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1. Introduction 
Environmental problems such as water pollution and atmospheric pollution constitute a serious 

threat to human health today, both locally and globally. The total volume of water on the Earth is 

about 1.35 billion km3, 97% of which is seawater. Freshwater is about 2.5% of the total, and 70% of 

that is found as ice in the Antarctic and the Arctic. Drinking water is only 0.01% (0.1 million km3) of 

the total [1.1]. On the other hand, approximately 70% of the human body is formed by moisture, 

which is supplied from drinking water and water contained in the food. Therefore, because the water 

pollution can affect the food, the water pollution also has a direct effect on the human body.  

Naturally, plankton acts as a self-cleaning mechanism on seawater as well as freshwater, by 

consuming and decomposing pollutants. However, this self-cleaning mechanism does not work 

properly when the pollutants’ concentration is too high. Furthermore, some chemical contaminants 

cannot be decomposed in the same manner. Red tide, blue tide, coral bleaching, and desertification 

are caused by water pollution. At present, because of the improvement of the living standards and the 

population growth (Fig. 1-1), domestic wastewater is also a major cause of water pollution. 

 

 

Fig. 1-1. Global population transition [1.2]. 

 

Above all, the largest volume of domestic wastewater comes from kitchen drainage. All leftovers 

and rice-washing water lead to water pollution. In addition, synthetic detergents used for dishwashing 

also cause water pollution. On the other hand, industrial wastewater discharged from factories and 

offices is also one of the causes of water pollution. In high economic growth periods, pollution is 

caused by harmful substances contained in industrial wastewater. Thereafter, the pollution is reduced 

by imposing regulations and improved maintenance of the sewers. However, at present, in areas 

where sewers are not popular, industrial wastewater is flowed to the river and the sea without 

treatment. Moreover, not only domestic and industrial wastewater but also illegal dumping may 

contribute to water pollution. When the soil is contaminated by hazardous substances (dioxins PCB, 

lead, and arsenic), they leach into the groundwater. By drinking the groundwater, these toxic 

substances affect the human body. Furthermore, the seawater pollution affects the reproduction, 
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growth, and mortality of marine organisms, therefore, indirectly, leading to food shortage in the future.  

In order to solve the water pollution issue, measures, such as preparing legislation adopted against 

industrial wastewater, and water treatment technologies have been also studied around the world. As 

one of water treatment technologies, advanced oxidation processes (AOPs) and biological treatment 

with anaerobic and aerobic microorganisms improved sewage system. However, some problems 

remain, such as collecting activated carbon used in final process of AOPs and the burden on the 

microorganisms used in biological treatment. In order to generate ozone and treat wastewater more 

efficiently, water-treatment methods using electric discharges have been studied. In these treatments, 

streamer discharges can produce chemical active species such as ozone, hydroxyl radical (OH radical), 

hydroperoxyl radical (HO2), and superoxide anion radical (O�
�). The respective oxidation-reduction 

potential (ORP) values are shown in Table 1-1 [1.3]. As shown in Table 1-1, ozone and the OH radical 

have ORP values of 2.075 and 2.38 eV, respectively. In addition to the stronger ORP of the OH radical 

than ozone, the OH radical is able to react with organic compounds unselectively, whereas ozone 

reacts with organic compounds selectively. Furthermore, because treatment using the OH radical is 

faster, the OH radical has attracted attention. Moreover, physical phenomena such as UV and ion 

wind [1.4] generated by electric discharges can produce not only more ozone but also more OH 

radical, so that it is suggested that chemical reactions in gas and/or water for decomposition of organic 

compounds including persistent substances are promoted by electric discharges. 

 

Table 1-1. Oxidation-reduction potential of chemically active species [1.3]. 

 

 

Atmosphere pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are released by 

liquefied natural gas, coal, and oil burning factories, power stations, diesel engines, and plants. These 

pollutants cause urban smog, acid rain, and so on. NOx removal technologies such as selective 

catalytic reduction, electron beam flue gas treatment technology, and dielectric barrier discharges 

(DBDs) have been studied. However, the gas treatment system requires large processors and has a 

high cost. Therefore, a compact NOx treatment system is needed at low cost. Moreover, oil and acid 

rain can also cause water pollution. 

In order to solve the water pollution problem, the nanosecond pulsed power system has been 

Material Symbols for element Potential (eV)

Fluorine F2 2.870

Hydroxyl radical OH 2.380

Ozone O3 2.075

Hydrogen peroxide H2O2 1.763

Chlorine Cl2 1.396

Oxygen O2 1.229
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studied. When the nanosecond pulsed power system is used, the pulse width is very short with several 

nanoseconds, so that it can control the progress to arc discharges. By using the nanosecond pulsed 

power system, streamer discharges are stably generated. Moreover, the nanosecond pulsed power 

system has high electric power, high energy density, and very short rise time. These characteristics of 

the system are utilized for many application fields. For example, not only instantaneous high voltage, 

strong electric fields, and large currents but also electric discharges and plasma generated by 

nanosecond pulsed power system have been used for water treatment. 

High ozone concentration can increase OH radical production [1.5]. Ozone can be produced 

efficiently using the nanosecond pulsed power system. Moreover, in order to investigate the structure 

of the coaxial reactor, this system has also been used for the treatment of nitrogen oxides (NOx). 
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2. Target Materials 
The details of target materials such as indigo carmine, surfactant, ozone, and NOx are presented 

in this chapter. 

 

2.1. Indigo Carmine [2.1] 
Indigo carmine (C16H8N2Na2O8S2) is a dark blue, odorless, and neutral powder, which is dissolved 

easily by light, heat, nitric acid, bromine water, or chlorine water. Figs. 2-1(a) and 2-1(b) show the 

structural formula of indigo carmine (trans isomer) and decomposed indigo carmine (leuco indigo) 

[2.2]. Indigo carmine is a synthetic coloring agent, which gives a blue color tinged with purple, and 

it is classified under edible tar dyes. Indigo carmine is also found as a food additive, specified as blue 

no. 2 in the food hygiene law in Japan. After carbon-carbon double bond (C=C) of H-type 

chromophore was decomposed first of all as shown in Fig. 2-1(b) when indigo carmine was 

decomposed, C-C was formed. After that, carbon-carbon double bond (C-C) was decomposed, so that 

benzene rings could be opened.  

 

 
(a) Indigo carmine 

 

 
(b) Leuco indigo 

Fig. 2-1. Structural formula of indigo carmine and decomposed indigo carmine (leuco indigo). 
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2.2. Surfactants [2.3, 2.4] 
Surfactants are organic compounds that lower the surface tension (or interfacial tension) between 

a liquid and a solid or between two liquids. Fig. 2-2 presents the image of foam which is a 

characteristic of surfactants. As organic compounds, surfactants have been widely used not only for 

washing with foam as shown in Fig. 2-2, but also as emulsifiers in food manufacturing, for ice cream, 

mayonnaise, and so on. There are three kinds: natural surfactants such as lecithin or soybean saponin, 

soap, and synthetic surfactants. Moreover, ionic (anionic and cationic) surfactants are ionized in water, 

and nonionic surfactants are not ionized in water. Anionic surfactants whose hydrophilic group is 

ionized to an anion in water are often used as synthetic detergents, whereas cationic surfactants whose 

hydrophilic group is ionized to a cation in water are often used as softening finish agents, conditioner 

agents, and disinfectants. Nonionic surfactants whose hydrophilic group is not ionized in water are 

often used with all other surfactants. The ester type of nonionic surfactants, in particular, is used 

widely as an emulsifier for food-based cosmetics. Moreover, the ether type of nonionic surfactants is 

used as a washing agent. Fig. 2-3 shows the relationship between the surfactant concentration, 

micellar formation, and molecular structure of surfactant. Note that each position A, B, and C which 

indicates the surfactant concentration shown in Fig. 2-3(a) corresponds to a position shown in Fig. 2-

3(b). As seen in Fig. 2-3(c), surfactant molecular has a hydrophobic group and a hydrophilic group. 

When the lower critical micelle concentration (CMC) of the surfactant aqueous solution appears in 

the positions A and B of Figs. 2-3(a) and 2-3(b), surfactant molecules are concentrated on the water 

surface, so that surface tension of water decreased. When the surfactant concentration is higher than 

CMC in the position C of Figs. 2-3(a) and 2-3(b), micelles which are composed of a hydrophilic outer 

layer and a hydrophobic inner layer are generated in the water. When surfactant concentration was 

higher than CMC, because surfactant molecules on water surface was not able to increase, surface 

tension was not decrease.  

 

 

Fig. 2-2. Image of foam on surfactant solution. 
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(a) Relationship between surfactant concentration and surface tension 

 

 
(b) Schematic diagram surfactant’s molecular structure 

 

 
(c) Schematic representation of the micellar formation [2.5] 

Fig. 2-3. Relationship between the surfactant concentration and micellar formation. 

 

Because the micelle is formed with hydrophilic groups facing outward, it is considered that a 

hydrophilic group is decomposed firstly in surfactant treatment. Active species, whose oxidation-

reduction potential was higher, such as OH radical could decompose a hydrophilic group of surfactant 

faster. Then, because surfactant concentration decreased, surface tension increase, so that foaming 

power of surfactant also became frailer.   
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2.3. Ozone and NOx [2.6–2.8] 
Ozone is an inorganic molecule with the chemical formula shown in Fig. 2-4. Ozone is formed 

from oxygen molecule (O2) by the action of UV rays and atmospheric electric-discharges, and it is 

present in low concentration throughout the Earth’s atmosphere (stratosphere). In total, the ozone 

makes up only 0.6 ppm of the Earth’s atmosphere. Ozone is a powerful oxidant (far more so than 

oxygen molecule (O2)) and has many industrial and consumer applications related to oxidation. 

Moreover, ozone has characteristics of deodorization, decoloration, environmental improvement, and 

sterilization. As a deodorant component, ozone is used in raw sewage processing; bathroom, hospital, 

and old man facilities deodorants; stock raising; fisheries; and food processing. Deodorization with 

ozone is performed by the oxidative decomposition of the unwanted ingredient and neutralization of 

the ozone odor ingredient. Sterilization with ozone depends on the decomposition of the bacterial cell 

wall. Moreover, ozone does not produce toxic by-products.  

Ozone is produced by electric discharges, as shown in Eqs. 2-1 and 2-2. Eq. 2-1 indicates that 

electrons released from electric discharges collide with stable oxygen molecules, so that oxygen 

atoms are formed. Moreover, in Eq. 2-2, ozone is generated by three collisions. 

 

 
Fig. 2-4. Structural formula of ozone. 

 

 O� + e → 2O + e (2-1) 

 

 O + O� +M → O	 +M (2-2) 

 

NOx is a generic term for nitric oxide (NO) and nitrogen dioxide (NO2). They are produced from 

the reaction of hydrocarbons during combustion, oxygen (O2), and nitrogen (N2), especially at high 

temperatures. The small particles of NOx are able to penetrate deeply into sensitive lung tissue, 

causing premature death in extreme cases. Inhalation of such small particles may cause or worsen 

respiratory diseases, such as emphysema or bronchitis, or it may aggravate an existing heart disease. 
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3. Nanosecond Pulsed Power System and Measurement Methods 
A schematic diagram of the nanosecond pulsed power generator used in this study is shown in 

Fig. 3-1 [3.1-3.3]. The nanosecond high-voltage pulsed power generator consists of a Tesla 

transformer (Fig. 3-2), a short pulse-forming line, a highly pressurized gas gap switch, and a 

transmission line (Fig. 3-3). As shown in Fig. 3-2, the Tesla transformer consists of capacitor C1 for 

initial energy storage and air-core coils with a coupling factor of approximately 0.6, which is adjusted 

to obtain the maximum transfer efficiency. The triggered spark gap switch of the Tesla transformer is 

controlled by Arduino Uno (Fig. 3-4). The pulse-forming line acts as capacitor C2, which is also a 

component of the Tesla transformer. The highly pressurized gas gap switch with a short gap separation 

(0.43 MPa and 1.0 mm) is used in order to achieve extremely fast rise time of the output pulsed high 

voltage. Nanosecond high-voltage pulses are transmitted to load through the transmission line. The 

voltage and current waveforms in the nanosecond pulsed power system are shown in Fig. 3-5. 

