introduce the machine learning methods for text classification. The

machine learning methods and text features are used to train classifiers.

2.3.1 Bayesian models

Näıve Bayes (NB) [17][55] classifier is based on Bayes’ theorem, which is widely used in

classification task. It assumes that the features are independent from each other. For

example, a text is represented by:

text = w1, w2, ..., wn

This class label for the text is:

label(text) = arg max
c

(P (label = c)
n∏
i=1

P (wi|label = c)) (2.5)

Where the P (label = c) is the probability of class c, P (wi|label = c) is the conditional

probability of word wi with class c.
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2.3.2 Regression-Based Classifiers

In regression-based method, the Linear Least Squares Fit (LLSF) and Logistic Regression

methods are widely used to classify texts.

In LLSF method, the class labels are predicted by Y = A · X + B. X is the feature

matrix and Y is the class labels. The goal is to learn the A and B with training texts and

minimized the value between the true and predicted values,
∑n

i=1(pi − yi)2.

In Logistic regression (LR) method, the objective function is

Y =
exp(A ·X +B)

1 + exp(A ·X +B)
(2.6)

Therefore, LR method limits the range in [0, 1], which is the difference from LLSF.

2.3.3 Support Vector Machines (SVMs)

The main principle of support vector machines (SVMs) is to determine the hyperplane

in the search space [1][34]. The hyper plane can best separate the different categories by

maximize the distance of hyperplane between all the categories.

Figure 2.6 shows an example of SVM. The examples on the dash lines are the support

vectors for the two categories, separately, which represent their categories. The solid

line is the hyperplane. The distance between the hyperplane and the support vectors is

called margin of separation. In this example, we have the maximum margin by using the

hyperplane and support vectors to classify these two categories. Our goal is to find this

hyperplane.

2.3.4 Centroid

After preprocessing, each text is represented by a numeric vector. In centroid method

[34], the centroid of each category is computed by their text vectors:

Centroidk =

∑
text∈ck texti√∑k

c=i(
∑

text∈ck texti)
2

(2.7)

Where k is the number of categories.

7http://scikit-learn.org/stable/modules/svm.html#svm
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Figure 2.6: An example of SVM.7

Finally, the text is assigned is the category which has the maximum similarity with

the text.

label(texti) = arg max
k∈C

(texti · Centroidk) (2.8)

2.3.5 k-Nearest Neighbor (KNN)

K-nearest Neighbor (KNN) is a simple classification algorithm. The idea of KNN is de-

termining the class label for a text according to several other texts (neighbors) which

are nearest to it [18][44]. Several similarity algorithms can used to compute the distance

between the text and its neighbors, such as Euclidean distance, cosine distance, etc. For

an example, there are 5 neighbors for the text X. Three of them belong to class C1, and

Two of them belong to class C2. Therefore, in this case, X belongs to class C1.

2.3.6 Clustering

Commonly, clustering methods deal with unlabeled data, splitting examples into several

categories. Besides, clustering methods often combine with other methods in text classi-

fication task.
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For example, Pang et al. (2013) propose an clustering-based KNN method to classify

texts. First, they clustered the training te into several clusters for every category. Each

cluster has the texts with the same class label. To predict the class label for a new text,

the KNN method is used to select the top K neighbors and determine the label for the

text.

In Huda et al.’s paper (2017), they clustered training texts into 3 categories which

is equal to the number of categories in the corpus. Then, the similarities between the

clusters and log texts are added to the feature vectors to classify the log texts.

2.3.7 Active Learning

Active learning (AL) an iterative, semi-supervised learning method that is used to select

the most informative examples from unlabelled datasets [14]. Then, the selected examples

are labeled by experts. These new labeled examples are used to train the classifier or

predict the labels for unlabelled data. AL can reduce the necessary number of training

data.

For example, Hu et al. (2016) combined different classifiers to investigate the perfor-

mance with AL. Figure 2.7 show the flow of AL.

Figure 2.7: A flow-chart of the active learning process [14].

The learning process loops to select examples for labeling. Finally, the process stops
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with the stopping criterion, for example, the number of selected examples.

2.3.8 Classifier Combination

The classifier combination method uses the results from several classifiers to output the

final result. Enŕıquez et al. (2013) investigated the performance of several combination

methods such as voting, Bayesian merging, behavior knowledge space, bagging, stacking,

feature sub-spacing and cascading in NLP tasks [9].

In summary, we reviewed the methodologies for text classification in this chapter.

We illustrated the framework and flow of text classification. The main steps include

text representation, training model and prediction. We also demonstrated the steps and

methods in details. For text representation, the preprocessing methods were introduced

with the some examples and previous work. For training model, this chapter demonstrated

some machine learning methods used for text classification task.



Chapter 3

Related Work

To classify texts, features are very important, and the main difficult is the lack of infor-

mative and proper features to represent texts. From this point of view, some researches

focused on enriching text representation by combining simple words with some other kinds

of features. Moschitti et al. (2004) used POS (part-of-speech), complex nominals, proper

nouns, and words senses as the additional features, although they reported that these

features did not improve the performance [25]. Alessandro Moschitti (2008), proposed

the kernel methods based on words, predicate argument structures (PASs), POS-tag se-

quences and syntactic parse trees to improve the BOW method for answer classification

[24]. Figueiredo et al. (2011) extracted the word co-occurrence as the features, which

includes two or more terms [11]. For example, in medical subjects, the pair of {pain,

facial} may help determining the document category. However, some pairs do not bring

relevant information for the classification, such as {pain,reach} and {pain,beliefs}, which

should be filtered out. In Sidorov et al.’s paper, they introduced a concept of syntactic

n-grams (sn-grams) which are the n-grams following the links in the syntactic tree [40].

By using the semantic relation in WordNet, Celik and Gungor added semantic features

such as synonyms, hypernyms, hyponyms, meronyms and topics into classification process

[5]. Rocha et al. extracted the temporal evolution to improve effectiveness for text clas-

sification [35]. In the sentiment classification field, the part-of-speech and word-relation

based feature sets are designed for classification task [52]. Bravo-Marquez et al. (2014)

used many meta-level features to improve the effectiveness, which extracted from several

lexicon of sentiment and opinion [4]. In this thesis, similarly to the previous work, we use

25
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background knowledge to complement the information for representing texts.

In text classification, the imbalanced corpus is one of the challenges, in which the

distribution of texts in categories is not equal. In some extreme case, a small category

has only one text, while other categories have a large amount of texts. The two common

strategies of classifying imbalanced corpus are over-sampling and under-sampling. The

over-sampling is generating new texts to complement the number of texts for small cat-

egories. In contrast, the under-sampling is cutting down some texts in large categories

to balance the distribution. Chen et al. and Iglesias et al. proposed two over-sampling

methods base on HMM and global semantic information respectively [7][16]. Wang et al.

presented an under-sampling method by cutting the majority class sample in the boundary

region between each categories [51]. By combining both over-sampling and under-sampling

method on imbalanced corpus, Qian et al. used the ensemble of methods with voting strat-

egy for classifying [28]. Essentially, all these methods tried to find the proper features in

the specific dataset to deal with the imbalanced corpus. However, they ignored the case

that there are not enough similar features between training and testing texts in the imbal-

anced corpus, especially in small categories. In this thesis, we also focus on the imbalanced

dataset, and used the background knowledge to complement the information for training

and test texts.

In this thesis, the proposed method is inspired by some previous researches.

Ren (2010) proposed the thought of using “Cloud Computing” in natural language

processing (NLP) [32]. Because people store their knowledge in their memory. With this

idea, if we regards the Could as the memory, we can use background knowledge from the

Cloud to assist us in making decision, such as the search engine, the online encyclopedia,

etc. In the proposed methods, we use Baidu Baike (an online encyclopedia) and some

additional corpora as the background knowledge.

Wang et al. (2009) selected the related articles from Wikipedia for each text, and added

these articles to each text to enrich text representation [50]. First, they downloaded the

dataset of Wikipedia from http://download.wikipedia.org, and used the link structure

and articles to make a thesaurus, in which each concept is an article. And then, for each

text, they searched the concepts from the text in this thesaurus. The found concepts were

the candidate concepts. For example, if the word “apple” is in the text and found in the

http://download.wikipedia.org
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thesaurus, “apple” is a candidate concept. Because “apple” maybe the company or fruit

according to its links in the thesaurus, the next step is the disambiguation which selects

the right concepts most related to the text. Finally, the selected the concepts were added

to their responding text to enriching text representation and train the classifier.

Rafi et al. (2012) add the titles, redirects, entity types, categories and linked enti-

ties from Wikitology to the text, and then Linear SVM was used as the classifier [31].

Wikitology is a knowledge repository which extracts knowledge from Wikipedia in struc-

tured/unstructured forms in ontological structure. A title is the topic of a Wikipedia

article, such as “Barack Obama”. The redirects are the similar concepts of the topic, such

as “President Barack Hussain Obama”. The entity types are the same properties of the

topics, such as “Freebase:person”. The category is the is-a-kind-of relation of the topic,

such as “United States presidential candidates 2008” is the category for “Barack Obama”.

The linked entities are the Persons, Locations, and Organizations along with the topic, such

as “Barack Obama” links to “Michelle Obama” and “University of Chicago Law School

”.

Torunolu et al. (2013) added Wikipedia article titles, categories and redirects into the

feature list to enrich text representation [41]. First, they used the BOW (bag of word)

model to represent text. And, they got a feature list which has all words from texts. By

searching each text, if any wiki concepts are found, the categories and redirects of the

concepts are added to the feature list. The maximum length of wiki concepts is limited to

three words. With the new feature list, they count the frequency of each feature to enrich

text representation.

The methods mentioned above used the Wikipedia as the background knowledge to

assist in classifying texts. The difference between these methods and ours is that we focus

on the similarities between texts and the background knowledge, rather than adding the

additional content to texts. And, we focus on Chinese language which has its unique

properties. For example, the English characters are from a to z, which are letters without

any meaning, but each Chinese character has meaning itself as mentioned above.

Focusing on the distribution of words in different categories, Ren and Sohrab (2013)

proposed TF.IDF.ICF and TF.IDF.ICSδF methods [34]. These two methods are used to

weight terms for representing texts. The former is class-frequency(CF)-based category
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mapping of each term. The later is class-space-density-based category mapping of each

term.

Commonly, the TF.IDF algorithm weights the terms for texts. The TF.IDF.ICF is

TF.IDF multiplying by ICF. For each term, the TF.IDF.ICF weight is computed by equa-

tion 3.1:

WTF.IDF.ICF (ti, dj , ck) = tf(ti,dj) × (1 + log
D

d(ti)
)× (1 + log

C

c(ti)
) (3.1)

where ti, dj and ck indicate the ith term of text j in category k, tf(ti,dj) is the term

frequency, D is the total number of texts, d(ti) is the number of the texts that include

term i, C is the total number of categories, c(ti) is the number of categories that include

term i, C
c(ti)

is the ICF of term ti. And the normalization is:

Wnorm
TF.IDF.ICF (ti, dj , ck) =

WTF.IDF.ICF (ti, dj , ck)√∑
ti∈dj ;ti∈ck [WTF.IDF.ICF (ti, dj , ck)]2

(3.2)

The TF.IDF.ICSδF is TF.IDF multiplying by ICSδF. First, the class density Cδ is the

rate of the texts that include the term ti in the category ck. For each term, the equation

is,

Cδ(ti) =
nck(ti)

Nck

where nck(ti) is the number of the texts that include term ti in the category ck, and Nck

is the total number of the texts in the category ck.

And, to compute the class space density (CSδ), the equation is,

CSδ(ti) =
∑
ck

Cδ(ti)

Therefore, for each term, the inverse class space density frequency is computed by

following,

ICSδF (ti) = log(
C

CSδ(ti)
)

where C is the total number of categories.



29

Finally, the TF.IDF.ICSδF weight for each term is:

WTF.IDF.ICSδF (ti, dj , ck) = tf(ti,dj) × (1 + log
D

d(ti)
)× (1 + log

C

CSδ(ti)
) (3.3)

And the normalization is:

Wnorm
TF.IDF.ICSδF

(ti, dj , ck) =
WTF.IDF.ICSδF (ti, dj , ck)√∑

ti∈dj ;ti∈ck [WTF.IDF.ICSδF (ti, dj , ck)]2
(3.4)

Inspiring by their idea, we propose a method which use the weights of terms on category

level to select the keywords for each category.



Chapter 4

Extracting Background

Knowledge for Text Classification

In this thesis, we propose the methods based on background knowledge to enrich text

representation for text classification task. Two kinds of background knowledge are used

in this study, the information from Baidu Baike and character co-occurrence.

In this chapter, we first introduce the traditional method for representing and classi-

fying texts in section 4.1. Section 4.2 presents the method based on Baidu Baike to enrich

text representation. Section 4.3 presents the method based on character co-occurrence

to enrich text representation. Section 4.4 presents the measure for evaluating the perfor-

mance of the proposed methods. Section 4.5 introduces the tools used in the proposed

methods, including the NLP tools and machine learning tools.

4.1 Traditional Method for Text Classification

Commonly, texts are represented by using Vector Space Model (VSM). The index of the

vector represents a sequence of features. The length of the vector is the total number of

features from the corpus. The vector consists of numeric values, and each value repre-

sents the weight for the term. Commonly, the features are words. There are also some

other kinds of features, such as n-gram, phrase, syntactic structure. VSM in this study,

converting the texts to the vectors of numeric values. In traditional method, the features

are the words and weighted by TF-IDF algorithm. After representing texts as vectors,

30
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training texts could be convert to a feature matrix whose rows are the texts, columns are

the features, and each value in this matrix is the weight of the feature.

The workflow of the traditional method is:

1. The corpus is preprocessed by some NLP (natural language processing) technologies,

such as word segment, and POS (part of speech) tagging

2. Features are extracted from the training texts to build the feature list.

3. The training texts are represented by the vectors of weighted features with the

feature list.

4. Some machine learning methods use the training texts to train classification model.

5. Test texts are also represented by the vectors of weighted features with the same

feature list.

6. The model predicts the class labels for the test texts.

7. Finally, it is evaluating the performance for the model .

4.2 Background Knowledge from Baidu Baike

In this section, we introduce enriching text representation based on Baidu Baike. Baidu

Baike is a Chinese online encyclopedia which has a lot of articles about many different

concepts, such as persons, objects, events, abstracts, etc.

The main idea of this method is that more information could improve the effectiveness

for text classification. The motivation is from dealing with imbalanced corpus. In this case,

the large categories have much more texts than the small categories. Moreover, sometimes

these is not any similar information between the training and test texts, because these is

not enough numbers of texts in the categories.

In this method, Baidu Baike is used as the knowledge base to enrich information for

Chinese texts. The information from knowledge base is treated as background knowledge.

The information from the training and testing texts in a corpus is regared as a special

case.
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Section 4.2.1 illustrates the proposed method with the background knowledge from

Baidu Baike. Section 4.2.2 presents the details about implementing the proposed method.

4.2.1 Overview: Using Baidu Baike

In this method, Baidu Baike is used as the knowledge base to obtain some concepts

and general knowledge. In other words, the articles from Baidu Baike are used as the

background knowledge in this method.

Figure 4.1 illustrates the workflow of classifying texts based on Baidu Baike. In Figure

4.1, there are a lot of steps. In the middle of the figure, these steps are the difference

between the proposed method and the traditional method. On the left, they are the

training process. On the right, they are the predicting process. Every steps are introduce

as following:

• The steps at the top: these three steps represent the experimental data.

Training text The training texts are from the corpus and includes numbers of texts

in each category. They are used for training classification model.

Label This represents the class labels of the training texts.

Test text The test texts are also from the corpus and includes numbers of texts in

each category. They are used to evaluate the performance of the method.

• The steps in the middle:

Words represent Categories In this step, we select several candidate words that

are most related to their categories by using CTF-ICF algorithm.

Baidu Search Engine Baidu Search Engine is used to select top N keywords for

their categories. Each candidate word and their category’s name are posted

to the search engine, and these candidate words are ranked by the number of

search results.

Top N words of Categories The top N keywords are selected by ranking the

number of search results. We assume that it gets more search results, the

candidate word is more related to its category.
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Figure 4.1: Workflow: enriching text representation with Baidu Baike

Baidu Baike With the top N keywords for each category, we post them to Baidu

Baike.
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Text of Concepts The articles of the top N keywords are download from Baidu

Baike and assign their class labels to them. These articles are regarded as the

background knowledge.

Feature Space (words) In this step, we extract the features from the background

knowledge. These features are the words in the articles, called as background

features.

Fitting and Weighting This step uses the background features to represent the

training and test texts by filtering out the words that are not in the background

features from the texts.

Weighting This step converts the articles in the background knowledge to the

vectors of numeric values.

Similarity Computing the similarity between each text and each article. For exam-

ple, if there are 5 articles in the background knowledge, we will get 5 similarities

for each text.

Feature Matrix with Concept similarity Enriching text representation by adding

the similarities to the feature vectors of texts.

• The steps on the left:

Feature Space (Words) Extracting the features from the training texts. The

features are the words in the training texts

Weighting Weighting the features and representing the texts as the vectors of nu-

meric values.

Feature Matrix In the feature matrix, the rows are the texts, the columns are the

features, the values are the weight.

• The steps on the right:

Feature Space (Words) Extracting the features from the test texts. The features

are the words in the training texts

Weighting Weighting the features and representing the texts as the vectors of nu-

meric values.
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Feature Matrix In the feature matrix, the rows are the texts, the columns are the

features, the values are the weight.

• The steps at the bottom:

Model Training the classification model with the feature matrix which includes the

similarities between the texts and the background knowledge.

Predict Predicting class labels for the test texts with the classification model.

4.2.2 Enriching text representation with Baidu Baike

In this method, the articles of the category names and top N keywords are downloaded

from Baidu Baike. Each article is saved to a text as the background knowledge. The

words are used as the features for the texts. To convert a text to a vector, the TF-IDF

algorithm is used to weight the features.

To select the top N keywords for each category, we use CTF-ICF algorithm to find

out the candidate words for each category from the training texts. CTF-ICF algorithm is

similar to TF-IDF algorithm, but it works on the category level. The CTF-ICF algorithm

is:

WCTF ·ICF (ti, ck) = (1 + log ctf(ti, ck))× (1 + log
|C|
cf(ti)

) (4.1)

where (ti, ck) indicates the feature ti in the category ck, ctf(ti, ck) is the number of the

feature in the category ck, |C| is the total number of all categories, cf(ti) is the number

of categories that include ti.
|C|
cf(ti)

is the ICF that is the same as [34]. The result of

log ctf(ti, ck) is 0, when ctf(ti, ck) = 1. Therefore, we use 1 + log ctf(ti, ck) to make the

result not equal to 0, which can make WCTF ·ICF (ti, ck) not equal to 0. For the same

reason, we use 1 + log |C|
cf(ti)

instead of log |C|
cf(ti)

.

And then, each candidate word and its category name are posted to the search engine,

and get the number of search results. Finally, the top N words, which are most related to

their categories, are selected by ranking the number of search results.

Specially, our experiments only use the category names at the beginning, and the

results show the improvement to macro F1 score But the precision a little decreases by

Linear SVM classifier. To improve both macro F1 score and precision, the top N keywords
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for each category are included in the subsequent experiments.

Without the background knowledge, the TF-IDF algorthim is used to convert the

training and test texts to the vectors of numeric values. The features are the words from

the training texts. For the test texts, the words, which are not in the training texts, are

filtered out.

To complement the information from the background knowledge to the texts, we filter

out the words, which are not in the background knowledge, from the training and test

texts. The filtered training and test texts are represented by using TF-IDF values. The

similarity between each text and each article in the background knowledge is computed by

similarity algorithm. For each text, we get a similarity vector, and also have the feature

vector which are generate without the background knowledge.

To compute the similarities, cosine similarity algorithm is used,because the texts have

already represented by the numeric vectors. The equation of cosine similarity is defined

as following:

CosineSimilarity =
u · v

||u||2||v||2
=

∑n
i=i uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(4.2)

where u and v are two numeric vector, ui and vi are the items of vector u and v respectively.

Figure 4.2 illustrates the process that computes the similarities matrix from the train-

ing/test texts and the articles in the background knowledge. In each matrix, the rows

represent the texts and the columns represent the features. Other details are introduced

as following:

• freq is the word frequency in the text.

• tfidf is the TF-IDF value.

• concepts represent the articles from Baidu Baike.

• In the training texts, we may have t words.

• In the concepts, we may have c words.

• The vocabularies of the training texts and concepts are different.

• The number of concepts is dependent on the number of the top N keywords.
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Figure 4.2: The similarity matrix based on the background knowledge. M0−freq is the
feature matrix with word frequency for the training/testing texts. Mc is the feature
matrix with TF-IDF values for the articles from Baidu Baike. The words from the article
are regarded as the background features. M1−weight is the feature matrix with TF-IDF
values for the training/testing texts, in which only the words in the background features
are reserved. Ms is the feature matrix with similarities between the texts and the articles
from Baidu Baike.
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Finally, we combine the similarity vector and the feature vector to represent the text.

Figure 4.3 shows this process. With the new feature matrix, the SVM method is used to

train classification model and predict the class labels for the test texts.

Figure 4.3: Generate the new feature matrix to represent the texts. M0−weight is the
matrix with TF-IDF values of words for the training/testing texts. Ms is the matrix with
similarities between the texts and the articles from Baidu Baike.

Specially, only nouns and verbs are used as the top N keywords for their categories.

Other words are filtered out, such as number, punctuation, and other symbols, as well as

excluding the category names because they have been already selected as the keywords.

Therefore, the articles of the top N keywords and the category names are downloaded from
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Baidu Baike. When look up them in Baidu Baike, some concepts have the list of several

sub-concepts. Commonly, all of the sub-concepts are downloaded into one text. However,

some concepts do not have the list of sub-concepts. In this case, only the first sub-concept

in the search results is downloaded.