 

 
(C1 = 25 nF, C2 = 0.067 nF, L1 = 0.35 µH, L2 = 144.9 µH, R1 = 0.56 Ω, R2 = 0.29 Ω) 

Fig. 3-1. Schematic diagram of the nanosecond pulsed power generator. 

 

 

Fig. 3-2. Schematic diagram of the Tesla transformer in the pulsed power generator. 
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Fig. 3-3. Schematic diagram of the transmission line. 

 

 
Fig. 3-4. Schematic diagram of Arduino Uno. 

 

Fig. 3-6 shows the typical waveform of the output voltage at 86 Ω resistive load, when the initial 

charging voltage of C1 is 3.0 kV [3.4]. The voltage and the current waveform were measured using a 

digital oscilloscope (Tektronix, DPO4104, 1 GHz) with a resistive voltage divider (1000:1) and a 

current viewing resister, as shown in Figs. 3-7 and 3-8. The full width at half maximum (FWHM) of 

the pulse and the peak voltage were 1.5 ns and approximately 38 kV, respectively. The current 

waveform was measured using a current viewing resister. Fig. 3-9 shows the interface used for 

experiments with pulse application. The pulse frequency (pps), pulse application time (s), charging 

duration of C1, and so on were able to be changed by using the interface as shown in Fig. 3-9. 
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         (a) End-to-end of C1 voltage                       (b) C1 Current 

 

  
    (c) Voltage at the end of the forming line      (d) Voltage at the end of the transmission line 

Fig. 3-5. Typical waveforms of the voltage and the current in the pulsed power generator. 

 

 
Fig. 3-6. Typical waveform of the output voltage at 86 Ω resistive load. 
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Fig. 3-7. Resistive voltage divider (1000:1): RH = 1000 Ω, RO = 50 Ω, RI = 8 Ω. 

 

 
Fig. 3-8. Current viewing resistor: RO = 50 Ω, RL = 0.75 Ω. 

 

     
        (a) During pulse application                   (b) After pulse application 

Fig. 3-9. Interface for controlling pulse application. 
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The pulsed power is the pulse electric power consisting of very high voltage and a large current 

in very short domain from nanosecond to microsecond. Fig. 3-10 shows the temporal-compression 

state of the electric power [3.5]. The areas indicating electric energy in Fig. 3-11 are equal. The pulsed 

power could cause both short time and high voltage. There is an inverse relationship between the 

pulse rise time and the electric power, as shown in Fig. 3-11; the electric power increases with 

decreasing pulse rise time. Although the energy of every pulse was short, high electric power could 

have applied many times. 

 

 
Fig. 3-10. State of the electric power time compression. 

 

 

Fig. 3-11. Relationship between the pulse rise time and the electric power. 
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ionization was caused through collision to the gas molecules. Then, the electrons moved because of 

the electric field, so that further ionization was caused. Because the number of electrons by the 

electronic collision ionization suddenly increased exponentially, an electron avalanche occurred. 

When the electron avalanche progressed, the first electronic avalanche progressed from the cathode 

to the anode with the speed of 2 × 107 cm/s. However, the cation produced by the collision ionization 

had a speed of 2 × 105 cm/s, which was lower than that of the electron, because the cation was heavier. 

Therefore, electrons accumulated on the tip of the electron avalanche, whereas the cations remained 

behind the electrons (Fig. 3-12(1)). When the electron avalanche arrived at the anode, an electron was 

absorbed by the anode, and the cation was left behind in the conic volume as space charge. The cation 

formed a strong electric field and strengthened the electric field with the cathode interval. As the 

electron avalanche progressed, an ionized photoelectron was generated by the electron avalanche 

because of the UV rays. A secondary electron avalanche was caused by the photoelectric movement 

(Fig. 3-12(2)). The electron avalanche formed plasma pillars (streamers) with both ions and electrons 

(Fig. 3-12(3)). When a streamer progressed from the anode to the cathode and arrived at the cathode, 

a large discharge current flowed as a conductive pillar of the streamer, causing electrical breakdown 

(Fig. 3-12(4)). 

 

 
Fig. 3-12. Schematic diagram of progressing streamer discharges. 

 

  

Anode

Cathode

E
le

ct
ri

c 
F

ie
ld

+
+

++

+

+
++
+++

+
+
+
+
+

-- ----- -

++
++

+
+
+

++
++

+ ++
+ + ++
++ ++
++ +++++++
+ + +++

+
+

++ + +
+

+++++ +++ + ++++
+
+
+

+ + + ++
+
+ ++

+
+
+
+
++

+

++
+
+
++

++

+

+
+

++

+

+
++
+++

+
+
+
+
+

-- ----- -

+
+
++

+
+
+
+

++++
+

+
++

-- ----- -

+
+

++

+

+
++
++ +

+
+
+
++

-- ----- -

+
+ ++

+

+
++

+
++
+

+
+ ++

--
-- --- -

+
++
++++++++++

+++
+++

++ +++
+++ +++++ + ++

++
+

++
++ ++++ +

+
++

+
+
+
+

++++
+

+
++

-- ----- -

+
+

++

+

+
++
+++

+
+
+
++

-- ----- -

+
+ ++

+

+
++

+
++
+

+
+

++

--
-- --- -

+
+

++

+

+
++
++ +

+
+
+
++

-- -- --- -

E
le

ct
ro

n 
A

va
la

n
ch

e
S

tre
a

m
e

r D
isch

a
rg

e
s

(1) (2) (3) (4)

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+

-
+ -

+ - -+
++ - -

+
+ -

- +
++ - -



16 
 

References-3 
[3.1] M. Morimoto, K. Shimizu, K. Teranishi, and N. Shimomura, “Indigo Carmine Solution 

Treatment by Nanosecond Pulsed Power with a Dielectric Barrier Electrode,” IEEE 

Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 4, pp. 1872-1878, August, 

2015. 

[3.2] M. Morimoto, T. Ninomiya, T. Ikemoto, K. Teranishi, and N. Shimomura, “Ozone Production 

by Streamer Discharges Using Nanosecond Pulsed Powers and Coaxial Reactor with 

Tensioned Inner Electrode,” IEEE Transactions on Plasma Science, vol. 44, no. 10, pp. 2190-

2195, October, 2016. 

[3.3] M. Morimoto, R. Arai, K. Omatsu, K. Teranishi, and N. Shimomura, “Introduction of 

Tensioned Inner Wire Electrode for NOx Treatment with Nanosecond Pulsed Power System,” 

IEEE Transactions on Plasma Science, vol. 44, no. 11, pp. 2874-2879, November, 2016. 

[3.4] M. Morimoto, K. Shimizu, K. Teranishi, and N. Shimomura, “Surfactant Treatment Using 

Nanosecond Pulsed Powers and Action of Electric Discharges on Solution Liquid,” IEEE 

Transactions on Plasma Science, vol. 44, no. 10, pp. 2167-2172, October, 2016. 

[3.5] H. Akiyama, “High Voltage Pulsed Power Engineering,” IEEJ Ohmsha, p. 1, 2003. 

[3.6] T. Takeda, “Bases of Gas Discharges,” Tokyo Denki University Press, pp. 75-76, 1990. (in 

Japanese) 

 

  



17 
 

4. Water Treatment with Nanosecond Pulsed Power System 
4.1. Introduction to the Water Treatment and Device [4.1, 4.2] 

The pulsed power system is one of the water treatment methods using electric discharges. By 

using the nanosecond pulsed power system, high ozone-production efficiency was achieved. The 

ozone-production efficiency in commercial devices with dielectric barrier discharges (DBDs) is 

approximately 80 g/kWh [4.3], whereas that using the pulsed power system is over 120 g/kWh [4.4–

4.6]. Moreover, the effects of the OH radical which has stronger ORP than ozone were also 

investigated. For ozone production experiment, a horizontal coaxial reactor was used, while a vertical 

reactor was used for water treatment experiment because it was easy to flow water thinly and control 

the water flow. For practical application of water treatment in the future, a horizontal reactor should 

be also used. 

First, using a water treatment system using nanosecond pulsed power developed with a dielectric 

barrier between the electrodes [4.7–4.9], water treatment was evaluated by decoloration of an indigo 

carmine (H-type coloring system) solution. Such as a food additive and as a dye for industrial products, 

indigo carmine is used widely. A change in the color of an indigo carmine solution indicates a change 

in its chemical structure. Treatment systems with and without a dielectric barrier were compared. 

Moreover, the effect of the working gas (i.e., N2 or O2) on the electric discharge was investigated. 

In addition, either purified water or tap water was used as solvents of surfactant aqueous solution 

containing persistent substance. Thus, the influence of the difference of both the pH and the electric 

conductivity of water on the generation of the OH radical was considered. Water treatment with an 

external ozonizer, instead of the nanosecond pulsed power system, was investigated in order to 

understand the effect of electric discharges. In organic compounds, surfactants have been widely used 

for synthetic detergents at home and for detergents, emulsifiers, and dispersants in industries. The 

surfactants have been widely used not only for washing, but also as emulsifiers in food manufacturing 

for mayonnaise, ice cream, and so on. There are three kinds of surfactants: natural surfactants, soap, 

and synthetic surfactants. In particular, because synthetic surfactants are hardly decomposed by 

microbes, the synthetic surfactants lead to pollution. Moreover, the available practical methods for 

surfactant treatment are few because synthetic surfactants are exhausted from home and factory with 

low concentration and large quantities. 

Figs. 4-1(a) and 4-1(b) show a schematic diagram of the first water treatment device and the cross-

sectional view of the device electrode. The voltage and current waveforms of this device are shown 

in Figs. 4-1(c) and 4-1(d). The inner electrode was stainless steel wire with 1 mm diameter, and the 

outer electrode was a stainless steel pipe whose length and inner diameter were 250 and 26 mm, 

respectively. This device is called the SS device. 
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       (a) Water treatment device            (b) Sectional views of the device electrode 

 

   
(c) Voltage waveform                        (d) Current waveform 

Fig. 4-1. Water treatment device with a stainless steel pipe (SS device). 

 

A water treatment device with a shorter separation of its electrodes was developed to produce 

dense plasma in the reactor. A glass pipe was adopted as a dielectric barrier to prevent spark 

discharges across the short electrode separation distance. Figs. 4-2(a) and 4-2(b) show a schematic 

diagram of the water treatment device using a glass pipe as the outer electrode and the cross-sectional 

view of the device electrode. The voltage and current waveforms of this device are shown in Figs. 4-
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2(c) and 4-2(d). The inner electrode was a stainless steel wire with 1 mm diameter. The outer electrode 

was a glass pipe outer-wound with copper tape, and the length, inner diameter, and thickness of the 

glass pipe were 250, 10, and 1 mm, respectively. This device is called the SG device. 

 

    
         (a) Water treatment device        (b) Sectional views of the device electrode 

 

   
(c) Voltage waveform                          (d) Current waveform 

Fig. 4-2. Water treatment device with a glass pipe (SG device). 
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The discharge plasma reactors of both devices consisted of vertical coaxial electrodes. The voltage 

pulse was applied on the inner wire electrode of the devices. The electric discharges occurred in the 

gas phase. Then, active species produced by electric discharges or UV irradiation could be pushed 

into the target aqueous solution by the ionic wind of the electric discharges and the impact of the 

streamer heads. The target solutions flowed on the inner surface of the outer pipe electrode, as shown 

schematically in Figs. 4-1(b) and 4-2(b). As shown in Figs. 4-1(c), 4-1(d), 4-2(c), and 4-2(d), the 

voltage and current waveforms of the SG device were similar to those of the SS device. When the 

solution was not being circulated in the reactors, the spark discharge occurred more frequently. The 

voltage and current waveforms changed when the spark discharge occurred, and the solution layer in 

the reactor prevented frequent spark discharges. 