4.3 Background Knowledge From Character Co-occurrence

In this section, we introduce enriching text representation based on character co-occurrence.

We extract to the information of character co-occurrence from the additional corpus which

is independent from the training and test texts. For example:

In Chinese: 吃苹果。喝苹果汁。

In English: Eat apples. Drink apple juice.

In the Chinese text, there are two sentences. By counting the character co-occurrence

in each sentence, the results are:

• 吃-苹: 1

• 吃-果: 1

• 苹-果: 2

• 喝-苹: 1

• 喝-果: 1

• 喝-汁: 1

• 苹-汁: 1

• 果-汁: 1

The number indicates the frequency of the co-occurrence. The character “苹” can be

represented as:

吃 苹 果 喝 汁

苹 1 2 2 1 1

Table 4.1: An example for the character co-occurrence in Chinese. The number of 苹-苹
represents the frequency of the character 苹.
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Two key ideas support this method. First, each Chinese character has its own meaning.

Second, in different topics, the character co-occurrence is different in the texts. Because the

number of common characters in Chinese is large, around 20,000. If we count the character

co-occurrence for each character, the computation will be 20, 0002 times. Therefore, to

reduce the computation, some key characters are selected, which are the most related

to their categories. The character co-occurrence between the key characters and other

characters are counted for each text and the additional corpus. For each text, the key

characters can also be represented as the vectors with the frequency of the character co-

occurrence in itself. For the additional corpus, the key characters can be represented as the

vectors with the frequency of the character co-occurrence in itself. Because the content is

different in the texts and the additional corpus, the vectors are different for the same key

characters. The similarities between the key characters in the texts and the key characters

in the additional corpus are used to enrich the text representation.

The motivation is also from dealing the imbalance corpus. In this case, the large

categories have much more texts than the small categories. Moreover, sometimes these is

not any similar information between training and test texts, because these is not enough

numbers of texts in the categories.

In this method, the additional corpus is used as the knowledge base to enrich infor-

mation of Chinese texts. The information from knowledge base is treated as background

knowledge. The information from training and test texts in a specific corpus is a special

case.

Section 4.3.1 illustrates the proposed method using character co-occurrence as the

background knowledge. Section 4.3.2 presents the details about implementing the pro-

posed method.

4.3.1 Overview: Using Character Co-occurrence

In this method, the additional corpus is used as the knowledge base to count the character

co-occurrence. In other words, the character co-occurrence from the additional corpus is

used as the background knowledge.

Figure 4.4 illustrates the workflow of enriching text representation based on character

co-occurrence. In Figure 4.4, there are a lot of steps. In the middle of the figure, these
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Figure 4.4: Workflow: enriching text representation with character co-occurrence
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steps are the difference between the proposed method and the traditional method. On the

left, they are the training process. On the right, they are the predicting process.

Every steps are introduce as following:

• The steps at the top: these four steps represent the experimental data.

Training text The training texts are from the corpus and includes numbers of texts

in each category. They are used for training classification model.

Labels This represents the class labels of the training texts.

External Corpus The external is used to count the character co-occurrence which

is regarded as the background knowledge.

Test text The test texts are also from the corpus and includes numbers of texts in

each category. They are used to evaluate the performance of the method.

• The steps in the middle:

Top N key characters for each category In this step, we select top N charac-

ters which are the most related to their categories.

Background Knowledge To reduce the computation, only the top N key charac-

ters are selected to compute the character co-occurrenceas, which is used as the

background knowledge.

Similarities Computing the similarities of the key characters between each text

and the background knowledge. For example, if there are 5 key characters, we

will get 5 similarities for each text.

New Feature Matrix Enriching text representation by adding the similarities to

the feature vectors of the texts. In the feature matrix, the rows are the texts,

the columns are the features, the values are the weight and the similarities.

• The steps on the left:

Feature Space (Words) Extracting the features from the training texts. The

features are the words from the training texts.

Weighting Weighting the features and representing texts as the vectors of numeric

values.
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Feature Matrix In the feature matrix, the rows are the texts, the columns are the

features, the values are the weight.

• The steps on the right:

Feature Space (Words) Extracting the features from the test texts. The features

are the words from the training texts.

Weighting Weighting the features and representing texts as the vectors of numeric

values.

Feature Matrix In the feature matrix, the rows are the texts, the columns are the

features, the values are the weight.

• The steps at the bottom:

Classification Model Training the classification model with the feature matrix

which includes the similarities between the texts and the background knowl-

edge.

Predict Predicting the class labels for the test texts with the classification model.

4.3.2 Enriching text representation with Character Co-occurrence

In this method, the additional corpus is downloaded from Internet. With this corpus, we

count the character co-occurrence which are used as the background knowledge.

The training and test texts are represented by the BoW model, and each feature is

weighted by the TF-IDF algorithm. Each text is converted to a vector of numeric values.

In Figure 2, the steps in the middle illustrate the process of using the additional

corpus to obtain the character co-occurrence information, which is used as the background

knowledge.

First, the top N key characters are selected according to the texts and their class labels,

in which each character is regarded as having the discriminative ability corresponding to

its category. Second, the additional corpus is used to obtain the character co-occurrence

frequencies which could constitute a character co-occurrence matrix. Only the top N key

characters are extracted from the co-occurrence matrix as the background knowledge.

Third, each text computes its own character co-occurrence frequencies of the top N key
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characters. The similarities of character co-occurrence frequencies between the background

knowledge and each text are used as the new features. Finally, these new features are added

to the feature matrix to train classification model. Note that, the similarities of character

co-occurrence frequencies are also added to the test texts.

To select the top N key characters for each category, only nouns are reserved in the

training texts at first; And Then, the characters are weighted in each category and ranked

by their weight. Finally, the top N key characters are selected.

To obtain the character co-occurrence frequencies, only the Chinese characters are

reserved in the texts, others are replaced by \n (Enter character). More than one successive

\n are replaced by only one \n character, so that the texts are rearranged as one sentence

on each line. More than one successive space character (white space or \t character) are

replaced by only one white space character. By processing each sentence in the texts,

we count the co-occurrence frequencies between two characters in the sentences. And

then, these characters and co-occurrence frequencies could form a character co-occurrence

matrix, in which the rows and columns represent the characters, the values represent the

co-occurrence frequencies of two characters indexed by the row and column. The distance

between two characters are also considered when computing the co-occurrence matrix.

For examples, the distance is equal to 1, which means two characters are adjacent. The

distance is equal to 2, which means two characters are separated by one character. With

different distance, we compute the different character co-occurrence matrices separately.

To decide the number of the groups of distance, we compute the average length of the

sentences in the additional corpora. The average length of the sentences is around 7 to 8

character. Therefore, we use 6 characters as the maximum distance between two characters

in the sentence.

For preprocessing the background knowledge, the character co-occurrence matrix is

computed with the additional corpus. Specially, after preprocessing the additional corpus,

the characters and their indexes are same in both rows and columns. Therefore, the

diagonal represents the frequencies of characters. With the purpose of only using co-

occurrence frequencies between different characters, the diagonal of the co-occurrence

matrix is set to 0. And then, each row is divided by the sum of values of itself to obtain

the co-occurrence rates. Finally, to represent the background knowledge, only the rows
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which represent the top N key characters are selected.

For preprocessing the training and test texts, the rows of the co-occurrence matrix are

the top N key characters, the columns are the same as the columns of the background

knowledge, and the values are the co-occurrence rates which depend on the content of

each text itself. To compute the similarities, cosine similarity algorithm (equation 4.2) is

used, because the co-occurrence frequencies of characters have already represented by the

numeric vectors.

New Feature matrix

+
Similarity matrix

Feature matrix of text
 

Figure 4.5: Combine the feature matrices of TF-IDF values and similarities to represent
the texts.
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To add the co-occurrence feature to the traditional feature space, we combine the two

matrices by columns as showed in Figure 4.5. Other details are introduced as following:

• tfidf is the TF-IDF value.

• similarity is the similarities between the texts and the background knowledge of the

character co-occurrence.

• Wordt indicates that we may have t words from the training texts.

• CharM indicates that we may have selected the top M words from the additional

corpus .

Finally, the SVM (support vector machine) classifier is used to train classification

model.

4.4 Evaluation

The evaluation is an important step which tells us the performance of the proposed meth-

ods. For evaluating the performance, the standard methods are using precision, recall, F1

measure. The precision P (Ck), recall R(Ck), F1 measure F1(Ck) are defined as follows

[34]:

P (Ck) =
TP (Ck)

TP (Ck) + FP (Ck)
(4.3)

R(Ck) =
TP (Ck)

TP (Ck) + FN(Ck)
(4.4)

F1(Ck) =
2 · P (Ck) ·R(Ck)

P (Ck) +R(Ck)
(4.5)

Ck is the target category. TP (Ck) is the number of test texts correctly classified to

the category Ck. FP (Ck) is the number of test texts incorrectly classified to the category.

FN(Ck) is the number of test texts wrongly denied to the category. To obtain the overall

performance, macro F1 value is used to measure the proposed method. The macro-average
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of precision (PM ), recall (RM ), and the FM1 measure are computed as [34]:

PM =
1

m

m∑
k=1

P (Ck) (4.6)

RM =
1

m

m∑
k=1

R(Ck) (4.7)

FM1 =
1

m

m∑
k=1

F1(Ck) (4.8)

4.5 Tools

In this section, we introduce the tools used in our methods.

Baidu Search Engine Baidu Search Engine1 is a search engine in Chinese language for

websites. In this thesis, Baidu Search Engine is used to obtain the most related

keywords which represent their categories.

Baidu Baike Baidu Baike2 is a Chinese language collaborative Web-based encyclopedia

provided by Baidu. In this thesis, the articles of keywords and category name are

downloaded from Baidu Baike.3

Stanford Word Segment Tokenization of raw text is a standard pre-processing step for

many NLP tasks. For English, tokenization usually involves punctuation splitting

and separation of some affixes like possessives. Other languages require more exten-

sive token pre-processing, which is usually called segmentation. The Stanford Word

Segmenter4 (SWS) currently supports Arabic and Chinese. The provided segmen-

tation schemes have been found to work well for a variety of applications. In this

thesis, SWS is used to segment the text in Chinese into words [6].

Stanford Postagger A Part-Of-Speech Tagger (POS Tagger) is a piece of software that

reads text in some language and assigns parts of speech to each word (and other

1http://www.baidu.com
2http://baike.baidu.com
3http://en.wikipedia.org/wiki/Baidu Baike
4http://nlp.stanford.edu/software/segmenter.shtml
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token), such as noun, verb, adjective, etc. In this thesis, Stanford postagger5 is used

to select words with specific POS, such as NN (noun) [43, 42].

Scikit-learn Scikit-learn6 (formerly scikits.learn) is an open source machine learning li-

brary for the Python programming language. It features various classification, re-

gression and clustering algorithms including support vector machines, logistic regres-

sion, naive Bayes, random forests, gradient boosting, k-means and DBSCAN, and is

designed to interoperate with the Python numerical and scientific libraries NumPy

and SciPy.7 In this thesis, Scikit-learn provide several function in experiments, such

as TF-IDF, Cosine similarity, and Linear SVM classifier. To evaluate the results, we

also use the function to compute the precision, recall, and F1-score value and cross

validation provided by Scikit-learn.

Numpy and Scipy Numpy and Scipy are two open source libraries for Python program-

ming language which support matrix computation and provide cosine similarity func-

tion. Specially, the cosine similarity function (scipy.spatial.distance.cosine(u, v)) in

the scipy library is defined as following:

ScipyCosineSimilarity = 1− u · v
||u||2||v||2

(4.9)

In this thesis, we use 1− scipy.spatial.distance.cosine(u, v) to compute cosine sim-

ilarity.

5http://nlp.stanford.edu/software/tagger.shtml
6http://www.scikit-learn.org
7http://en.wikipedia.org/wiki/Scikit-learn



Chapter 5

Evaluation

In this chapter, we evaluate the performance of the proposed methods with some groups

of experiments. Section 5.1 presents the experimental results and the discussion for en-

rich text representation by using Baidu Baike as the background knowledge. Section 5.2

presents the experimental results and the discussion for enrich text representation by using

character co-occurrence as the background knowledge. Section 5.3 summarizes these two

methods in this chapter.

5.1 Classifying texts with Baidu Baike

The performance of the method based on Baidu Baike is measured with the FUDAN Uni-

versity classification corpus1,2. This corpus is from Chinese natural language processing

group in Department of Computer Information and Technology in Fudan University.

Section 5.1.1 introduces the dataset used in the experiments. Section 5.1.2 introduces

the baseline method. Section 5.1.3 presents the experimental setting. Finally, the experi-

mental results are showed and discussed in section 5.1.4 and section 5.1.5.

5.1.1 Dataset

In the experiments, FUDAN University text classification corpus is used to train classi-

fication model. This corpus is an imbalanced dataset, including 19637 texts within 20

categories, in which the different categories have the different numbers of texts. Table

1http://www.datatang.com/data/44139
2http://www.datatang.com/data/43543

49
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5.1 shows the categories of FUDAN corpus. There are two subsets in FUDAN corpus,

including 9084 training texts and 9833 test texts separately.

Figure 5.1 show the the distribution of texts in the categories in FUDAN corpus.

And Figure 5.2 and 5.3 shows the distribution of the training and test texts. The x-axis

indicates the categories. The y-axis indicates the number of texts. At the top of each bar,

it is the number of texts in the category.

C11-Space C15-Energy C16-Electronics C17-Communication

C19-Computer C23-Mine C29-Transport C31-Enviornment

C32-Agriculture C34-Economy C35-Law C36-Medical

C37-Military C38-Politics C39-Sports C3-Art

C4-Literature C5-Education C6-Philosophy C7-History

Table 5.1: The categories of FUDAN corpus.

C19C35C31C17 C4 C37C29C16 C3 C11C34 C5 C23C36C15C39C32 C6 C38 C7
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Figure 5.1: The distribution of text in FUDAN corpus.

5.1.2 Baseline

To prove the effectiveness of the proposed method, the INNTC (improved KNN algorithm

for text categorization) [18] method is used as the baseline, because they also focused on

Chinese text classification and experimented on the same corpus.

The INNTC method consist of two steps:

1. Clustering the training texts to some clusters.
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Figure 5.2: The distribution of training texts in Fudan Corpus [33].

2. Classifying the test texts with the clusters and KNN algorithm.

First, the training texts are converted to the vectors of numeric values by using TF-

IDF algorithm. Then, the one-pass clustering algorithm to generate the clusters from the

training texts. During the clustering process, a text is added to a clustering by using

cosine similarity algorithm, if the text and the cluster have the same class label and the

similarity is larger than the threshold. In other cases, the text is treated as a new cluster.

When a new text is added into a cluster, this cluster have to update the weight of the

features. The details about the steps are described as follows [18]:

(1) Initialize an empty set of clusters m0, and read the first text p from the training texts.

(2) Generate a new cluster with the text p, and use the class label of the text p as the

class label of the new cluster.

(3) If no texts are left in the training texts, go to step (6), otherwise read a new text p,

compute the similarities between p and all the clusters C̄ in m0, and find the cluster

C0
i in m0 that is the closest to the text p.

(4) If sim(p, C0
i )) < threshold or the class labels are different between the text p and the

nearest cluster, go to step (2).
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Figure 5.3: The distribution of test texts in Fudan Corpus [33].

(5) Combine text p into cluster (C0
i ) and update the weight of features for cluster C0

i , go

to step (3).

(6) Stop clustering, get the clustering results m0 = {C0
1 , C

0
2 , C

0
3 , ..., C

0
n}, each cluster in

m0 is consisted of weighted features and its class label, and m0 is the classification

model for KNN method.

During the clustering process, each cluster is represented as a vector of numeric values

which is the centroid vector for itself. The equation of updating the feature weights for

the clusters in step (5) is described as follows [18]:

wj+1
c0i

(t) =
wj
c0i

(t)× |c0i |+ w(t)p

|c0i |+ 1

where wj+1
c0i

(t) indicates the new weight of feature t in cluster C0
i ; wj

c0i
(t) is the weight of

feature t in cluster C0
i ; w(t)p is the weight of feature t in text p; |c0i | is the number of texts

included in cluster C0
i .

To classify the test texts, INNTC method used clusters as the training examples to

classify testing examples by using KNN classifier. The details are described as follows: for

a test text x, compute the score between each cluster in m0 and the text x by using the

following equation, and assign the class label of the cluster to the test text x, which has
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the highest score [18].

f(x) = arg max
j

ClusterScore(x,Cj) =
∑

C0
i ∈kNN

sim(x,C0
i )y(C0

i , Cj)

where f(x) is the class label assigned to the test text x; ClusterScore(x,Cj) is the score

between the candidate category Cj and the test text x; sim(x,C0
i ) is the similarity between

the test text x and the cluster C0
i in m0; y(C0

i , Cj) ∈ 0, 1 is the relationship between the

cluster C0
i and the category Cj , (y = 1 indicates that cluster C0

i is in the category Cj , or

y = 0).

In our experiments, INNTC method is used to classify the texts which are represented

with the information from Baiku Baike.

5.1.3 Experiment Setting

The FUDAN corpus is used in the experiments as showed in Table 5.1, Figure 5.2 and

Figure 5.3. The texts are split to the training texts and the test texts.

The Standford Chinese word segment tool is used to segment words in the texts.

The words are used as the features. The features are weighted by TF-IDF algorithm.

After weighting the features, the training texts are converted to the vectors of numeric

values. Then, we enrich the text representation with the information form Baidu Baike

which is used as the background knowledge. Finally, the training texts are represented

as the vectors combined with TF-IDF values and the similarities between the texts and

the background knowledge. Specially, to select the keywords for the categories, Standford

POS tagging tool is used to tag the POS for the words.

The Linear SVM classifier is used to train the classification model with default param-

eter setting, which is provided by scikit-learn library.

In the predicting process, the test texts are preprocessed by the same steps on training

texts, which are also converted to the vectors combined with TF-IDF values and the

similarities between the texts and the background knowledge.

For the baseline method, the default setting is used, including the threshold, etc.,

which is elaborated in [18].

Because the category names are in English, but we need their Chinese names. To
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download the articles of category names from Baidu Baike, the category names are trans-

lated to Chinese. In some cases, one English word has more than one translations. Table

5.2 shows the Chinese category names translated from the English names.

Categories Chinese names

C11-Space 太空 (space), 航天 (space flight)

C15-Energy 能源 (energy)

C16-Electronics 电子学 (electronics), 电子工业 (elecronic in-
dustry)

C17-Communication 电信业 (telecommunication industry), 通信业
(communication industry), 电信 (telecommu-
nication), excluding the part of laws

C19-Computer 计算机 (computer), excluding the table of ages

C23-Mine 矿业 (mining industry), 矿产 (mineral)

C29-Transport 交通运输业 (transport industry)

C31-Enviornment 生态环境 (ecological environment)

C32-Agriculture 农业 (agriculture)

C34-Economy 经济 (economy)

C35-Law 法律 (law)

C36-Medical 医药行业 (medical industry), 医疗 (medical
service)

C37-Military 军事 (military)

C38-Politics 政治 (politics)

C39-Sports 体育 (sports) excluding part of book

C3-Art 艺术 (art), including both concepts of 基本概
念 (basic concept) and文化名词 (proper noun
related to culture)

C4-Literature 文学 (literature)

C5-Education 教育 (education)

C6-Philosophy 哲学 (philosophy)

C7-History 历史 (history)

Table 5.2: The Chinese category names of FUDAN corpus [33].

5.1.4 Experimental Results

In this section, the experimental results are presented, which have already presented in

[33]. There are three group of results in this section, including the baseline method, the

traditional method, and the proposed method.

The fist part presents the background knowledge, in which some keywords are selected

from the training texts, and download their articles from Baidu Baike. The second part

presents the comparison between the baseline and the proposed method.
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The Background Knowledge from Baidu Baike

Table 5.3 shows the top 20 candidate words for each category in the training texts by

ranking their CTF-ICF values. For each category, some words can not represent their own

categories well. For an example, 参考 refer in the category Space and 标题 title in the

category Energy, there is less semantic relation between these words and the categories.

Therefore, some words which are less related to the categories should be filtered out. To

filter out these words, the words and their category names are posted to Baidu Search

Engine. By ranking the number of the search results, the top 3 words are selected, which

are regarded as the keywords to present their categories.

Specially, when selecting the top 3 keywords, some words may have the same number

of search results. In this case, the words with higher CTF-ICF values are selected.

Table 5.4 shows the category names which are used for selecting the top 3 keyword for

each category. These category names and the candidate words are posted to Baidu Search

Engine and ranked based on the number of the research results.

Specially, Table 5.4 is similar to Table 5.2. The difference between these two tables is

that the category names are used for different purpose. in Table 5.2, some categories has

more than one Chinese translation and they are used to download the articles of these

category names from Baidu Baike. The articles within the same category are saved into the

same text. Therefore, we get 20 texts for these categories as the background knowledge.

In Table 5.4, these category names are used to select the top 3 words to represent their

categories.

Table 5.5 presents the top 3 keywords for each category. The articles of these words

are downloaded from Baidu Baike, and saved to texts with their class labels.

Totally, we get 79 articles with the category names and the top 3 keywords, include

59 keywords and 20 categories. The keyword 电子部 is not found in Baidu Baike.

The Results for Classifying Fudan Corpus

In the experiments, we evaluate the proposed method based on Baidu Baike with four

groups of experiments.