The target solution was placed in a water reservoir located under both electrodes and circulated 

in the system with a water pump. The flow rates of the water pump were 1.9 (SS) and 0.7 (SG) L/min. 

The ratio between the surface areas of the SS and the SG devices was 2.6. The gas surrounding the 

discharge (the working gas) was flowed through the reactor. During water treatment, the flow rate of 

the working gas was 1.5 (SS) and 0.1 (SG) L/min (selected based on preliminary experiments). The 

volume of the SS and SG devices were 133 and 20 cm3, respectively. The ratio between the flow rates 

of the SS and the SG devices was 2.7. The ratio of the surface areas corresponded to that of the 

circumference of the pipes because both reactors of SS and SG devices had the same length. Because 

the falling velocity of water in the reactors should be the same, the thickness of the water layer in the 

reactors should also be the same when the ratio of water flow by the water pumps equaled the ratio 

of the surface areas. 
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4.2. Comparison of Indigo Carmine Treatments for Reactor Configuration [4.1] 
An indigo carmine solution was chosen for treatment with these devices. The concentration (mol 

concentration) and volume of the indigo carmine aqueous solution were 20 mg/L (4.33 × 10−5 mol/L) 

and 1.0 L, respectively. The density and molecular weight of the indigo carmine were 1.01 g/cm3 and 

466.35 g/mol, respectively. The maximum absorption wavelengths of indigo carmine were both 288 

and 610 nm. For measurement of the indigo carmine decoloration, two kinds of spectrophotometers 

were used. A spectrophotometer (SP-300, OPTIMA) was used in order to measure the solution 

transmittance. The spectral absorbance of the indigo carmine solution from 190 to 1100 nm was 

measured using an absorption ultraviolet-visible-near-infrared spectrometer (PD-3500UV, APEL). 

The relationship between the mol concentration of the indigo carmine solution and the absorbance at 

wavelength of 288 and 610 nm is shown in Fig. 4-3.  

 

 

Fig. 4-3. Relationships between the mol concentration of the indigo carmine solution and the 

absorbance at wavelengths 288 and 610 nm. 

 

According to Fig. 4-3, the relationships between the mol concentration and the absorbance at 288 

and 610 nm are represented by 

 

y = 3.21 × 10��� (at 288 nm), (3.1) 

 

y = 6.25 × 10��� (at 610 nm), (3.2) 

 

where y is the mol concentration (mol/L) and � is the absorbance. The mol concentration of indigo 

carmine in the treated solutions could be determined by each equation. 
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treatment efficiency of indigo carmine using the SS device was higher than that using the SG device 

for all initial charging voltages of C1, as shown in Fig. 4-4(b). Because the discharge volume was 

restricted by the reactor volume, the energy deposited by the electric discharges in the SG device 

would be much smaller than that in the SS device. Moreover, the volume of the solution layer on the 

inner surface of the cylindrical electrode in the SG device was smaller than that in the SS device due 

to its smaller inner diameter. Similarly, the discharge plasma would have a lesser effect on the smaller 

solution surface area in the SG device. 

 

         

    (a) Decoloration ratio of indigo carmine               (b) Treatment efficiency 

Fig. 4-4. Effects of the initial charging voltage on the indigo carmine solution treatment. 

 

Figs. 4-5 and 4-6 show the spectral absorbance of the treated indigo carmine solution observed at 

each 2-min treatment time with pulse repetition ratios of 10 and 50 pps, respectively. It was 

determined that the indigo carmine solution was effectively treated, as evidenced by the decrease of 

absorbance at 288 nm with increasing treatment time. Considering Figs. 4-5(a) and 4-6(a), when 

nitrogen gas was used, nitric oxide ions, such as nitrate ions, nitric monoxide ions, and nitric dioxide 

ions, which have absorption wavelengths from 200 to 260 nm, were generated by the treatments with 

the pulsed power system. The oxygen required to generate nitric oxide ions would be supplied by the 

solution. However, in Figs. 4-5(b) and 4-6(b), when oxygen gas was used, absorbance from 200 to 

260 nm decreased after increase. Then, it was found that the absorbance variation was caused by not 

nitric oxide ion but decomposition of indigo carmine. It would be considered that the absorbance 

from 200 to 260 nm decreased due to demolition of trans-isomer structure of indigo carmine [4.10]. 

Fig. 4-7 shows the changes in the mol concentration of the treated solutions obtained from the 

absorbance at 288 nm with increasing the treatment time at pulse repetition rates of 10 and 50 pps in 

Figs. 4-5 and 4-6, respectively. In Figs. 4-7(a) and 4-7(b), the mol concentration of the indigo carmine 

solution decreased with increasing the treatment time. The mol concentration of the indigo carmine 

solution with oxygen gas decreased more rapidly than that with nitrogen gas. When oxygen was used 

as the working gas in Figs. 4-5(b) and 4-6(b), ozone and active species such as OH radicals were 
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produced by electric discharge. Then, fast water treatment could be achieved due to high efficiency 

of ozone production. Moreover, decoloration treatment of indigo carmine with 50 pps was performed 

more rapidly than that with the 10-pps treatment. When the pulse repetition rate increased from 10 to 

50 pps, the amount of removed indigo carmine increased by approximately five times with nitrogen 

as the working gas. 

 

    

        (a) Using nitrogen gas                       (b) Using oxygen gas 

Fig. 4-5. Absorbance at wavelengths from 190 to 300 nm at 10 pps in the SG reactor. 

 

    

        (a) Using nitrogen gas                       (b) Using oxygen gas 

Fig. 4-6. Absorbance at wavelengths from 190 to 300 nm at 50 pps in the SG reactor. 

 

On the other hand, the amount of removed indigo carmine increased only slightly with oxygen as the 

working gas; indeed, only a small amount of untreated indigo carmine remained, even with the 10-

pps treatment. Because the decoloration efficiency is reduced when the concentration is low, the 

change in the mol concentration with increased pulse repetition rate was not noticeable. As shown in 

Fig. 4-7(b), the indigo carmine was decomposed well when nitrogen was supplied as the working gas. 
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This is because not only active species, such as nitric oxide ions and OH radicals, but also electric 

discharges induce the treatment of indigo carmine. In addition, using either gas as the working gas, 

the electric discharges provided the solutions with direct effects of the electric discharges such as UV 

rays, ion wind, and bombardment of streamer heads; the decoloration of indigo carmine thus 

proceeded. UV rays can cause the decomposition of indigo carmine; ion wind of electric discharges 

can help dissolve gas, including active species; and bombardment of streamer heads can affect the 

indigo carmine molecules. 

 

         

(a) 10 pps                                  (b) 50 pps 

Fig. 4-7. Variation in the mol concentration of indigo carmine observed after 2 minutes in the SG 

reactor. 
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4.3. Surfactant Treatment Using SG Reactor [4.2] 
The mixture solution of lauryl alcohol ethoxylate (LAE) and nonylphenol ethoxylate (NPE), 

which is a typical surfactant, was chosen as a treatment target. The decomposition of LAE was easier 

than that of NPE. The surfactant solution of 400 ppm was made by mixing the product solution 

(200,000 ppm) with either purified water or tap water. In tap water, chlorine used for sterilization and 

impurities such as sodium ion, magnesium ion, potassium ion, calcium ion, and so on were included. 

Then, the absorbance around 200 nm of tap water including impurities was approximately 0.15 Abs 

larger than that of purified water. Moreover, the pH and the electric conductivity of the purified water 

and the tap water were 6.34 and 1.3 µS/cm, and 7.34 and 131.9 µS/cm, respectively. The initial 

surfactant concentration and the total volume of the surfactant solution were 400 ppm (0.04 %) and 

500 mL, respectively. The surfactant solution was treated for 100 minutes with the nanosecond pulsed 

power system and was analyzed at every 20 minutes during treatment. The height of the foam, the 

absorbance, the pH, and the electric conductivity were measured for evaluation. The height of foam, 

which is characteristics of the surfactant, in the reservoir was gauged in the pictures of the reservoir. 

The absorbance of the surfactant solution from 190 to 300 nm was observed with an absorption 

ultraviolet-visible-near-infrared spectrometer (PD-3500UV, APEL), whose wavelength and 

photometric accuracy were 0.5 nm and 0.005 Abs at 1.000 Abs, respectively. Both the pH and the 

electric conductivity of the surfactant solution were measured using Waterproof Multiparameter (PCS 

Testr 35, OAKTON) before and after the treatment. The tap water and the purified water without the 

surfactant were treated in order to consider the phenomena in water treatment. 

In order to evaluate the OH radical production during the treatment with the nanosecond pulsed 

power system, disodium terephthalate (NaTA) was added to the solutions. Disodium terephthalate 

(NaTA) reacts only with the OH radical [4.11]. When the hydrogen atom of the benzene ring in the 

NaTA was substituted by a hydroxyl group, 2-hydroxyterephthalic acid (HTA) was formed. The OH 

radical production during treatment was estimated by observing the absorption at 310 nm, which is 

absorption wavelength of HTA. 1.0 g NaTA was added to the solutions, and each solution was treated 

for 20 minutes. The absorbance of the solution was observed with the spectrometer from 190 to 400 

nm at every 4-min treating time. 

Moreover, in order to investigate the OH radical production by pulsed power discharges, the 

solutions were also treated with an external ozonizer instead of the nanosecond pulsed power system. 

The external ozonizer setup condition was adjusted to produce an equivalent ozone concentration 

using the nanosecond pulsed power system (12 g/Nm3) at an oxygen flow rate of 0.1 L/min. 

Figs. 4-8(a) and 4-8(b) show image of foam and temporal variations in the foam height in the 

reservoir. In Fig. 4-8(b), the error bars indicate the maximum and minimum heights of the foam in 

the reservoir. Note that the surfactant solution did not bubble at 0 minute because the solution 

circulation also started at that time. The foam heights at 40 ppm and 4 ppm of the solution in the 

reservoir were measured by only circulation with the pump without the nanosecond pulsed power 

system. Note that these heights (68 and 14 mm) are indicated as dash lines in Fig. 4-8(b).  
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(L) Tap water                             (R) Purified water 

(a) Image of foam in the reservoir after 100 minutes’ treatment 

 

 

(b) Foaming height 

Fig. 4-8. Temporal variation of the foam height in tap and purified water. 

 

The foam height decreased with the surfactant concentration. The foam heights on the surfactant in 

purified and tap water increased until 20 minutes from the start of the pulse application and decreased 

after 20 minutes. The initial increase in the foam height arose with the start of the solution circulation 

owing to the foamability of the surfactant. When the concentration of the NPE solution was greater 

than 0.1 ppm, the surfactant showed foamability [4.12] because the hydrophobic groups and the 

hydrophilic groups of the surfactants formed micelles containing atmospheric (O2) gas. After 20 

minutes of treatment, the foamability of the surfactant would be lost because a hydrophilic group in 

the surfactant molecule was decomposed. This means that the surfactant in both waters was treated. 

The foam height of surfactant in purified water decreased faster than that in tap water. This suggested 

that because the surfactant was decomposed, the surfactant concentration in the solution decreased. 

Note that it was difficult to change this surfactant property with heat because the solution temperature 
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increased by 5 K for 100-minutes’ treatment because of heat from a water pump. 