These experiments are listed as following:
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Categories Top 20 candidate words ranked by CTF-ICF values

C11-Space 参考, 本文, 文献, 摘要, 主题词, 如图, 航空, 学报, 参数, 采用, 进行,
系数, 作者, 方法, 单位, 收稿, 分析, 误差, 计算, 给出

C15-Energy 标题, 日期, 作者, 电力, 记者, 开发, 国家, 发电, 发展, 技术, 温室, 电
厂, 环境, 资源, 进行, 我国, 环保, 燃料, 全球, 利用

C16-Electronics 标题, 日期, 作者, 电子, 芯片, 技术, 电路, 公司, 发展, 市场, 记者, 国
家, 显像管, 半导体, 企业, 世界, 成为, 工业, 电子部, 生产

C17-
Communication

通信, 标题, 作者, 邮电部, 日期, 通信网, 邮电, 移动, 电话, 发展, 用
户, 公司, 我国, 专网, 建设, 市话, 光缆, SDH, 容量, 业务

C19-Computer 本文, 参考, 文献, 学报, 定义, 给出, 函数, 算法, 摘要, 如图, 描述, 模
型, 方法, 参数, 系统, 应用, 引言, 软件, 对应, 数据

C23-Mine 储量, 标题, 日期, 矿山, 作者, 生产, 采矿, 国家, 矿区, 金矿, 开采, 矿
种, 资源, 矿产, 记者, 公司, 发展, 开发, 企业, 政策

C29-Transport 铁路, 交通部, 运输, 交通, 记者, 通车, 标题, 日期, 干线, 作者, 发展,
工程, 开行, 客运, 公路, 铁道部, 列车, 铁路局, 通讯员, 建成

C31-
Enviornment

文献, 参考, 摘要, 浓度, 环境, 污染物, 研究, 本文, 进行, 科学, 简介,
学报, 方法, 作者, 出版社, 分析, 单位, 收稿, 影响, 采用

C32-
Agriculture

农产品, 期号, 出处, 复印, 分类号, 原文, 农民, 地名, 耕地, 农村, 农
户, 生产, 作者, 页号, 作物, 发展, 提高, 粮食, 增产, 进行

C34-Economy 期号, 出处, 复印, 分类号, 原文, 地名, 简介, 资本, 作者, 正文, 标题,
市场, 发展, 企业, 资产, 生产, 国家, 产业, 货币, 问题

C35-Law 发布, 合同法, 人民, 国家, 民事, 规定, 定本, 共和国, 合同, 国务院,
部门, 企业, 当事人, 必须, 机关, 订阅, 自治区, 管理, 应当, 直辖市

C36-Medical 治疗, 患者, 医院, 疗效, 临床, 记者, 研究, 病人, 疾病, 进行, 卫生, 专
家, 外科, 卫生部, 手术, 组织, 医科, 单位, 医生, 医学

C37-Military 军队, 武装, 部队, 进行, 裁军, 问题, 记者, 武器, 举行, 打死, 导弹, 军
备, 总统, 报道, 消减, 开始, 表示, 部署, 战斗机, 战斗

C38-Politics 期号, 出处, 复印, 分类号, 原文, 地名, 页号, 问题, 正文, 国家, 发展,
权力, 西方, 进行, 标题, 主义, 人民, 思想, 作者, 关系

C39-Sports 期号, 出处, 复印, 原文, 分类号, 页号, 地名, 比赛, 进行, 运动员, 作
者, 发展, 运动, 方法, 正文, 实践, 提高, 研究, 训练, 方面

C3-Art 期号, 出处, 复印, 分类号, 原文, 创作, 作品, 地名, 文艺, 人物, 作者,
表现, 标题, 时代, 艺术家, 小说, 思想, 作家, 页号, 正文

C4-Literature 文化, 作者, 标题, 日期, 民族, 出版, 传统, 出版社, 文明, 文艺, 表现,
文物, 精神, 影响, 发展, 方面, 作品, 西方, 观众, 社会

C5-Education 学校, 学生, 教师, 工作, 培养, 记者, 国家, 思想, 学习, 发展, 中小学,
社会, 作者, 数学, 提高, 办学, 标题, 日期, 家长, 教委

C6-Philosophy 思想, 理论, 主义, 标题, 问题, 实践, 社会主义, 认识, 进行, 社会, 作
者, 规律, 发展, 唯物, 日期, 辩证法, 精神, 科学, 基础, 发信人

C7-History 期号, 出处, 复印, 分类号, 原文, 地名, 页号, 正文, 作者, 人物, 标题,
时代, 统治, 注释, 思想, 表现, 发展, 社会, 文化, 阶级

Table 5.3: Top 20 candidate words of each category ranked by the CTF-ICF values [33].

(1) The Linear SVM method
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Categories category names

C11-Space 航天 (space flight)

C15-Energy 能源 (energy)

C16-Electronics 电子工业 (elecronic industry)

C17-Communication 通信业 (communication industry)

C19-Computer 计算机 (computer)

C23-Mine 矿业 (mining industry)

C29-Transport 交通运输业 (transport industry)

C31-Enviornment 生态环境 (ecological environment)

C32-Agriculture 农业 (agriculture)

C34-Economy 经济 (economy)

C35-Law 法律 (law)

C36-Medical 医疗 (medical service)

C37-Military 军事 (military)

C38-Politics 政治 (politics)

C39-Sports 体育 (sports)

C3-Art 艺术 (art)

C4-Literature 文学 (literature)

C5-Education 教育 (education)

C6-Philosophy 哲学 (philosophy)

C7-History 历史 (history)

Table 5.4: The category names for selecting top 3 keywords [33].

(2) Category names + The Linear SVM method

(3) Category names + Top 3 keywords + method (baseline)

(4) Category names + Top 3 keywords + The Linear SVM method

In this list, the Category names indicates computing the similarities between the texts and

the articles of the category names from Baidu Baike, and enrich the text representation

with these similarities. The Top 3 keywords indicates computing the similarities between

the texts and the articles of the top 3 keywords of each category from Baidu Baike, and

enrich the text representation with these similarities.

At the beginning, we only use the articles of the category names to enrich the text

representation. The results showed that the macro-F1 score is improved, but the precision

decreased a little with the Linear SVM classifier. To improve both macro F1 score and

precision, the articles of the top 3 keywords of each category are used to enrich the text

representation.

Table 5.6 presents the result comparison between the baseline and the proposed method.

The +baidu means enriching the text representation with Baidu Baike. Table 5.7 shows
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Categories Top 3 keywords

C11-Space 航空 (aviation), 系数 (coefficient), 进行 (per-
form)

C15-Energy 电力 (power), 电厂 (power plant), 资源 (re-
source)

C16-Electronics 电子(elecron), 工业(industry), 电子部 (min-
istry of elecronic industry)

C17-Communication 移动 (mobile), 通信 (communication), 通信网
(communications network)

C19-Computer 定义 (definition), 算法 (algorithm), 描述 (de-
scribe)

C23-Mine 矿山 (mine), 采矿 (mining), 金矿 (gold ore)

C29-Transport 铁路 (railway), 公路 (highway), 交通 (traffic)

C31-Enviornment 本文 (this article), 环境 (environment), 科学
(science)

C32-Agriculture 农村 (village), 生产 (produce), 农民 (farmer)

C34-Economy 资本 (capital), 发展 (develop), 国家 (nation)

C35-Law 发布 (publish), 规定 (rule), 民事 (civil)

C36-Medical 治疗 (treatment), 临床 (clinical), 病人 (pa-
tient)

C37-Military 军队 (army), 部队 (troop), 武器 (weapon)

C38-Politics 发展 (develop), 权力 (authority), 思想
(thought)

C39-Sports 比赛 (match), 运动员 (athlete), 运动 (sports)

C3-Art 创作 (creation),艺术家 (artist),小说 (fiction)

C4-Literature 出版 (publish), 传统 (tradition), 文明 (civi-
lization)

C5-Education 学校 (school), 学生 (student), 教师 (teacher)

C6-Philosophy 认识 (realization), 科学 (science), 思想
(thought)

C7-History 文化 (culture), 时代 (age), 思想 (thought)

Table 5.5: The top 3 keywords for each category. [33]

the impact of enriching the text representation with Baidu Baike. The +label means us-

ing the articles of the category names to compute the similarities. Figure 5.4 presens the

overview of experimental results with marco precision, recall and F1 score.

5.1.5 Discussion

The experimental results show that the proposed method outperforms over the traditional

methods. Further, the results indicate that the background knowledge from Baidu Baike

bring the positive impact to the experiments. This method could be regarded as an

alternative method for text classification task.
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Precision Recall F1 score

inntc
+baidu
(base-
line)

linear
SVM

linear
SVM
+baidu

inntc
+baidu
(base-
line)

linear
SVM

linear
SVM
+baidu

inntc
+baidu
(base-
line)

linear
SVM

linear
SVM
+baidu

C11 0.93 0.95 0.95 0.81 0.93 0.93 0.87 0.94 0.94
C15 1.00 1.00 1.00 0.42 0.55 0.61 0.60 0.71 0.75
C16 1.00 1.00 1.00 0.04 0.54 0.54 0.07 0.70 0.70
C17 0.76 0.87 0.84 0.59 0.74 0.78 0.67 0.80 0.81
C19 0.93 0.96 0.96 0.96 0.99 0.99 0.94 0.98 0.98
C23 0.87 0.89 0.93 0.38 0.71 0.74 0.53 0.79 0.82
C29 0.95 0.88 0.88 0.61 0.88 0.90 0.74 0.88 0.89
C3 0.86 0.89 0.89 0.89 0.95 0.95 0.87 0.92 0.92
C31 0.94 0.96 0.96 0.90 0.97 0.97 0.92 0.96 0.97
C32 0.88 0.95 0.95 0.94 0.96 0.96 0.91 0.95 0.95
C34 0.81 0.93 0.93 0.94 0.96 0.96 0.87 0.94 0.95
C35 1.00 0.80 0.82 0.37 0.63 0.63 0.54 0.71 0.72
C36 1.00 1.00 1.00 0.36 0.74 0.77 0.53 0.85 0.87
C37 0.96 0.90 0.88 0.33 0.75 0.76 0.49 0.82 0.82
C38 0.83 0.91 0.92 0.92 0.93 0.93 0.87 0.92 0.93
C39 0.91 0.95 0.95 0.95 0.98 0.98 0.93 0.96 0.97
C4 0.00 0.71 0.71 0.00 0.15 0.15 0.00 0.24 0.24
C5 0.50 0.75 0.75 0.02 0.25 0.30 0.03 0.37 0.42
C6 0.79 0.86 0.88 0.24 0.42 0.47 0.37 0.57 0.61
C7 0.76 0.85 0.85 0.59 0.78 0.79 0.66 0.81 0.82

Table 5.6: The comparison of results with the baseline [33].

Specially, Fudan corpus is an imbalanced dataset. The biggest category contains more

than 1,000 texts, but the smallest category contains only tens of texts. After representing

the texts with TF-IDF values, the length of the vector is more than 350,000 words.

In Table 5.3, some of the top 20 words do not have the relation with their categories by

reading the texts in each category.. However, these words have the high CTF-ICF values

in FUDAN corpus. Therefore, those unrelated words in Table 5.3 have to be filtered out.

By selecting the top 3 keywords for each category, the words are the most related to their

categories in Table 5.5. As mentioned above, the keyword 电子部 “ministry of electronic

industry”is not found in Baidu Baike. Therefore, there are 79 concepts in the experiment

(59 articles from the keywords, 20 articles from the category names).

Figure 5.4 shows that the proposed approach improve the effectiveness for text clas-

sification. We compare the macro results with the different methods. The first group of

results is from the proposed method based on Baidu Baike. The second group of results is
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Precision Recall F1 score

linear
SVM

linear
SVM
+lable

linear
SVM
+lable
+top3
words

linear
SVM

linear
SVM
+lable

linear
SVM
+lable
+top3
words

linear
SVM

linear
SVM
+lable

linear
SVM
+lable
+top3
words

C11 0.95 0.94 0.95 0.93 0.92 0.93 0.94 0.93 0.94
C15 1.00 1.00 1.00 0.55 0.61 0.61 0.71 0.75 0.75
C16 1.00 0.94 1.00 0.54 0.54 0.54 0.70 0.68 0.70
C17 0.87 0.84 0.84 0.74 0.78 0.78 0.80 0.81 0.81
C19 0.96 0.96 0.96 0.99 0.99 0.99 0.98 0.97 0.98
C23 0.89 0.93 0.93 0.71 0.76 0.74 0.79 0.84 0.82
C29 0.88 0.87 0.88 0.88 0.88 0.90 0.88 0.87 0.89
C3 0.89 0.89 0.89 0.95 0.95 0.95 0.92 0.92 0.92
C31 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.97
C32 0.95 0.94 0.95 0.96 0.96 0.96 0.95 0.95 0.95
C34 0.93 0.93 0.93 0.96 0.96 0.96 0.94 0.95 0.95
C35 0.80 0.80 0.82 0.63 0.63 0.63 0.71 0.71 0.72
C36 1.00 1.00 1.00 0.74 0.77 0.77 0.85 0.87 0.87
C37 0.90 0.89 0.88 0.75 0.75 0.76 0.82 0.81 0.82
C38 0.91 0.92 0.92 0.93 0.93 0.93 0.92 0.92 0.93
C39 0.95 0.95 0.95 0.98 0.98 0.98 0.96 0.97 0.97
C4 0.71 0.71 0.71 0.15 0.15 0.15 0.24 0.24 0.24
C5 0.75 0.70 0.75 0.25 0.26 0.30 0.37 0.38 0.42
C6 0.86 0.83 0.88 0.42 0.44 0.47 0.57 0.58 0.61
C7 0.85 0.85 0.85 0.78 0.79 0.79 0.81 0.82 0.82

Table 5.7: The comparison of results based on the top 3 keywords [33].

from the traditional method without the background knowledge. The last group of results

is from the baseline method. The results show that the proposed method outperforms over

the traditional methods by using Linear SVM classifier, with macro precision (90.31%),

recall (75.45%), F1 score (80.32%), which are improved with 0.02%, 0.15%, 0.12%. The

recall and F1 score are improved obviously. This indicates that the background knowledge

can complement the common information between the training and test texts.

In the traditional method, the texts are represented as the vectors that has around

350,000 features, each feature represents a word. In the proposed method, 79 similar-

ities are added to each vector. The improvement is benefited from the 79 similarities,

although 79 similarities are very small, comparing to 350,000 features. This indicates

these similarities are the efficient features for representing texts.

Note that, the number of search results is not always the same from Baidu Search



5.1. CLASSIFYING TEXTS WITH BAIDU BAIKE 61

Figure 5.4: The comparison of macro precision, recall, F1 score [33].

Engine, and the maximum number of results is always 100,000,000. Therefore, the top 3

keywords of each category sometimes may change.

Additionally, to investigate the robust of the proposed method, some further experi-

ments are performed with different proportion of the training and test texts. The different

proportions of training/testing texts include 2:8, 3:7, 3.3:6.7, 5:5, 6.7:3.3, 7:3, and 8:2. For

each kind of these proportion, we perform 10 experiments. The training and test texts

are selected randomly in each time. We compare the results between using TF-IDF values

only and the proposed method.

Figure 5.5, 5.6 and 5.7 show the results of macro F1 score, macro precision, and

macro recall respectively. These results confirm that the proposed method could obviously

improve F1 score and recall with imbalanced data for text classification task, while keeping

precision stable. When the proportion is 8:2, all of F1 score, precision, and recall get

improvement. Moreover, the improvement of F1 score and recall is rather obvious when

the training set is much smaller than the testing set. This shows that the proposed method

performance better when there are only a little training texts. This also indicates that

using the background knowledge could complement the information between the training

and test texts.
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Figure 5.5: The macro F1 with different proportions of training/testing texts.

5.2 Classifying texts with Character Co-occurrence

The performance of the method based on character co-occurrence is evaluated with two

Chinese text classification corpora, FUDAN corpus and Sougou classification corpus in the

reduced version. Two additional corpora are used as the background knowledge, People’s

daily news and SougouCA news.

Section 5.2.1 introduces the datasets used in the experiments. Section 5.2.2 presents

the experimental setting. Finally, the experimental results are showed and discussed in

section 5.2.3 and section 5.2.4.

5.2.1 Dataset

FUDAN corpus is used to train classification model and predict a given text. This corpus

have been introduce in the section 5.1.1

Table 5.1 shows the categories of FUDAN corpus. Figure 5.1 show the the distribution

of the texts in each categories in FUDAN corpus. The x-axis indicates the categories. The

y-axis indicates the number of texts. At the top of each bar, it is the number of texts in

the category.

In the experiments, we also used another corpus. Sougou classification corpus in the
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Figure 5.6: The macro precision with different proportions of training/testing texts.

reduce version3 is a balanced text classification corpus, containing 17910 within 9 cate-

gories, in which each category has the same number of texts. In this section, we will use

the Sougou corpus for short. Table 5.8 shows the categories of Sougou corpus. Figure 5

shows the distribution of the texts in Sougou corpus.

C08-Economy C10-IT C13-Health

C14-Sports C16-Tour C20-Education

C22-Recruitment C23-Culture C24-Military

Table 5.8: The categories in Sougou corpus.

To use character co-occurrence as the background knowledge, two additional corpus

are used in the experiments. They are People’s daily news and SougouCA news. The

purpose of using these two corpus is to investigate whether the difference background

knowledge can impact the results.

People’s daily news4 is downloaded from Internet, which is used for computing the

character co-occurrence, and then used as the background knowledge. After the prepro-

cessing, the People’s daily news contains 61,213,647 sentences, the average length of the

sentences is 8.64 characters, and the size of the file is around 1.6G bits.

The texts from SougouCA news5 [48] is used for computing the second character

3http://www.sogou.com/labs/dl/c.html
4http://paper.people.com.cn
5http://www.sogou.com/labs/resource/ca.php
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Figure 5.7: The macro recall with different proportions of training/testing texts.

co-occurrence, and then used as the background knowledge. After the preprocessing,

SougouCA news contains 68,034,919 sentences, the average length of sentences is 8.06

characters, and the size of the file is around 1.6G bits.

5.2.2 Experiment Setting

First of all, the additional corpora are used to compute two character co-occurrence matri-

ces separately according to the steps described in Section 4.3. The character co-occurrence

matrices are regarded as the background knowledge. To select the top N key characters,

the training texts in FUDAN corpus and Sougou corpus are segmented by Stanford word

Segment tool, and tagged by Stanford POS tagger. Then, each text is segmented by the

characters. The texts in the same category are combined together. For an example, there

are 3 categories in the corpus, after combining, there are 3 texts for each category. The

TF-IDF method is used to weight the characters for each category. The top N key char-

acters of each category are selected by ranking their weight. The character co-occurrence

of the top N key characters are used as the background knowledge. In the experiments,

the top N is set from 0 to 20, N ∈ [0, 20] (N = 0 means not using the background knowl-

edge. N > 0 means using the specific number of key characters to add the background

knowledge).

The character co-occurrence is also computed for the training and test texts. To get the
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Figure 5.8: The distribution of texts in Sougou corpus.

information from the background knowledge, the similarities of character co-occurrence

between the texts and the background knowledge are computed. Specially, the character

co-occurrence in the different distances is also involved in our experiments, the length of the

distance is from 1 to 6. Thus, six character co-occurrence matrices would be computed

for both the texts and the additional corpora with the different distances between two

characters.

For training classification model and prediction, we combine the text representation

with TF-IDF values and the similarities of character co-occurrence as showed in Figure

4.5. And the Linear SVM classifier that provided by scikit-learn library is used to train

the classifier with default parameter setting in 5-folds cross validation. The traditional

method without character co-occurrence information is also conducted in 5-folds cross

validation by the Linear SVM classifier with default parameter setting for comparing the

experimental results.

To evaluate performance, the precision, recall, and F1 measure mentioned above, are

used. In the experiment, the macro precision, recall, and F1 measure are computed by

the functions provided by scikit-learn library.
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5.2.3 Experimental Results

In this section, the experimental results are presented. The first part shows the top 20 key

characters for each category in the two classification corpora. The second part presents

the results of the proposed method with FUDAN corpus. The third part presents the

results of the proposed method with Sougou corpus.

Top 20 key characters for each category

Table 5.9 and 5.10 show the top 20 key characters for each category in FUDAN corpus

and Sougou corpus separately. In these two tables, each row represents a category, and

the characters are listed from the top 1 to 20, ranking by their weight. Specially, some

characters repeat in the different categories. When computing the character co-occurrence

with these key characters, each character only appears once in the set of key characters.

Additionally, after obtaining the character co-occurrence matrices from these two ex-

ternal corpora, 8887 distinct characters are extracted from the People’s daily news, 6526

distinct characters are extracted from the SougouCA news. Therefore, with the different

additional corpora, the dimensions of these two character co-occurrence matrices are dif-

ferent. After removing the repetitive characters, totally there are 142 key characters in

Fudan corpus and 99 key characters in Sougou corpus.