Fig. 4-9 presents the variation of the absorbance spectrum at each treatment time. Fig. 4-10 shows 

the pH and electric conductivity measured before treatment (0 min) and after treatment (100 min). 

The results of the pH and electric conductivity would be considered with experiment of OH radical 

production.  

 

         

(a) Purified water                         (b) Tap water 

Fig. 4-9. Variation of absorbance during treatment. 

 

 

Fig. 4-10. Variation of pH (solid symbol) and conductivity (open symbol) of the surfactant solution. 

 

The absorbance around wavelength of 200 nm increased with increasing the treatment time, possibly 

because 4-nonylphenol (NP) was being produced due to surfactant decomposition or hydrogen 

peroxides were produced during electric discharges. The absorbance difference between surfactants 

in purified water and in tap water at 0 minute would be attributed to an instrumental error in the 

spectrometer. After treatment for 100 minutes, the surfactant absorbance in purified water (0.91) was 
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faster than in tap water, as well as decreasing foaming height. Because the surfactant could be 

effectively decomposed by active species such as the OH radical, possibly some active species reacted 

with impurities in tap water. Meanwhile, because the impurities affect water characteristics such as 

pH and electric conductivity, the pH and the electric conductivity of tap water were different from 

those of purified water. 

The OH radical, as one of the active species that can be produced during water treatment, has the 

strongest ORP and is the most important agent for organic compounds degradation. Thus, we 

investigated the production of the OH radical in this treatment system. The disodium terephthalate 

(NaTA) added to purified and tap water reacted only with the OH radical to form 2-

hydroxyterephthalic acid. Absorbance spectra of treated surfactant solution in purified water and tap 

water with NaTA are shown in Figs. 4-11(a) and 4-11(b). Figs. 4-12(a) and 4-12(b) show absorbance 

spectra of purified water and tap water with NaTA. The surfactant absorbance spectrum around 310 

nm in purified water (Fig. 4-11(a)) was not different from that of the surfactant in tap water (Fig. 4-

11(b)). On the other hand, as shown in Fig. 4-12, when the surfactant was not included, the absorbance 

spectrum around 310 nm of purified water was much higher than that of tap water. It was thought that 

the OH radical, which should react with disodium terephthalate, would react with more impurities in 

tap water. When the solutions included the surfactant, micelles were formed because of the structure 

of the surfactant molecules, so that impurities would be enfolded in the micelles’ cores with surfactant 

molecules. Even when tap water including more or less impurities was used, the OH radical would 

react with not the impurities but both disodium terephthalate and the surfactant. Therefore, it is 

thought that the absorbance in Fig. 4-11(b) was not different from that in Fig. 4-11(a). That is to say, 

the amount of produced OH radical would be the same regardless of the type of solution used. 

However, the difference in the water quality, such as impurities in tap water, would affect the amount 

of produced OH radical with increasing treatment time. The water quality could be indicated by the 

pH value, the electric conductivity, and so on. As seen in Fig. 4-10, the pH value and the electric 

conductivity of the surfactant solution in purified water were lower than those in tap water. Water 

treatment using an acidic solution was faster than using neutral and alkaline solutions because the OH 

radical would react with the CO32− formed during organic compounds degradation unselectively in 

the alkaline solution [4.13, 4.14]. Thus, the reaction between the OH radical and the target organic 

compounds in alkaline solution could be reduced. In addition, it was reported that less OH radical 

was produced in the higher electric conductivity solution [4.15]. As shown in Fig. 4-10, the electric 

conductivity of the surfactant in purified water increased after treatment for 100 minutes. Because of 

more ions and impurities in tap water, more surfactant in purified water could be decomposed by 

pulsed power system than surfactant in tap water. The pH value and the electric conductivity could 

also influence the amount of OH radical produced in this experiment. 
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(a) Surfactant (Purified water)               (b) Surfactant (Tap water) 

Fig. 4-11. Variation in the absorbance of the surfactant, when disodium terephthalate is added, using 

the pulsed power system. 

 

         

(a) Purified water                         (b) Tap water 

Fig. 4-12. Variation in the absorbance of water, when disodium terephthalate is added, using the 

pulsed power system. 

 

The solutions were treated in the water treatment system with an externally connected ozonizer 

instead of the nanosecond pulsed power system. Fig. 4-13 shows absorbance spectra of purified water 

and tap water with NaTA added when the solutions did not include the surfactant.  
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(a) Purified water                         (b) Tap water 

Fig. 4-13. Variation in the absorbance of water, when disodium terephthalate is added, using an 

external ozonizer. 

 

The absorbance spectrum using the ozonizer in Fig. 4-13(a) was lower than that with the nanosecond 

pulsed power system in Fig. 4-12(a). It was suggested that electric discharges had some direct effect 

on water, leading to the generation of more OH radical. On the other hand, using tap water as shown 

in Figs. 4-12(b) and 4-13(b), the absorbance spectrum with the external ozonizer was higher than that 

with the pulsed power system. When the pulsed power system was used for water treatment, electric 

discharges might be affected by impurities in the tap water.  

The surfactant solutions were also treated using the external ozonizer. Although OH radical 

production with the pulsed power system was changed by water quality, the pulsed power system 

could have a capacity for more OH radical production. The image of foam and temporal variation of 

the foam height of the surfactant in purified water is shown in Figs. 4-14(a), 4-14(b). The foam was 

dissolved much slower using the external ozonizer than using the pulsed power system. The surfactant 

was not sufficiently treated with the ozonizer because less OH radical would be produced. Fig. 4-15 

shows the variation in the absorbance spectrum of the surfactant solution in purified water during the 

ozonizer treatment. The absorbance spectrum during the ozonizer treatment was lower than that 

during pulsed power discharges treatment shown in Fig. 4-9(a). Because of the lower absorbance 

spectrum around 200 nm, which would indicate the existence of 4-nonylphenol generated by 

decomposition of the surfactants, ozonation using the external ozonizer could weakly decompose the 

surfactants. Moreover, the absorbance spectra at 80 and 120 minutes were approximately the same. 

It was suggested that there was a limitation in decomposing surfactants by simple ozonation. On the 

other hand, when the pulsed power system was used for surfactant treatment, ozone could be pushed 

into the surfactant solution by the ion wind of the electric discharges and bombardment of the streamer 

heads. More active species such as the OH radical could be generated from ozone in the solution. It 

would be considered that the electric discharges improved production and reactivity of active species 

due to UV from electric discharges [4.16], as shown in Eqs. (4.3)–(4.5) [4.17], and electrons formed 
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by streamer heads, as shown in Eqs. (4.6)–(4.8) [4.18], so that decomposition of organic compounds 

such as surfactants was promoted. 

 

H�O + hν →∗ OH +∗ H (4.3) 

O	 + H�O + hν ⟶ H�O� + O� (4.4) 

H�O� ⟶∗OH+∗ OH (4.5) 

 

e + H�O ⟶ e +∗ OH +∗ H (4.6) 

e + O� ⟶ e+∗ O +∗ O (4.7) 

∗ O + H�O ⟶∗ OH +∗ OH (4.8) 

 

 

         

(L) External Ozonizer                       (R) Pulsed Discharge 

(a) Image of foam in the reservoir after 100 minutes’ treatment 

 

 

(b) Foaming height 

Fig. 4-14. Comparison of foam-height variation of the surfactant in purified water. 
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Fig. 4-15. Variation in the absorbance of surfactant treatment with external ozonizer. 
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4.4. Conclusion of Water Treatment 
Indigo carmine in an aqueous solution was treated by the nanosecond pulsed power system. The 

treatment using oxygen as the working gas was faster than that using nitrogen. It was suggested that 

active species generated from oxygen such as ozone and OH radical caused stronger decomposition 

of indigo carmine than those generated from nitrogen such as nitrogen dioxide and nitric acid. 

Surfactant treatment with nanosecond pulsed power system was also investigated. The surfactant 

solution in purified water was treated faster than solution in tap water including impurities because 

the difference in the pH value and the electric conductivity of the solutions could affect the OH radical 

production. It was suggested that water quality of target solution could not a little influence water 

treatment. Moreover, the surfactant treatment using nanosecond pulsed power system was compared 

with using an external ozonizer. The foaming height using the pulsed power system was lower than 

that using the ozonizer. Then, it would be indicated that the surfactant could not be decomposed 

sufficiently by only ozone. Although OH radical that is higher oxidation-reduction potential (ORP) 

than ozone caused stronger decomposition of surfactant, OH radical production using the nanosecond 

pulsed power system was almost the same as that using the ozonizer. For water treatment with the 

pulsed power system, when electric discharges were used, the electric discharges would promote 

chemical reactions between ozone or OH radical and surfactants. In order to promote chemical 

reactions between more OH radical and target compounds efficiently, the nanosecond pulsed power 

system should be applied in water treatment. 
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5. Ozone Production with Nanosecond Pulsed Power System 
5.1. Introduction to the Ozone Production and Reactor [5.1] 

In order to carry out water treatment more efficiently, it is important to produce more ozone and 

OH radical. Because more ozone can result in more OH radical [5.2], ozone production with the 

nanosecond pulsed power system has also been investigated in recent years. High ozone production 

efficiency with the nanosecond pulsed power system was obtained because of non-thermal 

equilibrium plasmas caused by electric discharges, even if a dielectric barrier was not used [5.3–5.5]. 

Comparing the ozone production efficiency using the different methods, the characteristics map of 

air-fed ozonizers was presented [5.5]. 

In a previous study, streamer discharges generated by the nanosecond pulsed power system 

realized high ozone production efficiency. In order to generate streamer discharges efficiently, a 

coaxial reactor in experiments was used due to electric field enhancement. However, high ozone 

concentration was not obtained. This was because ozone concentration decreased after it increased 

up to the peak concentration. Then, frequent occurrence of spark discharges was observed. In order 

to clarify this phenomenon, ozone production experiments used a stud bolt and stainless steel wires 

wound around the glass rod as an inner electrode of the coaxial reactor were performed in order to 

obtain high density ozone with preventing spark discharges. In these experiments, a stable ozone 

concentration was obtained, which increased inconsiderably. 

In this chapter 5, when a stainless steel wire electrode was used as an inner electrode of the coaxial 

reactor, the appearances of the inner wire electrode and electric discharges in the coaxial reactor were 

confirmed using a coaxial reactor which had an aperture on the outer electrode. Moreover, we 

introduced the coaxial reactor whose inner wire electrode could be tensed. The ozone concentration 

and the state of electric discharges in the coaxial reactor were also investigated. 

Fig. 5-1 shows a schematic diagram of the ozone production system. Nanosecond high-voltage 

pulses were applied to inner wire electrode of the coaxial reactor.  

 

 
Fig. 5-1. Schematic diagram of the ozone production experiment. 
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The voltage and current waveforms were measured with a digital oscilloscope (Tektronix, DPO4104, 

1 GHz) through a resistive voltage divider (1000:1) in Fig. 3-7 and a current viewing resistor in Fig. 

3-8. Oxygen gas (99.95%) was flowed in the reactor at a flow rate of 1.0 L/min. The ozone 

concentration caused in the coaxial reactor was measured using an ozone monitor with ultraviolet 

absorption (PG-320A, Ebara, Japan). The charged voltage of the nanosecond pulsed power generator 

was 3.1 kV. As a pulse repetition rate, 10, 50, and 80 pps (pulses per second) were chosen. 

Fig. 5-2 shows a cross-section view of the coaxial reactor. The inner electrode of the coaxial 

reactor was a stainless steel wire (SUS304) with 1.0 mm diameter. As the outer electrode of the 

coaxial reactor, a stainless steel pipe was used, whose length and inner diameter were 500 mm and 

20 mm, respectively. In order to observe electric discharges occurring inside the coaxial reactor, the 

reactor had an aperture. The stainless steel pipe had a slit, whose width and height were 450 and 5 

mm, respectively. In order to prevent gas leaks, this slit was covered with an acrylic pipe. 