The Results for Classifying Fudan Corpus

To evaluate the proposed method with Fudan Corpus, three groups of experiments are

conducted, which are listed as follows:

(1) FUDAN classification corpus + People’s daily news

(2) FUDAN classification corpus + SougouCA news

(3) FUDAN classification corpus + People’s daily news + SougouCA news

In FUDAN corpus, each text has its class label. The People’s daily news and SougouCA

news corpus are the additional corpora, which are used for building the background knowl-

edge of character co-occurrence. Each group of experiments is conducted in 5-fold cross
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Categories Top 20 key characters

C11-Space 度, 数, 量, 系, 机, 方, 动, 性, 工, 力, 面, 图,
统, 程, 件, 结, 测, 流, 计, 法

C15-Energy 电, 能, 源, 国, 发, 人, 力, 工, 家, 油, 核, 作,
者, 会, 气, 业, 技, 量, 机, 生

C16-Electronics 电, 子, 产, 国, 业, 机, 技, 公, 司, 术, 工, 品,
者, 人, 信, 发, 企, 生, 家, 场

C17-Communication 信, 通, 电, 国, 业, 网, 公, 司, 邮, 产, 经, 人,
技, 话, 设, 者, 机, 市, 发, 务

C19-Computer 数, 系, 统, 法, 方, 程, 算, 性, 理, 模, 件, 图,
器, 据, 文, 结, 用, 机, 网, 信

C23-Mine 矿, 国, 产, 地, 工, 业, 金, 资, 煤, 源, 量, 人,
石, 发, 家, 作, 区, 部, 经, 者

C29-Transport 路, 车, 运, 铁, 工, 国, 通, 交, 公, 部, 客, 输,
道, 人, 航, 线, 程, 业, 局, 地

C3-Art 文, 艺, 人, 学, 术, 作, 性, 理, 论, 生, 化, 主,
义, 方, 诗, 者, 体, 家, 形, 史

C32-Agriculture 农, 业, 产, 经, 国, 生, 地, 化, 济, 品, 资, 发,
市, 工, 场, 技, 民, 力, 展, 政

C34-Economy 经, 济, 业, 国, 产, 资, 政, 市, 制, 会, 人, 企,
场, 社, 发, 力, 展, 家, 主, 工

C35-Law 国, 人, 业, 法, 合, 同, 工, 品, 产, 理, 管, 经,
部, 家, 企, 地, 技, 计, 术, 民

C36-Medical 医, 人, 生, 病, 药, 疗, 国, 学, 会, 家, 院, 者,
科, 电, 卫, 术, 员, 癌, 中, 工

C37-Military 军, 机, 战, 国, 人, 部, 队, 地, 空, 力, 弹, 海,
武, 事, 兵, 会, 方, 装, 区, 员

C38-Politics 政, 治, 主, 国, 会, 人, 社, 民, 义, 制, 经, 家,
济, 学, 党, 方, 理, 体, 力, 权

C39-Sports 学, 育, 教, 体, 人, 动, 生, 国, 会, 理, 作, 文,
社, 方, 运, 力, 校, 科, 业, 性

C4-Literature 文, 化, 学, 人, 国, 史, 民, 会, 作, 方, 者, 社,
族, 家, 中, 历, 术, 书, 地, 主

C5-Education 教, 学, 育, 生, 人, 校, 国, 会, 业, 家, 工, 社,
中, 作, 子, 师, 孩, 方, 地, 义

C6-Philosophy 学, 哲, 人, 主, 会, 义, 社, 理, 文, 思, 论, 方,
题, 作, 者, 想, 民, 国, 生,工

C7-History 史, 人, 学, 文, 历, 主, 国, 民, 义, 会, 作, 地,
方, 社, 化, 政, 理, 家, 者, 论

C31-Environment 水, 物, 环, 量, 度, 境, 化, 学, 生, 地, 土, 工,
性, 污, 理, 浓, 程, 分, 体, 方

Table 5.9: Top 20 key characters of each category in FUDAN corpus
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Categories Top 20 key characters

C08- Economy 股, 公, 司, 资, 会, 人, 市, 业, 行, 东, 权, 金, 产,
场, 议, 投, 事, 价, 方, 证

C10-IT 业, 电, 网, 人, 公, 司, 机, 务, 市, 产, 国, 用, 信,
场, 品, 商, 户, 者, 方, 家

C13-Health 人, 医, 药, 生, 病, 品, 性, 者, 体, 业, 院, 物, 家,
心, 疗, 国, 中, 子, 方, 女

C14-Sports 赛, 球, 队, 场, 员, 比, 人, 国, 播, 主, 直, 手, 时,
分, 体, 力, 联, 军, 中, 足

C16-Tour 游, 旅, 人, 地, 国, 客, 市, 行, 区, 场, 家, 公, 业,
者, 方, 民, 航, 机, 城, 中

C20-Education 学, 生, 考, 人, 业, 校, 教, 题, 大, 专, 理, 试, 科,
育, 高, 国, 法, 工, 子, 文

C22-Recruitment 人, 业, 工, 生, 公, 作, 学, 职, 司, 理, 企, 员, 力,
事, 时, 者, 会, 大, 位, 面

C23-Culture 人, 国, 文, 学, 家, 子, 民, 生, 地, 会, 大, 中, 者,
主, 方, 时, 军, 事, 化, 作

C24-Military 军, 战, 机, 国, 部, 队, 空, 人, 力, 事, 海, 弹, 作,
地, 方, 导, 防, 演, 兵, 系

Table 5.10: Top 20 key characters of each category in Sougou classificaion corpus

validation with the different distances between characters, and using several different dis-

tances together. Therefore, around 1,100 (5 × (6 + 5) × 21) experiments are conducted

in each group of experiments. When using the traditional method, the results are around

0.901 macro precision, 0.760 macro recall, 0.804 macro F1 score on FUDAN corpus. Each

group of results is calculated by cross validation.cross val score() function which is pro-

vided by scikit-learn library, with the parameter setting, scoring = ‘precision macro’ or

‘recall macro’, and cv = 5.

Figure 5.9 compares the results with FUDAN corpus and People’s daily news. Each

curve represents a group of the experiments. In each group, the experiments are con-

ducted with the character co-occurrence of the specific distance between characters and

the different number of key characters. To enrich text representation, the similarities of

character co-occurrence between the texts and the background knowledge are added to the

feature vectors of the texts. The legend in Figure 5.9 represents the groups of distances

used in the experiments. For an example, D1-1 means that two characters are adjacent;

D2-2 means that two characters are separated by a character. For other example, D1-3

means that three kinds of distances between characters are used in the experiments; Three

groups of similarities of character co-occurrence are computed referring to the background
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knowledge for each text; Finally, all these groups of similarities are added to the feature

vectors of each text. Other details are introduced as following:

• D1-1: Combining the similarities of the character co-occurrence with distance = 1,

for an example, “大” and “学 ” in “大学”.

• D2-2: The distance is 2 between characters, for an example, “研” and “室 ” in “研

究室”.

• D3-3: The distance is 3 between characters.

• D4-4: The distance is 4 between characters.

• D5-5: The distance is 5 between characters.

• D6-6: The distance is 6 between characters.

• D1-2: Combining the similarities of the character co-occurrence with distance = 1

and distance = 2

• D1-3: Combining the similarities of the character co-occurrence with distance ∈ [1, 3]

• D1-4: Combining the similarities of the character co-occurrence with distance ∈ [1, 4]

• D1-5: Combining the similarities of the character co-occurrence with distance ∈ [1, 5]

• D1-6: Combining the similarities of the character co-occurrence with distance ∈ [1, 6]

The y axis indicates the values of precision, recall and F1 score. The x axis repre-

sents how many key characters of each category are used as the features of character

co-occurrence. Specially, when N is set to 0, it means that only the TF-IDF values are

used to train classifier. At the beginning of each curve, N is 0.

In the Figure 5.9, macro recall and F1 score could be improved the by the proposed

approach obviously. Besides, precision also could be improved by setting the distance to

2, 3, 4 and 5, with top 1 key character. Specially, when setting the distance to 6, the

best macro precision is 0.911 (+1%) with top 2 key characters. The results indicate that

adding the character co-occurrence information could improve the effectiveness in text

classification task.
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Figure 5.9: Comparison on FUDAN corpus with character co-occurrence similarity based
on People’s daily news.

Figure 5.10 compares the results with FUDAN corpus and People’s daily news. Figure

5.11 shows the performance comparison with FUDAN corpus and character co-occurrence

similarities referred to People’s daily news and SougouCA news. In these two groups of

experiments, the macro recall and F1 score are improved obviously. By setting the distance

to 2, 3, 4, 5, and 6, with top 1 or 2 key characters, the precision is also be improved.
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Figure 5.10: Comparison on FUDAN corpus with character co-occurrence similarity based
on SougouCA news.

The Results for Classifying Sougou Corpus

To evaluate the proposed method with Sougou Corpus, three groups of experiments are

conducted, which are listed as follows:
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Figure 5.11: Comparison on FUDAN corpus with character co-occurrence similarity based
on People’s daily news and SougouCA news.

(1) Sougou classification corpus + People’s daily news

(2) Sougou classification corpus + SougouCA news

(3) Sougou classification corpus + People’s daily news + SougouCA news

In Sougou corpus, each text has its class label. The People’s daily news and SougouCA

news are the additional corpora, which are used for building the background knowledge of

character co-occurrence. Each group of experiments is conducted in 5-fold cross validation

with the different distances between characters from 1 to 6, and using several different

distances together. Therefore, around 1,100 (5× (6 + 5)× 21) experiments are conducted

in each group of experiments. When using the traditional method, the results are around

0.893 macro precision, 0.892 macro Recall, 0.892 macro F1 score. Each group of results is

calculated by cross validation.cross val score() function which is provided by scikit-learn

library, with the parameter setting, scoring = ‘precision macro’ or ‘recall macro’, and cv

= 5.

Figure 5.12 compares the results with Sougou classification corpus and character co-

occurrence similarities based on People’s daily news. In this group of experiments, the

macro precision, recall, F1 score are improved when the distance between characters is set

to 3.

Figure 5.13 compares the results with Sougou corpus and SougouCA news. Figure5.14

compares the results with Sougou corpus, People’s daily news and SougouCA news. The
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Figure 5.12: Comparison on Sougou classification corpus with character co-occurrence
similarity based on People’s daily news.

performance could not be improved by any parameter setting.
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Figure 5.13: Comparison on Sougou classification corpus with character co-occurrence
similarity based on SougouCA news.

5.2.4 Discussion

In the experiments, the proposed method obtained promising experimental results with

two classification corpora and two external corpora which used as background knowledge.

The results indicate that the background knowledge from additional corpora bring the

positive impact to the performance. Specially, the proposed method obtained the better

performance with the imbalanced corpus, such as Fudan corpus. This indicates that this

method can complement the information for the training and test texts when the corpus
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Figure 5.14: Comparison on Sougou classification corpus with character co-occurrence
similarity based on People’s daily news and SougouCA news.

is imbalanced.

According to the results, using less key characters can improve the performance. The

improvement can benefit from a little similarities features based on the background knowl-

edge. This indicates that these similarities are the efficient features for representing texts.

The difference of this method from the method based on Baidu Baike is that we do not

select the most related characters from the top 20 character further. Because, most words

consist of two or more characters in Chinese language commonly. According to the results,

when setting the distance larger than 1, the performance can improve. This indicates that

words can provide important information. With Sougou corpus, a balanced corpus, the

proposed method do not perform well.

Comparing the different background knowledge, using the People’s daily news obtained

better results with these two classification corpus in the experiments. This indicates that

the different background knowledge can impact the results.

5.3 Summary

In this chapter, we evaluated the performance of the proposed methods with many groups

of experiments.

The proposed method based on Baidu Baike was evaluated with Fudan text classi-

fication corpus. The top 3 keywords of 20 categories were selected by using CTF-ICF
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algorithm. Totally, 79 articles were downloaded from Baidu Baike using the category

names and the keywords. The proposed method added the 79 similarities between the

texts and the articles from Baidu Baike to the feature vectors of the texts. Only bene-

fiting from adding the 79 similarities, the experimental results showed that the proposed

method outperforms over the traditional methods with Linear SVM classifier. The macro

precision, recall and F1 score were improved with 0.02%, 0.15%, 0.12%, comparing to

the traditional method. The proposed method obviously improved the recall for some

categories with small size and the macro F1 score. This indicated that the background

knowledge can complement the common information between the training and test texts.

The proposed method based on Baidu Baike can be regarded as an alternative method for

text classification task.