 

 
Fig. 5-2. Cross-section view of a reactor with an aperture. 

 

The end cap of the coaxial reactor (Fig. 5-3) was designed and manufactured in order to change 

the tension of the inner wire electrode. By rotation of a cap part, the inner wire electrode of the coaxial 

reactor was tensed. When nanosecond high-voltage pulses were applied to the coaxial reactor, 

streamer discharges occurred and developed from the inner wire electrode to the outer pipe electrode. 

Ozone molecules were mainly produced by the streamer discharges. 

 

 
Fig. 5-3. Schematic of the cap unit of the reactor. 
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5.2. Ozone Production with Coaxial Reactor 
Ozone was produced when the cap was adjusted so as not to tense the inner wire electrode. 

Temporal variations in the ozone concentration at 10, 50, and 80 pps are shown in Fig. 5-4. The ozone 

concentrations increased from 10 s pulse application. The ozone concentration at 10 pps became 

constant at 1.0 g/Nm3 after the initial rising. On the other hand, ozone concentration at 50 and 80 pps 

reached peak values of 5.2 and 8.3 g/Nm3, respectively. After the peaking, these ozone concentrations 

decreased and became approximately constant after 100 s. 

 

 

Fig. 5-4. Temporal variations in ozone concentration with non-tensioned inner wire electrode. 

 

Fig. 5-5 shows the voltage and current waveforms observed on the reactor until 20 s from the start 

of pulse application. Fig. 5-6 shows the voltage and current waveforms measured after 150 s from 

start of pulse application. As shown in Fig. 5-5(a), the voltage waveform fell down from about 40 ns 

at 50 pps and from 30 ns at 80 pps.  

 

   
(a) Voltage waveform                        (b) Current waveform 

Fig. 5-5. Voltage and current waveforms before 20 s with non-tensioned inner wire electrode. 
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(a) Voltage waveform                        (b) Current waveform 

Fig. 5-6. Voltage and current waveforms after 150 s with non-tensioned inner wire electrode. 

 

The voltage waveforms in Fig. 5-6(a) became different from those in Fig. 5-5(a). In Fig. 5-6(a), the 

voltage fell to around 75 ns at 10 pps. At 50 and 80 pps, the fall came earlier in comparison with Fig. 

5-5(a). In the current waveforms, related symptoms were similarly observed as seen in Figs. 5-5(b) 

and 5-6(b). It was suggested that spark discharges occurred earlier with increasing pulse repetition 

rate and duration time of pulses application. 

Fig. 5-7 shows photographs of the inside of the coaxial reactor with electric discharge using a 

non-tensioned inner wire electrode, when the pulse repetition rate was 10, 50, and 80 pps. All 

photographs were taken around the center of the reactor and after 150 s from the start of the pulse 

application. Note that a broken line was drawn on the inner wire electrode to distinguish its position. 

With increasing pulse repetition rate, the incidence of the spark discharges increased and the locations 

where spark discharges occurred moved toward the center of the coaxial reactor. At the same time, 

the center of the inner wire electrode moved to the lower side of the reactor (Fig. 5-7). Because the 

wire was fixed at both end caps of the coaxial reactor, the inner wire electrode was curved at 50 and 

80 pps. In the photographs, spark discharges occurred in the lower side of the inner wire electrode. 

The wire would be attracted to the lower side with spark discharges, and the separation between inner 

and outer electrodes around the area became shorter because of the curving of the inner wire electrode. 

These phenomena were more obvious at higher pulse repetition rates. At the center of the coaxial 

reactor, the downward displacement of the stainless steel wire used as an inner wire electrode from 

the initial position was estimated at 2.72 mm in Fig. 5-7(c). The stainless steel wire gradually returned 

with time after the end of the pulse application. 
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(a) 10 pps 

 

 
(b) 50 pps 

 

 
(c) 80 pps 

Fig. 5-7. Photographs of the electric discharges with non-tensioned inner wire electrode. 

 

Although the temperature of the inner wire electrode was measured using a radiation thermometer, 

it could not be measured exactly because the wire electrode was thin and the temperature elevation 

was slight. A gas temperature measurement at the inside of the reactor showed an increasing 

temperature from 296 to 298 K during pulse application. Here the stainless steel wire temperature 

was assumed the same as the gas temperature. The average thermal expansion coefficient of SUS304 

used in the wire was 17.3 × 10−6 /K at 273–373 K. The 2 K temperature rise of the 500-mm stainless 

steel wire lengthens the stainless steel wire by 0.0173 mm. When the stainless steel wire was 

elongated to become an obtuse isosceles triangle, since the wire was fixated at both ends on the reactor 

caps, the displacement of the wire center was evaluated at 2.08 mm. The calculated displacement 

(2.08 mm) of the wire roughly corresponded to the downward displacement (2.72 mm) estimated in 

Fig. 5-7(c). The center would move to the lower side by gravity and several electric forces caused by 
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spark discharges. At that time, spark discharges occurred more frequently around where the distance 

between the inner and outer electrodes became smaller. Thus, the reduction of ozone concentration 

after 20 s was caused by temporal and spatial restriction of both the spark-discharge occurrence and 

the inner wire curving. Moreover, when the frequency of the spark discharges increased with 

increasing the pulse repetition rate, the temperature of the stainless steel wire would increase higher. 

Then, because the wire moved further down, the distance between the inner and outer electrodes was 

smaller. Therefore, because formation of spark discharges would require less time for the distance to 

become smaller, the spark discharges occurred earlier. As shown in Figs. 5-5 and 5-6, these 

phenomena changed the voltage and current waveforms. The propagation velocity of the streamer 

discharge was roughly 1 mm/ns, when the voltage was 40 kV [5.6]. In this experiment, although 

streamer discharges would propagate at 1 mm/ns for a 1.5 ns pulse, the propagation velocity would 

be less than 1.0 mm/ns for sustaining 10 kV after the pulse. Thus, it would take much more than 10 

ns until the streamer discharges reached the outer electrode from the inner electrode because the 

between the electrodes was 9.5 mm. Although ozone would be produced when the streamer 

discharges were propagating, the occurrence of spark discharges stopped the propagation of the 

streamer discharges and the increase of ozone production. Therefore, as seen in Fig. 5-4, the earlier 

occurrence of spark discharges reduced the ozone concentration. In addition, ozone could be 

pyrolyzed by the spark discharges. Accordingly, it would be suggested that stable ozone concentration 

using coaxial reactor could be obtained by preventing occurrence of the spark discharge caused by 

the curving of the inner wire electrode. Next, ozone production with a tensed inner wire electrode of 

the same reactor was tested. 
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5.3. Ozone Production Using Tensed Inner Wire Electrode 
A certain degree of tension was given to the inner wire electrode by adjusting the cap unit (Fig. 

5-3). Fig. 5-8 shows the temporal variations in the ozone concentration at 10, 50, and 80 pps using a 

tensed inner wire electrode. The ozone concentrations were approximately constant at 1.0, 4.6, and 

7.9 g/ Nm3 for 10, 50, and 80 pps, respectively. The peaking and decrease of the ozone concentration 

as shown in Fig. 5-4 were not observed in Fig. 5-8. 

 

 

Fig. 5-8. Temporal changes in the ozone concentration using a tensed inner wire electrode. 

 

Fig. 5-9 shows the voltage and current waveforms observed until 20 s from the start of the pulse 

application. Fig. 5-10 also shows the voltage and current waveforms measured after 150 s from the 

start of the pulse application.  

 

   
(a) Voltage waveform                        (b) Current waveform 

Fig. 5-9. Voltage and current waveforms before 20 s using a tensioned inner wire electrode. 
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(a) Voltage waveform                        (b) Current waveform 

Fig. 5-10. Voltage and current waveforms after 150 s using a tensioned inner wire electrode. 

 

The voltage abrupt drops as seen in Figs. 5-5(a) and 5-6(a) were not observed regardless of the pulse 

repetition rate in Figs. 5-9(a) and 5-10(a). All voltage waveforms in Figs. 5-9(a) and 5-10(a) nearly 

corresponded to each other. The current waveforms were the same way as the voltage waveforms. 

That is to say, using the tensed inner wire electrode, the voltage and current waveforms were 

independent of the pulse repetition rate and the duration of pulse application under these experimental 

conditions. Moreover, these voltage and current waveforms were similar to those at 10 pps using a 

non-tensioned inner wire electrode (Fig. 5-5). 

Fig. 5-11 shows photographs of the electric discharges in the coaxial reactor at 10, 50, and 80 pps 

using a tensioned inner wire electrode. The position of the window edges and the inner wire electrode 

was described by solid lines and a broken line, respectively.  

Not the spark discharges but the streamer discharges were observed in all photographs. In the 

photographs at 10 pps (Fig. 5-11(a)), the streamer discharges were difficult to be distinguished owing 

to weak emission, even after image processing. Because a stainless steel wire was approximately 

parallel to the window edge and did not move up and down in Fig. 5-11, adoption of the tensioned 

inner wire electrode prevented the curving of the inner wire electrode and controlled the spark 

discharges. As a result, the ozone concentration did not drop during pulse application regardless of 

the pulse repetition rate and the duration of the pulse application. 
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(a) 10 pps 

 

 
(b) 50 pps 

 

 
(c) 80 pps 

Fig. 5-11. Photograph of the electric discharges using a tensioned inner wire electrode. 

 

Figs. 5-12 and 5-13 show the ozone concentration and the ozone production efficiencies using the 

coaxial reactor with and without tension on the inner wire electrode, respectively. For the average 

ozone concentrations, constant ozone concentrations after 150 s in Figs. 5-4 and 5-8 were used. The 

ozone production efficiency was calculated based on the average ozone concentration and not the 

discharge energy but the system energy as the charging energy in the initial storage capacitor. Using 

a non-tensed-wire reactor, the ozone concentration decreased after increasing, as the pulse repetition 

rate increased. On the other hand, using a tensed-wire reactor, the ozone concentration increased 

linearly with increasing pulse repetition rate. As a result of using a tensed wire electrode, it was 

considered that the temporal decrease in the ozone concentration was prevented because the spark 

discharges were controlled. This had been predicted in a previous work [5.7, 5.8]. Interestingly, the 

peak ozone concentrations using the no-tensed reactor (Fig. 5-4) were higher than the steady ozone 
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concentrations using the tensed-wire reactor (Fig. 5-8) but the reason for this remains unclear. Using 

the no-tensed-wire reactor, the ozone production efficiency decreased with increasing pulse repetition 

rate; the ozone production efficiency decreased with increasing ozone concentration. This trade-off 

is a usual trend in ozone production. On the other hand, using the tensed-wire reactor, the production 

efficiency was roughly constant regardless of the pulse repetition rate and the produced ozone 

concentration. Therefore, it became clear that occurrence of spark discharges degraded the potential 

of the coaxial reactor. In addition, the existence of an aperture also degraded the potential for ozone 

production of the coaxial reactor in this experiment. 

 

 

Fig. 5-12. Ozone concentration when tension was applied and not applied on the inner wire 

electrode. 

 

 

Fig. 5-13. Ozone production efficiency (system efficiency). 
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5.4. Conclusion of Ozone Production 
In order to produce more ozone in the coaxial reactor, the nanosecond pulsed power system was 

used. However, spark discharges occurred in the coaxial reactor because the separation between inner 

and outer electrodes became shorter due to the presence of a curving inner wire electrode. Especially, 

inner wire electrode of the coaxial reactor was curving at high pulse repetition rate. In order to prevent 

the curving of the inner wire electrode, tensing the inner wire electrode using the structure of the 

coaxial reactor was proposed. As a result, the ozone concentration was not reduced and became 

approximately steady after increasing, since curving the inner wire electrode resulted in restraining 

of the spark discharges. Moreover, the ozone production efficiencies were constant regardless of the 

increasing pulse repetition rate. It was found that a high ozone concentration could be obtained using 

a stable streamer discharge. 
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6. NOx Treatment with Nanosecond Pulsed Power System 
6.1. Introduction to the NOx Treatment and Reactor [6.1] 

In chapter 5, the ozone concentration could be stabilized by applying tension to the inner wire 

electrode of the coaxial reactor. In the treatment of NOx which are atmosphere pollutants, it was 

suggested that increase of the NOx removal ratio was expected using the tensed inner wire electrode. 

As an effective method of NOx decomposition, the pulsed power technologies have also been used 

[6.2–6.4]. In order to induce a plasma chemical reaction that would lead to the effective NOx 

decomposition, electric discharges such as streamer discharges were needed. In order to achieve high 

NOx removal efficiency, the nanosecond pulsed power system has been applied to the NOx treatment 

using a coaxial reactor [6.5, 6.6]. Although NOx treatment with the pulsed power system was studied, 

high density of streamer discharges was rarely used. In order to obtain high density of the streamer 

discharges, the nanosecond pulsed power system with a thin coaxial reactor was applied for NOx 

treatment [6.7, 6.8]. However, during NOx treatment, occurrence of spark discharges was also 

observed frequently with the curving inner wire electrode in the coaxial reactor [6.8]. The dependence 

of the curving inner wire electrode on NOx removal ratio was discussed. Moreover, in order to prevent 

curving stainless steel wire used as the inner wire electrode of the coaxial reactor, an inner wire 

electrode tensed by a spring was introduced into the coaxial reactor for NOx treatment with the 

nanosecond pulsed power system. At that time, the phenomena in the reactor and their effects on the 

NOx removal ratio were also considered. 

Fig. 6-1 shows a schematic of a coaxial reactor, which has an aperture for NOx treatment. 

 

 

Fig. 6-1. Schematic of a coaxial reactor with an aperture for NOx treatment. 

 

The coaxial reactor was connected to the nanosecond pulsed power generator as shown in Fig. 2-1. 

Nanosecond voltage pulses were applied on inner wire electrode of the coaxial reactor. A 1-mm 

diameter stainless steel wire was used as the inner wire electrode of the coaxial reactor. A stainless 

steel pipe, whose inner diameter and length were 14 and 500 mm, respectively, was used as the outer 

electrode of the coaxial reactor. 

Fig. 6-2 shows a cross-section view of the coaxial reactor. The stainless steel pipe has an aperture 
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for observing the inside of the coaxial reactor. The aperture was covered with a partly cut-out acrylic 

pipe in order to prevent leakage of gases such as NO and NO2 gases. 

 

 
Fig. 6-2. Cross-sectional view of the coaxial reactor. 

 

In order to tense the inner wire electrode of coaxial reactor, another coaxial reactor was prepared. 

The coaxial reactor configuration, apart from the end cap of the one side, was same as that of the 

reactor shown in Fig. 6-1. The end-cap structure of the coaxial reactor is shown in Fig. 6-3. When the 

end cap of the coaxial reactor as shown in Fig. 5-3 was used, because the end-cap part had to be 

turned before pulsed application, the end cap could not respond to thermal expansion of inner wire 

electrode during pulsed application, so that there would be a possibility that the curving inner wire 

electrode of coaxial reactor was obtained. The inner wire electrode of the coaxial reactor was tensed 

by using a spring made of stainless steel in the end cap, and the elastic force of the spring could be 

adjusted by inserting spacers. The constant and natural length of the spring were 0.833 N/mm and 17 

mm, respectively. 

 

 
Fig. 6-3. End-cap structure of the reactor. 

 

When nanosecond high-voltage pulses were applied to inner wire electrode of the coaxial reactors, 

streamer discharges occurred in the coaxial reactor and developed from the inner wire electrode to 

the outer electrode. The initial charging voltage of C1 in Fig. 2-1 was 3.1 kV. The voltage and current 

waveforms were measured by using a digital oscilloscope (Tektronix, DPO4104, 1 GHz) through a 

resistive voltage divider (1000:1) in Fig. 3-7 and a current viewing resistor in Fig. 3-8. The pulse 
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repetition rate was changed between 10 and 50 pps (pulses per second) and the pulse application time 

was 300 seconds (5 min). A simulated gas compound of NO and N2 was flowed in the coaxial reactor 

at a flow rate of 2.0 L/min and in 100 ppm. The concentrations of NO and NOx in the treated gas 

through the coaxial reactor were measured with a flue gas analyzer (HT-2300, HODAKA). The 

concentration of NOx was calculated as the sum of the NO and NO2 concentrations. 
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6.2. NOx Removal and Electric Discharges inside the Coaxial Reactor 
Figs. 6-4(a) and 6-4(b) show the temporal variations of the NO and NOx removal ratios during 

NOx treatment. Note that the NO and NOx removal ratios were somewhat decreased because the 

coaxial-reactor potential was lowered due to the presence of the acrylic aperture used in order to 

observe inside the coaxial reactor. The both NO and NOx removal ratios increased from 10 s and 

reached a peak around 30 s. Afterward, they decreased slightly at 10 pps. After 80 s, they became 

constant. 

 

         

(a) NO                                  (b) NOx 

Fig. 6-4. Temporal variation of the NO and NOx removal ratios during NOx treatment. 

 

The coaxial reactor voltage and current waveforms before 20 s and after 150 s from the start of 

the pulse application at 10 and 50 pps are shown in Figs. 6-5 and 6-6, respectively.  

 

   
(a) Voltage waveform                        (b) Current waveform 

Fig. 6-5. Typical voltage and current waveforms at 10 pps. 
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(a) Voltage waveform                        (b) Current waveform 

Fig. 6-6. Typical voltage and current waveforms at 50 pps. 

 

All waveforms were roughly the same. However, the second peak of the current waveforms before 

20 s in Fig. 6-5(b) was smaller than those after 150 s in Fig. 6-6(b). Although the second peak of the 

current waveforms should be affected by spark discharges, other electric discharges such as glow-like 

discharges might affect it as well. 

In order to investigate those phenomena, electric discharges in coaxial reactor were considered 

based on photographs taken during NOx treatment. At 10 and 50 pps, Figs. 6-7 and 6-8 show images 

of the inside of the coaxial reactor. The position of the window edges and the inner wire electrode 

were described by solid lines and a broken line, respectively. The coaxial reactors in the photographs 

corresponded to 5 cm of the reactor center. Intense spark discharges and weak streamer discharges in 

the coaxial reactor were observed. The spark discharges occurred around the center of the coaxial 

reactor. Using the position of the inner wire electrode at 0 s (Figs. 6-7(a) and 6-8(a)) as the initially 

fixed position, the inner wire electrode of the coaxial reactor moved from the initially fixed position 

to the outer electrode with increasing NOx treatment time. It seems that the observed spark discharges 

attracted the inner wire electrode. When the curving inner wire electrode occurred, the distance 

between inner and outer electrodes was shorter, so that occurrence of spark discharges would be more 

frequent. In Figs. 6-7 and 6-8, the distance between the electrodes at 120 s and 50 pps was the smallest. 

Then, streamer discharges between the electrodes were distributed lopsidedly. 
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(a) 0 s 

 

 
(b) 30 s 

 

 
(c) 60 s 

 

 
(d) 120 s 

Fig. 6-7. Images of the inside of the coaxial reactor at 10 pps. 
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(a) 0 s 

 

 
(b) 30 s 

 

 
(c) 60 s 

 

 
(d) 120 s 

Fig. 6-8. Images of the inside of the coaxial reactor at 50 pps. 
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In addition, it was also thought that the stainless-steel-wire temperature rose because of the 

occurrence of spark discharges. In an ozone production experiment, 2 K of gas temperature rise was 

observed during pulse application with experimental setup and a similar coaxial reactor. It was 

supposed that the temperature of the inner wire electrode rose to 2 K or higher in experiment of NOx 

treatment. If the stainless-steel-wire temperature increased by 2 K, the length of the 500-mm stainless 

steel wire should increase for approximately 0.02 mm due to thermal expansion. Then, the 

displacement of the inner wire electrode from the center position of the coaxial reactor could be 

roughly evaluated at 2.1 mm, which almost corresponded to the photograph in Fig. 6-8(d). The center 

of the coaxial reactor would move to the lower side due to gravity and several electric forces of the 

spark discharges. Then, the spark discharges occurred more frequently where the distance between 

inner and outer electrodes decreased. Moreover, when the occurrence of the spark discharges 

increased with increasing pulse repetition rate, the stainless-steel-wire temperature increased further, 

and the center of the wire shifted toward the outer pipe electrode. Therefore, because spark discharges 

would spend less time for the smaller distance between the inner and outer electrodes, the spark 

discharges occurred earlier, so that the volume of the streamer discharges, which could decompose 

NO and NOx, was decreased. In order to understand these phenomena, time-resolved photographs 

and optical signal from the spark discharges should be measured. 
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6.3. NOx Removal Using Reactor Tensed Inner Wire Electrode 
In order to prevent the curving inner wire electrode of coaxial reactor, it was tensed by the spring 

as shown in Fig. 6-3. Figs. 6-9(a) and 6-9(b) show the temporal variations in the NO and NOx removal 

ratios with increasing NOx treatment time. The NO removal ratio was stable after the introductory 

increase for both pulse repetition rates. The NOx removal ratio at 50 pps slightly decreased after it 

increased. Incidentally, when the coaxial reactor using the spring was used but the spring was a natural 

length at the beginning of NOx treatment, apparent temporal decrease of removal ratio, as shown in 

Figs. 6-4(a) and 6-4(b), was not observed even at 50 pps. However, the steady NO removal ratio was 

lower by 4% on 10 pps and 8% on 50 pps than that tensed by a spring. The NO and NO2 

decomposition rate were 3.1 × 10−17 and 9.0 × 10−44 s−1, respectively [6.2]. Therefore, it was assumed 

that NO2 was generated after NO decomposition. Then, the NOx removal ratio decreased after 

increase. By comparing Figs. 6-4(a) and 6-4(b), steadier and higher NO and NOx removal ratios were 

measured. The NO removal efficiencies on electric-discharge energy were calculated from voltage 

and current waveforms. When no-tensed inner wire electrode was used for NOx treatment, the NO 

removal efficiency at 10 and 50 pps was 0.20 (from 100 to 80 ppm of the NO concentration in Fig. 

6-4(a)) and 0.10 mol/kWh (from 100 to 62 ppm of NO concentration in Fig. 6-4(a)), respectively. On 

the other hand, when inner wire electrode tensed by the spring was used, at 10 and 50 pps, the NO 

removal efficiency was 0.35 (from 100 to 75 ppm of NO concentration in Fig. 6-9(a)) and 0.20 

mol/kWh (from 100 to 25 ppm of NO concentration in Fig. 6-9(a)), respectively. Moreover, when the 

inner wire electrode tensed without an aperture was used for NOx treatment, at 50 pps, the NO 

removal efficiency was 0.39 mol/kWh (from 100 to 5 ppm of the NO concentration). Although the 

aperture was used for observing the phenomena inside the coaxial reactor, it decreased the coaxial 

reactor’s performance. 

 

         

(a) NO                                  (b) NOx 

Fig. 6-9. Temporal variations in the NO and NOx removal ratios during NOx treatment. 
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Using inner wire electrode of the coaxial reactor tensed by a spring, Figs. 6-10(a) and 6-10(b) 

shows the voltage and current waveforms of the coaxial reactor observed after 150 s. The voltage 

waveforms were almost the same as those in Figs. 6-5(a) and 6-6(a). However, the second peaks of 

the current waveforms were smaller than those in Figs. 6-5(b) and 6-6(b). It was suggested that 

because the inner wire electrode was tensed by using the spring in order to prevent occurrence of 

spark discharges, the current flowed by only streamer discharges. 