The proposed method based on the characters co-occurrence was evaluated with Fudan

corpus and Sougou corpus. The top 20 key characters of 9 categories were selected for each

category. After removing the repetitive characters, totally there were 142 key characters

in Fudan corpus and 99 key characters in Sougou corpus. The proposed method added the

similarities of character co-occurrence between the texts and the background knowledge

to the feature vectors of the texts. By analyzing the experimental results, we could

make the following conclusion. First, the effectiveness of Chinese text classification could

benefit by characters co-occurrence with the background knowledge. Second, the different

background knowledge could impact the results. Third, the characters co-occurrence of

the different distances between characters could impact the results. When setting the

distance larger than 1, it can improve the results. Fourth, the top N key characters played

important roles in the proposed method.



Chapter 6

Contribution and

Recommendation

6.1 Summary of Text Classification

In this thesis, our work focuses on Chinese text classification task. The background knowl-

edge is used to enrich text representation.

According to the previous researches, the essential problem of text classification is

the lack of information, especially for the imbalanced dataset. To solve this problem, we

explore the background knowledge to predict class labels for the texts.

The motivation for exploiting background knowledge in text classification is attributed

to two reasons. First, more information can make more reasonable classification. Second,

people have the basic concepts and general knowledge in their mind, however, the tradi-

tional corpora/datasets are some kinds of special case which lack this information. The

basic concepts and general knowledge is the background knowledge in our daily life.

Text representation is the fundamental step in text classification task, in which a

text could be represented by a set of features. The features play the important roles for

training classifiers and predicting class labels. Most of the previous studies focused on

enriching text representation to address text classification task. However, the traditional

classification methods with VSM (Vector Space Model) only studied intensively on the

words and their relationship in some specific corpus/dataset.

In this thesis, we proposed the idea of using background knowledge, which could com-

75
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plement the information for the texts and improve the classifiers. This study is based on

Baidu Baike and character co-occurrence. Baidu Baike is an online Chinese encyclopedia

which is similar to Wikipedia and widely used by Chinese speakers to learn the basic

concepts and general knowledge. The specific articles were downloaded from Baidu Baike,

which were ragarded as the background knowledge. The similarities between the texts

and the background knowledge were added to the text features for complementing the in-

formation. And then, the SVM classifier was used to train model and predict class labels

with the enriched text representation. Two additional corpora, People’s Daily news and

Sougou news, were used for extracting the information of character co-occurrence. From

the additional corpora, the character co-occurrence is computed for some key characters,

which was used as the background knowledge. These key characters were the most related

to their categories. For each text, we also computed the character co-occurrence for it-

self. The similarities of the character co-occurrence between the texts and the background

knowledge were added to the text features for complementing the information. And then,

the SVM classifier was used to train model and predict class labels with the enriched text

representation.

To decide which articles were download from Baidu Baike, we proposed the CTF-ICF

algorithm to select the keywords which are the most related to their categories. This

method weights the features/words based on their distribution in the categories. It is

similar to TF-IDF algorithm, but the CTF-ICF algorithm works on the category level to

represent the categories, while TF-IDF algorithm works on the text level to represent the

texts.

The method based on Baidu Baike was evaluated on FUDAN corpus, which includes

including 19637 texts within 20 categories. And FUDAN corpus is an imbalanced corpus,

in which the different categories have the different numbers of texts. At the beginning,

each text was represented by the vector of TF-IDF values. For each text, The dimension of

the feature vector was around 350,000 features. Then, the top 3 keywords of 20 categories

are selected by using CTF-ICF algorithm, and their articles were downloaded from Baidu

Baike. With the category names, 20 articles are downloaded from Baidu Baike. Totally,

79 articles are used as the background knowledge, because one keywords do not have

its article in Baidu Baike. The 79 similarities between the texts and the articles from
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Baidu Baike were added to the text features. Only Benefiting from the 79 similarities,

the experimental results show that the proposed method outperforms over the traditional

methods, and obviously improves the recall F1 score for some small categories. This

indicated that the background knowledge can complement the common information for

the training and test texts. Therefore, the proposed method based on Baidu Baike can

be regarded as an alternative method for the text classification task. we also investigated

the performance with the different proportion of training and test texts.

The method based on character co-occurrence was evaluated on FUDAN corpus and

Sougou corpus. Sougou corpus is a balanced corpus, including 17910 within 9 categories,

in which the categories have the same number of texts. At the beginning, each text was

represented by the vector of TF-IDF values. Then, the top 20 key characters of 9 cate-

gories are selected by combining the texts in each category and weighting the characters

with TF-IDF algorithm. After removing the repetitive characters, totally there are 142

characters in Fudan corpus and 99 in Sougou corpus. The proposed method added the

similarities of character co-occurrence between the texts and the background knowledge

to text features. The results showed that the proposed method improved the perfor-

mance with the imbalance corpus. This indicated that the method based on character

co-occurrence can complement the information between the training and test texts.

With these two proposed methods, we investigated the impact of the background

knowledge on text classification. The experiments conducted with two classification cor-

pus, the online encyclopedia, and two additional corpus. The CTF-ICF algorithm was

proposed to select the keywords. And the key characters were selected by combining the

texts in each categories and using TF-IDF algorithm. According the results, the proposed

methods could improve the effectiveness for text classification with the imbalanced corpus.

6.2 Future Directions

We complete this thesis with some discussions about the future directions for text classi-

fication and other ideas.

First, the features are the core for text classification with machine learning algorithm

to complete the task. In the past, the different kinds of features are the handcraft features.
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Recently, the deep learning method becomes popular, because it can learn the features for

the examples. The good features can covert the linearly inseparable problem to the linearly

separable problem. Therefore, in the future work, we will focus on learning the features in

text classification task with the deep learning method. With the learned features, many

the machine learning methods can be used to finish the task. In a specific task, the key

point is that how to preprocess data for the deep learning method. And building the deep

network and modifying hyper-parameter for learning good features are also the key points

in practice.

Second, we will focus on selecting features and weighting features for the handcraft

features. Selecting features means filtering out the features which are less related to the

examples. Weighting features means assigning the high weight to the features which are

more related to the example. In deed, they are the same problem. If weighting a feature

with 0, weighting features is the same as selecting features. By weighting the features, it

can filter out the noise, reduce the dimension of features and improve the performance.

Third, we will explore the new methods about use the external/universal information

to enrich the text representation.

To summarize, the first direction tries to find the good features; the second direction

tries to make the features better; the third direction tries to complement the features.

Additionally, the research findings and the papers are the direction, instruction and

solution for the business, industry, medicine, etc. Therefore, we will also pay attention

to the problems/requirements from our daily life, which can be resolved with information

and intelligent technologies, such as the machine learning methods.
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[41] D. Torunoğlu, G. Telseren, Ö. Sağtürk, and M. C. Ganiz. Wikipedia based seman-
tic smoothing for twitter sentiment classification. In Innovations in Intelligent Sys-
tems and Applications (INISTA), 2013 IEEE International Symposium on, pages 1–5.
IEEE, 2013.

[42] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of



BIBLIOGRAPHY 82

the North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 173–180. Association for Computational
Linguistics, 2003.

[43] K. Toutanova and C. D. Manning. Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT confer-
ence on Empirical methods in natural language processing and very large corpora: held
in conjunction with the 38th Annual Meeting of the Association for Computational
Linguistics-Volume 13, pages 63–70. Association for Computational Linguistics, 2000.

[44] B. Trstenjak, S. Mikac, and D. Donko. Knn with tf-idf based framework for text
categorization. Procedia Engineering, 69:1356–1364, 2014.

[45] C. Tsai and C. Chang. Svois: Support vector oriented instance selection for text
classification. Information Systems, 38:1070–1083, Nov. 2013.

[46] C. Tsai, Z. Chen, and S. Ke. Evolutionary instance selection for text classification.
Journal of Systems and Software, 90:104–113, April 2014.

[47] A. K. Uysal and S. Gunal. Text classification using genetic algorithm oriented latent
semantic features. Expert Systems with Applications, 41:5938–5947, Oct. 2014.

[48] C. Wang, M. Zhang, S. Ma, and L. Ru. Automatic online news issue construction in
web environment. In Proceedings of the 17th international conference on World Wide
Web, pages 457–466. ACM, 2008.

[49] D. Wang, J. Wu, H. Zhang, K. Xu, and M. Lin. Towards enhancing centroid classifier
for text classification—a border-instance approach. Neurocomputing, 101:299–308,
Feb. 2013.

[50] P. Wang, J. Hu, H. Zeng, and Z. Chen. Using wikipedia knowledge to improve text
classification. Knowledge and Information Systems, 19(3):265–281, 2009.

[51] S. Wang, D. Li, L. Zhao, and J. Zhang. Sample cutting method for imbalanced text
sentiment classification based on brc. Knowledge-Based Systems, 37:451–461, Jan.
2013.

[52] R. Xia, C. Zong, and S. Li. Ensemble of feature sets and classification algorithms for
sentiment classification. Information Sciences, 181(6):1138–1152, 2011.

[53] B. Zhang, A. Marin, B. Hutchinson, and M. Ostendorf. Learning phrase patterns for
text classification. Audio, Speech, and Language Processing, IEEE Transactions on,
21(6):1180–1189, June 2013.

[54] H. Zhang and G. Zhong. Improving short text classification by learning vector rep-
resentations of both words and hidden topics. Knowledge-Based Systems, 102:76–86,
2016.

[55] L. Zhang, L. Jiang, C. Li, and G. Kong. Two feature weighting approaches for naive
bayes text classifiers. Knowledge-Based Systems, 100:137–144, 2016.


	Introduction
	Text Classification and Background Knowledge
	Text Classification
	Background Knowledge

	Overview of Methods and Contributions
	Acquiring Background Knowledge
	Training Classification Model
	Other Machine Learning Methods

	Thesis Organization

	Background
	Methodologies of Text Classification
	Framework of Text Classification
	Overview of Text Classification

	Extracting Features for Text
	Words
	Structure
	Part-of-Speech
	N-gram
	Syntactic and Semantic
	Phrase Pattern
	Feature Transformation
	Learning Features

	Machine Learning Methods for Text Classification
	Bayesian models
	Regression-Based Classifiers
	Support Vector Machines (SVMs)
	Centroid
	k-Nearest Neighbor (KNN)
	Clustering
	Active Learning
	Classifier Combination


	Related Work
	Extracting Background Knowledge for Text Classification
	Traditional Method for Text Classification
	Background Knowledge from Baidu Baike
	Overview: Using Baidu Baike
	Enriching text representation with Baidu Baike

	Background Knowledge From Character Co-occurrence
	Overview: Using Character Co-occurrence
	Enriching text representation with Character Co-occurrence

	Evaluation
	Tools

	Evaluation
	Classifying texts with Baidu Baike
	Dataset
	Baseline
	Experiment Setting
	Experimental Results
	Discussion

	Classifying texts with Character Co-occurrence
	Dataset
	Experiment Setting
	Experimental Results
	Discussion

	Summary

	Contribution and Recommendation
	Summary of Text Classification
	Future Directions