 

   
(a) Voltage Waveform                        (b) Current waveform 

Fig. 6-10. Typical voltage and current waveforms after 150 s. 

 

The appearance of electric discharges inside the coaxial reactor using the tensed inner wire electrode 

at 50 pps is shown in Fig. 6-11. Spark discharges were not observed in this photograph. Then, the 

inner wire electrode was not curved. Moreover, streamer discharges were observed in the entire 

observational area of the coaxial reactor. It was thought that the second peaks of the current 

waveforms were caused by the occurrence of spark discharges because the second peak of the current 

waveform as shown in Fig. 6-10(b) decreased preventing the spark-discharges occurrence. By the 

spark discharges, streamer discharges could be affected. It was considered that the decrease of the 

NO removal ratio with increasing NOx treatment time as shown in Fig. 6-4(a) was caused by 

decreasing the volume of streamer discharges. Consequently, using the nanosecond pulsed power 

system, in order to achieve high NOx removal ratio and removal efficiency, the introduction of the 

tensed inner wire electrode inside the coaxial reactor effectively prevents spark discharges. 

 

 
Fig. 6-11. Appearance of electric discharges using the tensioned inner wire electrode at 50 pps. 
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6.4 Conclusion of NOx Treatment  
The tensed inner wire electrode of the coaxial reactor was also applied to NOx treatment in the 

coaxial reactor using nanosecond pulsed power system. When the inner wire electrode of coaxial 

reactor was not tensed, it was attracted and curved to the outer electrode, so that spark discharges 

occurred. Then, as well as experiment of ozone production, the NO and NOx removal ratios decreased. 

In NOx treatment, when the inner wire electrode in the coaxial reactor was tensed by a spring, the 

occurrence of spark discharge was suppressed, so that the NO and NOx removal ratios increased 

without decreasing because a large volume of streamer discharges was obtained. In order to achieve 

higher NOx removal ratios and removal efficiency, a tensed inner wire electrode to be able to control 

the occurrence of the spark discharges should be introduced in the coaxial reactor. 
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7. Improved Water Treatment with Nanosecond Pulsed Power System 
7.1. Introduction of Improved Water Treatment Device [7.1] 

The coaxial reactor was improved for ozone production and NOx treatment in the chapters 5 and 

6. In order to prevent spark discharge by curving of the inner wire electrode, the inner wire electrode 

of the coaxial reactor was tensed. Then, in order to prevent the curving of the inner wire electrodes, 

in a new water treatment device, not both ends but the tops of the inner wire electrodes were fixed. 

Moreover, in order to increase the treatment volume of the water treatment device, the inner diameter 

of a glass pipe that was used as the outer electrode was altered from 10 mm of SG device to 29 mm 

and the number of the inner wire electrodes was changed from 1 to 8, with 4.0 mm distance between 

outer and inner electrodes. In chapter 7, in order to evaluate the influence of discharge area magnitude 

on the surfactant treatment, the number of stainless steel wires was changed. In addition, the 

surfactant treatment using the nanosecond pulsed power system was compared with water treatment 

using an external ozonizer instead. A schematic diagram and sectional views of the new water 

treatment device are shown in Figs. 7-1(a) and 7-1(b). 

 

 
       (a) Water treatment device                (b) Sectional views of reactor 

Fig. 7-1. Schematic of the new water treatment device. 

 

Figs. 7-2(a) and 7-2(b) indicate the cross-sectional view of the reactor electrode when eight and 

two stainless steel wires (SUS304) were used, respectively, as the inner wire electrodes of the reactor. 
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The 1.0-mm diameter stainless steel wires were located at the vertex of a regular octagon. As the 

outer electrode, a coaxial glass pipe outer-wound with copper (Cu) tape was used. The length of the 

glass pipe, inner diameter, and thickness of the reactor were 380, 29, and 2.0 mm, respectively.  

 

         
(a) Eight stainless steel wires         (b) Two stainless steel wires 

Fig. 7-2. Sectional views of the reactor and electrodes. 

 

The target solution was placed in a water reservoir located under the inner wire electrodes. The 

solution was circulated by a water pump (MD-15R-N, IWAKI) and was flowed on the inner surface 

of the glass pipe in the reactor. The flow rate of the water pump was 3.6 L/min. Then, liquid layer 

was formed from the flowing solution on the glass pipe as shown in Figs. 7-1(b) and 7-2. The glass 

pipe used as a dielectric barrier was inserted to prevent spark discharges bridging electrodes across 

the short electrode separation distance. Moreover, an insulation rod was inserted in the center of the 

glass pipe in order to cover the residence space of gas. The nanosecond high-voltage pulses were 

applied on the eight inner wire electrodes and streamer discharges developed from the eight inner 

wire electrodes to the surface of the flowing solution on the outer electrode. The solution passed 

through the plasma as streamer discharges between the electrodes. During pulse application, the 

electric charges accumulated on the inner surface of the glass pipe were carried away with the flowing 

solution. When the nanosecond pulsed power system was used, the initial charging voltage of C1 and 

pulse repetition rate were 3.1 kV and 50 pps, respectively. 

In order to consider the effect of the discharge plasma on the surfactant, an external ozonizer was 

used for ozonation of the surfactant. The applied voltages of the external ozonizer were configured at 

60.0 and 75.0 V. When the applied voltage was 60.0 V, the ozone concentration exhausted from the 

water treatment device was adjusted to that during pulse application after 20 minutes. The effect of 

using a different ozone concentration on the surfactant treatment was investigated using a higher 

ozone concentration produced by applying a voltage of 75.0 V. Ozone exhausted from the water 

treatment device was measured using an ozone monitor (PG-320A, EBARA) through handmade 

dehumidifier during surfactant treatment. Note that the measurement limit of the ozone monitor was 

up to 21.5 g/m3 ozone concentration. 
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7.2. Surfactant Treatment with Nanosecond Pulsed Power System 
Figs. 7-3(a) and 7-3(b) show the image of foam and the temporal variations in the foam height on 

the solution in the reservoir of the water treatment device. The error bars in Fig. 7-3(b) indicate the 

maximum and minimum foam height in the reservoir. After surfactant treatment for 80 minutes, 

because the foam height decreased, surfactant was decomposed during pulse application. The foam 

height using eight wire electrodes decreased slightly faster than using two wire electrodes. This was 

attributed to differences in the ozone concentration and the exposed area for discharges between eight 

and two inner wire electrodes.  

 

         

(L) Eight stainless steel wires                 (R) Two stainless steel wires 

 (a) Image of foam in the reservoir after 80 minutes’ treatment 

 

 

(b) Foaming height 

Fig. 7-3. Variation in the foam height during pulse application. 

 

Figs. 7-4 and 7-5 show typical voltage and current waveforms after 150 s from start of pulse 

application. The voltage waveform using eight stainless steel wires was almost the same as that using 
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two stainless steel wires. If anything, the voltage waveform using eight stainless steel wires after 40 

ns was lower than that using two stainless steel wires. Moreover, the current waveform using eight 

stainless steel wires around 10 ns was larger than that using two stainless steel wires. Then, discharge 

energy using eight stainless steel wires was larger than that using two stainless steel wires. When 

eight stainless steel wires were used, the energy supplied from the nanosecond pulsed power generator 

could be consumed more efficiently. Because the initial charging voltage of C1 was 3.1 kV, it was 

suggested that system efficiency increased with increasing the number of stainless steel wires. 

 

   
(a) Eight stainless steel wires                  (b) Two stainless steel wires 

Fig. 7-4. Typical voltage waveforms after 150 s from start of pulse application. 

 

  
(a) Eight stainless steel wires                 (b) Two stainless steel wires 

Fig. 7-5. Typical current waveforms after 150 s from start of pulse application. 

 

The ozone concentration exhausted from the water treatment device during the treatment of the 

purified water or the surfactant solution is shown in Fig. 7-6. The exhausted ozone could be regarded 

as residual ozone for treatment. At the start of pulse application, the device was filled with oxygen 

gas. Then, the ozone concentration exhausted from the water treatment device was zero. Ozone 

concentration in the water treatment device and exhausted from the device temporally increased with 
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treatment. For surfactant treatment, the ozone concentration using eight inner wire electrodes was 

higher than that using two inner wire electrodes. The ozone concentration in case of eight inner wire 

electrodes approximated that for purified water. This could indicate that the surfactants’ structures 

were decomposed after 80-minutes’ pulse application. Moreover, the surfactant decomposition with 

eight inner wire electrodes was faster than that with two inner wire electrodes. 

 

 

Fig. 7-6. Variation in the ozone concentration exhausted from the water treatment device during 

pulse application. 

 

Fig. 7-7 shows the variation in the absorbance spectrum at each 20 minutes during surfactant 

treatment. The absorbance spectrum increased with the treatment time in the entire spectrum. The 

absorbance spectrum using eight wires increased faster than using two wires. This could indicate that 

more surfactant was decomposed and more active species, such as dissolved ozone, hydrogen 

peroxide, and so on, were dissolved in the solution using eight inner wire electrodes for 80-minutes’ 

treatment. Using eight inner wires, not only a larger discharge area (Fig. 7-7) but also a stronger direct 

effect of the electric discharges such as UV and ion wind [7.2] was obtained. The UV promoted 

production of ozone and OH radical in gas and liquid phase. The ion wind and streamer heads struck 

the solution, so that chemical reactions of gas phase on the solution would be promoted. Therefore, 

because more ozone and more active species reacted with the surfactant, the surfactant was 

decomposed more quickly. Consequently, in order to carry out faster wastewater treatment, because 

more ozone and active species should be produced and react with organic compounds, a larger 

discharge area would be required. 
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(a) Eight stainless steel wires                 (b) Two stainless steel wires 

Fig. 7-7. Variation in the absorbance at each 20 minutes during pulse application for surfactant 

treatment. 
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7.3. Surfactant Treatment with an External Ozonizer 
In order to investigate the effect of electric discharges on the surfactant solution, an external 

ozonizer instead of the nanosecond pulsed power system was used for surfactant treatment. Fig. 7-8 

presents the ozone concentration exhausted from the water treatment device using an external 

ozonizer or pulse application. When ozone concentration exceeded the maximum measurable ozone 

concentration of the ozone monitor, the concentration measurement was stopped but the treatment 

experiment was continued. A higher applied voltage of the external ozonizer resulted in a higher 

ozone concentration. 

 

 

Fig. 7-8. Variation in the ozone concentration exhausted from the water treatment device during 

surfactant treatment. 

 

Figs. 7-9(a) and 7-9(b) presents the image of foam and the temporal variation in the foam height 

in the reservoir of the water treatment device using the nanosecond pulsed power system or the 

external ozonizer. Because ozone concentrations during ozonation were different based on the ozone 

concentration of Fig. 7-8, changes of foaming height on the solution using treatment with ozonation 

were approximately same. However, when ozone concentration during ozonation was higher than 

that using the nanosecond pulsed power system, the foam height during pulse application decreased 

faster than that during ozonation. Thus, it was suggested that ozonation using the external ozonizer 

was not efficient for surfactant decomposition. 
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(L) Pulsed Discharge (8 wires)                (R) External Ozonizer (75.0 V) 

(a) Image of foam in the reservoir after 80 minutes’ treatment 

 

 

(b) Foaming height 

Fig. 7-9. Variation in the foam height during ozonation or pulse application. 

 

As seen in the absorbance spectrum around 260 nm in Fig. 7-10, the dissolved ozone during 
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concentration with ozonation. Moreover, around 200 nm, active species such as hydrogen peroxide 

during ozonation were also more than those during pulse application. Although more ozone and active 

species in the solution were produced under higher ozone concentration, the foaming height by 

treatment using the ozonizer decreased lower than that using the pulsed power system. In treatment 

using the ozonizer, no discharges occurred near the target solution. Moreover, because of the lower 

ORP of ozone or hydrogen peroxide than that of the OH radical [7.3], ozone and hydrogen peroxide 

hardly reacted with target organic compounds including persistent substance. It was suggested that 

active species remained in the solution without reacting with the surfactant. When the surfactant 

treatment using the pulsed power system was performed, electric discharges near the solution could 
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promote chemical reactions between active species and surfactants. The direct effects of electric 

discharges such as UV rays and ion wind might also promote the treatment. Then, the absorbance 

spectrum using the external ozonizer was higher than that using the nanosecond pulsed power system. 

For faster wastewater treatment, it was suggested that electric discharges near the target solution 

which promote chemical reactions between active species, such as ozone and OH radical, and organic 

compounds such as surfactants were needed. 

 

         

(a) 75.0 V of applied voltage                 (b) 60.0 V of applied voltage 

Fig. 7-10. Variation in the absorbance spectrum at each 20 minutes during ozonation for surfactant 

treatment. 
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7.4. Surfactant Treatment with Combination of the Pulsed Power and the Ozonizer [7.4] 
In previous experiment of ozone production, the result that ozone production increased using 

electric discharges in oxygen and ozone gas had been obtained [7.5]. In water treatment experiments, 

the results of the treatment using the pulsed power system and using the external ozonizer indicated 

that electric discharges near the target solution was able to improve reactivity of active species and 

more ozone was able to produce more active species, respectively. Then, surfactant treatment with 

combination of the nanosecond pulsed power system and the external ozonizer (75.0 V) was 

performed. In order to measure more than 21.5 g/Nm3 of ozone concentration, another ozone monitor 

(EG-600, EBARA) was used. Figs. 7-11(a) and 7-11(b) present the image of foam after surfactant 

treatment with the combination system and the temporal variation in the foam heights in the reservoir 

of the water treatment device with each treatment method, respectively. 

 

 

(a) Image of foam after 80 minutes’ treatment with the combination system 

 

 

(b) Foaming height 

Fig. 7-11. Variation in the foam height using each treatment method. 
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Fig. 7-12 shows treatment kinetic curves using the decreasing degree of the foaming height in Fig. 7-

11(b). Note that the inclination of the line in Fig. 7-12 indicated treatment speed. From Fig. 7-11(a), 

it was found that the foam on the solution was little. In Fig. 7-11(b), the foaming height with the 

combination system decreased the fastest of three treatment methods. For 20 minutes from start of 

pulse application, foaming heights using either the combination system or the ozonizer decreased 

faster than that using the pulsed power system. From Fig. 7-12, the inclination of the line using the 

combination system was approximately same as that using the external ozonizer. After 20 minutes’ 

treatment, the inclination of the line using the ozonizer became smaller. It was suggested that 

surfactant was rarely decomposed by only ozone. On the other hand, because the inclination of the 

line using the nanosecond pulsed power system was stable during surfactant treatment, it was found 

that surfactant was treated at a regular speed by using the pulsed power system. In other words, 

electric discharges would improve surfactant decomposition. After 20 minutes’ treatment, treatment 

speed using the combination system was approximately same as that using the pulsed power system, 

so that it could be suggested that water treatment at a regular speed was performed by using the pulsed 

power system or electric discharges. 

 

 

Fig. 7-12. Kinetic curves of foaming height on each treatment. 

 

Fig. 7-13 shows the ozone concentration exhausted from the water treatment device. Fig. 7-14 

presents the absorbance at each 20 minutes for surfactant treatment with the combination system. In 
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the pulsed power system. It was considered that ozone concentration using the ozonizer greatly 

exceeded ability for ozone production of the discharge plasma in the water treatment device. Namely, 

the occurrence of ozonolysis with the electric-discharges plasma would be more than that of ozone 

production, so that ozone concentration using the combination system was lower than that using the 

ozonizer. The ozone concentration using either the combination system or the ozonizer was higher 

than that using the pulsed power system. Because of higher ozone concentration, foaming height 

during 20 minutes’ treatment from experiment start would decrease that using the pulsed power 
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system. Although using the external ozonizer could cause the highest ozone concentration, the 

decrease of foaming height was the slowest after 80 minutes’ treatment. On the other hand, foaming 

height using the combination system was decreasing during surfactant treatment constantly. It was 

suggested that surfactant treatment without electric discharges near the target solution was promoted 

rarely even if high ozone concentration was used as the condition of working gas. 

 

 

Fig. 7-13. Variation in the ozone concentration exhausted from the water treatment device during 

surfactant treatment. 

 

 

Fig. 7-14. Variation in the absorbance at each 20 minutes for surfactant treatment with the 

combination system. 
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indicated that more active species were produced in the solution. Using the combination system, 

electric discharges in more active species and high ozone concentration could promote water 

treatment. However, because surfactants would not be decomposed completely, a new water treatment 

device should be developed in the future. Moreover, in order to solve the issue, chemical analysis 

such as liquid chromatography (LC) will be helpful. 
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7.5. Conclusion of Surfactant Treatment Using Improved Water Treatment Device 
In order to evaluate the performance of the new water treatment device, surfactant treatment using 

the nanosecond pulsed power system was performed. Especially, the effect of the discharge area and 

the necessity of electric discharges were investigated. The effect of the discharge area was 

investigated by changing the number of inner wire electrodes, whereas the necessity of electric 

discharges was investigated through comparison with using an external ozonizer instead of the 

nanosecond pulsed power system. As a result, faster surfactant treatment was obtained when the 

discharge area was larger and when the nanosecond pulsed power system was used. This was 

attributed to the direct effects of electric discharges, when the nanosecond pulsed power system was 

used, so than UV rays and ionic wind would promote chemical reactions between active species and 

target organic compounds. Then, it was suggested that a stronger direct effect of electric discharges 

was obtained by a larger discharge area. Moreover, surfactant treatment using the nanosecond pulsed 

power system was faster than that using the external ozonizer although ozone concentration using the 

ozonizer was higher than that using the nanosecond pulsed power system. This was indicated that the 

occurrence of the electric discharges nearer the target solution rather than higher ozone concentration 

should be effective for faster water treatment with oxygen gas. Moreover, when nanosecond pulsed 

power system or electric discharges were used for water treatment, it was found that electric 

discharges generated under higher ozone concentration could contribute to decomposition of target 

organic compounds more strongly and faster. 
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8. Conclusion 
The nanosecond pulsed power system was applied to water treatment. When indigo carmine 

solution was treated for water treatment evaluation, the decoloration of indigo carmine using oxygen 

as the working gas was faster than that using nitrogen during pulse application because ozone and 

active species such as the OH radical were generated by electric discharges in the oxygen gas. 

Moreover, treatment of surfactants, which are contained in domestic wastewater, with the nanosecond 

pulsed power system was also investigated. The foam height of the surfactant was reduced after 100 

minutes’ pulse application. Moreover, the treatment of surfactant in purified water was faster than 

that of surfactant in tap water because the difference in the pH value and the electric conductivity of 

the solutions could affect production of active species such as ozone and OH radical. In a word, it 

could be considered that water quality of target solution was a little influence water treatment. In 

order to investigate necessity of electric discharges, surfactant treatment using the nanosecond pulsed 

power system was compared with that using an external ozonizer. Foaming height using the 

nanosecond pulsed power system decreased more than that using the ozonizer. However, when NaTA 

solution to evaluate OH radical production was treated, OH radical production using the nanosecond 

pulsed power system was almost the same as that using the ozonizer. It would be indicated that the 

surfactant was not decomposed sufficiently by ozone and OH radical. Then, when electric discharges 

were used for water treatment, the electric discharges would promote chemical reactions between 

ozone or OH radical and surfactant. In order to promote chemical reaction between more OH radical 

and target organic compounds effectively, the nanosecond pulsed power system using electric 

discharges should be applied to water treatment for organic compounds. 

In the experiment of indigo carmine treatment, it was suggested that more ozone and more OH 

radical were needed for faster water treatment. In order to produce ozone efficiently, electric 

discharges in the coaxial reactor were studied. Then, it was found that spark discharge, which is 

considered an ozone-decomposition factor, was caused by curving inner wire electrode of the coaxial 

reactor. Indeed, curving the inner wire electrode resulted in topical electric discharge such as spark 

discharges, so that volume of streamer discharges decreased. The curving inner wire electrode 

occurred at high pulse frequency notably. At that time, ozone concentration decreased. As a method 

of preventing the inner wire electrode from curving, a coaxial reactor that can tense the inner wire 

electrode was created. When the coaxial reactor with tensing the inner wire electrode, ozone 

concentration was stable at high pulse frequency without curving the inner wire electrode and 

producing spark discharges, so that stable ozone-production efficiency was obtained. 

As well as the ozone production experiments, removal ratio of NOx which caused air pollution 

also decreased at high pulse frequency. In NOx treatment, in order to tense inner wire electrode of 

the coaxial reactor, a spring was used. As a result, a stable and higher NOx removal ratio was also 

obtained than that using a non-tensed inner wire electrode, so that NOx treatment efficiency increased. 

From results of ozone production and NOx treatment, in a new water treatment device, not both 

ends but the tops of the inner wire electrodes were fixed for preventing curving inner wire electrode. 

Moreover, in order to increase the treatment volume of the water treatment device, the inner diameter 
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of a glass pipe used as the outer electrode became larger. In addition, for an aim to increase direct 

effects of electric discharges such as UV rays and ion wind, the number of inner wire electrode 

increased. In order to evaluate the influence of the discharge area size on the surfactant treatment, the 

number of stainless steel wires was changed. Faster surfactant treatment was achieved with increasing 

the number of stainless steel wire in water treatment device. Because of larger discharge area, it was 

easy for water treatment using the nanosecond pulsed power system to benefit from direct effects of 

electric discharges which UV rays promoted active species production and ion wind pushed the active 

species toward target solution. In addition, in order to investigate necessity of electric discharges, 

surfactant treatment using the nanosecond pulsed power system was compared with water treatment 

using an external ozonizer. The foam height using the ozonizer decrease slower than that using the 

nanosecond pulsed power system even when ozone concentration using the ozonizer was higher than 

that using the nanosecond pulsed power system. It was found that, even when ozone concentration 

was low, electric discharges could promote chemical reactions between OH radical and surfactant, so 

that water treatment with the pulsed power system was faster than that with high ozone concentration 

without using electric discharges. As improvement of surfactant treatment, surfactant treatment with 

a combination system using electric discharges in high ozone concentration was performed. The 

surfactant treatment using the combination system was faster than that using the pulsed power system. 

Because more active species were generated by the combination system than only pulsed power 

system, it could be suggested that more active species and electric discharges contribute to surfactant 

decomposition. However, in the future, in order to develop water treatment with the nanosecond 

pulsed power system, chemical analysis such as liquid chromatography (LC) should be carried out. 

Then, based on the LC results, new water treatment device would be developed. 

Consequently, streamer discharges generated uniformly inside of the treatment device using the 

nanosecond pulsed power system should be applied for water treatment because the direct effect of 

the streamer discharges such as UV rays and ion wind could push the active species toward target 

solution, so that faster water treatment could be obtained. 
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9. Future Plans 
In order to analyze water treatment chemically, a target solution before or after the treatment 

should be investigated by liquid chromatography (LC). Then, by-products after the water treatment 

helps to predict chemical reactions during the water treatment. Moreover, in order to practicalize 

water treatment with the nanosecond pulsed power system, increase of the treatment volume with the 

water treatment device using a horizontal reactor and improvement of water circulating method are 

needed. 
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